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Abstract

Multilingual text recognition (MLTR) systems typically
focus on a fixed set of languages, which makes it diffi-
cult to handle newly added languages or adapt to ever-
changing data distribution. In this paper, we propose the
Incremental MLTR (IMLTR) task in the context of incre-
mental learning (IL), where different languages are intro-
duced in batches. IMLTR is particularly challenging due
to rehearsal-imbalance, which refers to the uneven distri-
bution of sample characters in the rehearsal set, used to
retain a small amount of old data as past memories. To ad-
dress this issue, we propose a Multiplexed Routing Network
(MRN). MRN trains a recognizer for each language that is
currently seen. Subsequently, a language domain predictor
is learned based on the rehearsal set to weigh the recog-
nizers. Since the recognizers are derived from the original
data, MRN effectively reduces the reliance on older data
and better fights against catastrophic forgetting, the core
issue in IL. We extensively evaluate MRN on MLT17 and
MLT19 datasets. It outperforms existing general-purpose
IL methods by large margins, with average accuracy im-
provements ranging from 10.3% to 35.8% under different
settings. Code is available at https://github.com/
simplify23/MRN .

1. Introduction
Scene text recognition (STR) is a task aiming to read text

in natural scenes. Recent advances in deep learning have
significantly improved the accuracy of STR, allowing it to
recognize text in the presence of font variations, distortions,
and noise interference [39, 40, 43, 38, 19, 53]. As countries
and cultures are more interconnected, the task of simulta-
neously recognizing multiple languages, i.e., multilingual
text recognition (MLTR), has also become more important.
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Figure 1. Incremental multilingual text recognition (IMLTR) fo-
cuses on the practical scenario where different languages are intro-
duced sequentially. The goal is to accurately recognize the newly
introduced language while maintaining high recognition accuracy
for previously seen languages. IMLTR introduces a task focusing
on text recognition that faces rehearsal-imbalance challenges.

Existing methods typically address this challenge by train-
ing on mixed multilingual data [8, 4, 34] or designing in-
dependent language blocks [29, 22, 24]. However, when
each time a new language is added, the above methods need
retraining on a dataset mixing the old and new languages.
This increases the training cost [37, 46] and also may lead
to an imbalance [7, 14] between old and new data.

Incremental learning (IL) is designed for scenarios
where new data is continuously learned and typically, the
old samples are maintained by a small ratio. The collection
of old samples is referred to as the rehearsal set [51, 27],
which serves as limited past memories. IL aims to learn the
new data well while minimizing forgetting the past learned
knowledge. Most existing studies [37, 7, 52, 28] conduct
experiments on balanced datasets and maintain a constant
number of classes at each learning step. However, in real-
world scenarios, the number of classes and samples may
differ across steps, leading to imbalanced datasets. To ad-
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dress these issues, IL2M [7] alleviated class-imbalance by
storing statistics of old classes rather than samples. Delange
et al. De Lange et al. [14] surveyed typical IL methods on
datasets and solutions with different data imbalances. De-
spite progress made, research on data and class imbalance
is still in its infancy stage. Moreover, as illustrated in Fig. 1,
there is currently no research introducing IL to STR.

We rewrite MLTR in the context of IL. Languages are
treated as tasks and characters are their classes. During
training, the model only observes the newly arrived lan-
guage data and a small amount of data from old languages.
The recognition model is expected to maintain the ability to
recognize characters of all languages that it has encountered
before, regardless of whether their data are still available or
discarded. We term this problem incremental multilingual
text recognition (IMLTR).

IMLTR poses significant challenges to IL approaches
due to its unbalanced features. 1) At the dataset level, it
is difficult to collect sufficient training data for minority
languages such as Bangla compared to popular languages
such as English and Chinese, which affects the quality of
recognition models. 2) At the language level, the size of
character sets varies from tens to thousands across different
languages, which leads to data imbalance. 3) At the char-
acter level, the occurrence frequency of characters follows
a long-tailed distribution, leading to class imbalance. In ad-
dition, IMLTR faces the problem of variable length recog-
nition, where text instances are the recognizing unit instead
of character classes. Therefore, IL methods cannot sample
characters as evenly as required in the context of IMLTR,
resulting in a significant fraction of characters not being in-
cluded in the rehearsal data, as shown in Fig. 2. This phe-
nomenon is summarized as rehearsal-imbalance in Fig. 1.
Rehearsal-imbalance leads to catastrophic forgetting, where
forgotten characters cannot be recognized. Therefore, there
is an urgent need to develop new methods to overcome it.

Although the rehearsal set does not ensure full cover-
age of all interlingual character classes, it is still adequate
for training a language domain predictor to identify the lan-
guages. Motivated by this observation, we propose a novel
Multiplexed Routing Network (MRN) for IMLTR. MRN in-
volves training a new text recognition model at each learn-
ing step and utilizing it and previously trained models for
parallel feature extraction. A domain MLP router is de-
signed to receive these features and predict the probability
over the languages. Meanwhile, these features are used for
character recognition in their own domain by feeding them
to the multi-lingual modeling module. Finally, we fuse the
results obtained at both the language domain and character
levels to decode the recognized character sequence.

Our contributions can be summarized as follows. First,
we introduce the IMLTR task, the first effort to adapt IL to
text recognition. It contributes to the exploration of other
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Figure 2. The showcase of rehearsal-imbalance. Data-imbalance
(top) and class-imbalance (bottom) are severely aggravated from
the full dataset to the rehearsal set, while the character classes to
be read remain the same, making IMLTR particularly challenging.

practical scenarios for text recognition. Second, we de-
velop MRN to address the rehearsal-imbalance problem in
ILMTR. It is a dynamic and scalable architecture that is
compatible with various IL methods and recognition mod-
els. Third, experiments on two benchmarks show that MRN
significantly outperforms existing general-purpose IL meth-
ods, achieving accuracy improvements ranging from 10.3%
to 27.4% under different settings.

2. Related Work
2.1. Incremental Learning (IL)

IL has received intensive research attention over the past
few years. Typically, the problem is investigated in the con-
text of image classification, where addressing catastrophic
forgetting effectively and efficiently is its core issue. We can
broadly classify existing efforts into three categories: regu-
larization [30, 50, 15], rehearsal [36, 9, 1] and dynamic ex-
pansion [2, 46, 17, 28]. Regularization methods emphasize
constraining weight changes, e.g., allowing only small mag-
nitude changes from the previous weights. It suffers from
the problem that the changes do not adequately describe the
complex pattern shifts caused by new task learning. Re-
hearsal methods keep a small amount of old data when
training a new task, thus retaining some prior knowledge.
Studies in this category focus on the selection of old data
and the way it is used. For example, iCaRL was developed
to learn an exemplar-based data representation [37]. Al-
ternatively, dynamic expansion methods dynamically create
feature extraction sub-networks each associated with one
specific task [23, 12, 45, 28]. Early methods required a
task identifier to select the correct sub-network at test time.
Unfortunately, the assumption is unrealistic as new sam-
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Figure 3. An overview of MRN. In stage-I, text recognizers are trained language-by-language. While in stage-II, these recognizers are
frozen for feature extraction. The Domain MLP Router, which is trained based on the rehearsal set, is proposed to predict the likelihood
distribution over the languages. Meanwhile, a padded classification layer is constructed, where the parallel predicted text sequences and
likelihood distributions are merged to generate the decoded character sequence.

ples would not come with their task identifiers. Recently,
DER [46] proposed a dynamically expandable representa-
tion by discarding the task identifier, where the classifier
was finetuned on a balanced exemplar subset to mitigate the
task-tendency bias. It attained impressive results. Some re-
cent works [7, 14] studied IL in inhomogeneous or uneven
datasets. However, the datasets they adopted are still ideal
and cannot sufficiently describe challenges in real-world
problems. Moreover, there were also some studies proposed
for object detection [21, 10, 48, 47], semantic segmentation
[49, 16, 51] and object retrieval [32]. Text recognition has
not been studied in IL so far.

2.2. Scene Text Recognition (STR)

Text recognition is a longstanding research topic in com-
puter vision and pattern recognition. Recent efforts mainly
focused on recognizing text in natural scenes, i.e., STR. The
task exhibits variations like text distortion, occlusion, blur-
ring, etc., making the recognition challenging. With the ad-
vances in deep learning, especially CNN [5, 39, 26, 40] and
Transformers [38, 20, 54, 43, 18, 44], STR methods have
been pushed forward significantly.

Multilingual text recognition (MLTR) is an important
sub-field of STR. The most popular solution for MLTR was
data-joint training [35, 8, 34, 4], where all data was gath-
ered to train a model capable of recognizing all charac-
ter classes. However, in addition to computational inten-

sive, the approach also had the drawback of being biased
toward data-rich languages, while performing poorly in mi-
nority languages where training data was scarce. As alterna-
tives, multi-task or ensemble architectures were developed
to allow data-rich languages to transfer knowledge to data-
poor ones [6, 13]. They alleviated the data scarcity issue
to some extent. In addition, Some studies [22, 24, 41, 29]
added a script identification step to text recognition. They
first identified the language domain and then selected the
corresponding recognizer. Although similar to ours in the
pipeline, they did not explore dependencies between lan-
guages. Moreover, none of them discussed the task within
the IL framework.

3. Methodology

3.1. Incremental Multilingual Text Recognition

Our goal is to develop a unified model that can recognize
text instances in different languages, with the model trained
incrementally language-by-language. Mathematically, as-
sume there are I kinds of languages {D1, · · · ,DI}, with
Di =

{
(xi,1, yi,1) , · · · ,

(
xi,N(i), yi,N(i)

)}
as the training

data at step i (i.e., task i), where xi,j is the j-th input im-
age and yi,j ∈ Ci is its label within the label set Ci, N(i)
is the number of samples in set Di. At the i-th learning
step, samples of the i-th language will be added to the train-
ing set. Therefore, the goal can be formulated as to learn
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new knowledge from the set Di, while retaining the previ-
ous knowledge learned from old data {D1, · · · ,Di−1}. The
label space of the model is all seen categories C̃i = ∪i

k=1Ck
and the model is expected to predict well on all classes in C̃i.
Note that there may be a small overlap between label sets,
i.e., Ck ∩ Cj ̸= ∅ for some k and j. To better fight against
catastrophic forgetting, we discuss IMLTR in the rehearsal
setting. That is, a small and fix-sized rehearsal set Mi with
a portion of samples from {D1, · · · ,Di−1} is accessible at
incremental step i.

3.2. Challenge and Solution Statement

To build a recognition model to correctly recognize text
instances from all currently seen languages and their char-
acter classes, let xn be the text instance to be recognized.
ytn ∈ C̃i denotes the t-th character label corresponding to
xn. T (n) gives the total number of characters in this in-
stance. IMLTR differs significantly from existing IL set-
tings. For example compared to incremental image classifi-
cation, standard IL usually has |C̃i| ≤ 100 and T (n) = 1 re-
gardless of the value n. While the size of rehearsal set Mi is
a constant (e.g., 2,000). However, in IMLTR Ci ranges from
dozens of to thousands of character classes for different lan-
guages, and T (n) belongs to (1, 25), assuming 25 as the
maximized length of a character sequence. Consequently,
rehearsal-imbalance becomes a prominent challenge. Due
to the limited size of the rehearsal set, it is not rare that a
character class appears in the full dataset but is absent from
the rehearsal set, as shown in Fig. 2. Thus, the incremen-
tally trained models are likely to forget the absent character
classes, despite having learned them previously, which can
ultimately hurt the recognition accuracy.

Although the rehearsal set may not be enough to train a
multilingual text recognizer to identify thousands of charac-
ter classes, it is still sufficient to train a language classifier
to recognize the language domains present in the text in-
stance, whose classes are a much smaller number. Once the
language domains are identified, we can choose an alterna-
tive scheme that involves aggregating the results from cor-
responding language recognizers to perform the recognition
task, thereby bypassing the rehearsal-imbalance issue.

Motivated by this, we define Hi and φi the skeleton net-
work (all except classifier) and classifier trained at the i-
th incremental step. Note that Hi is trained on Di, there-
fore can only recognize character classes of the i-th lan-
guage in principle. Meanwhile, φi is set to have C̃i nodes
to be compatible with typical IL settings, despite not be-
ing taught to recognize character classes of other languages.
Then, we can adopt an aggregating-like scheme to imple-
ment IMLTR. The learning function can be written as:

i∑
k=1

T (n)∏
t=1

(
P
(
ytn|xn;Hk, φk

)
∗ S

(
dkn

))
, (1)

where dkn is the domain score indicating xn being classified
as the k-th language. S(·) is the score quantization func-
tion, which can be a one-hot vector (hard-voting) or a like-
lihood distribution (soft-voting). Eq. 1 treats IMLTR as a
weighted ensemble of recognition models trained based on
different languages. By doing so, it successfully overcomes
the rehearsal-imbalance issue within the IL framework.

3.3. Method Overview

We propose a Multiplexed Routing Network (MRN) to
implement this idea. As illustrated by Fig. 3, it contains
two stages, i.e., individual language modeling (stage-I) and
multi-lingual modeling (stage-II). In stage-I, given Di for
the i-th language, we train its recognizer using a popular
text recognition model, which can recognize the character
classes seen in Di. The model is represented as Hi and φi.
For character classes in C̃i but not in Ci, we simply trun-
cate gradient propagation from these nodes thus the learned
model still focuses on recognizing the i-th language.

Stage-II aims at building a multilingual routing network
for IMLTR. Given a text instance xn ∈ Di ∪Mi, we feed
it into all the learned i skeleton networks in parallel, while
keeping the parameters of the networks frozen for targeted
feature extraction. It extracts i sets of features, each asso-
ciated with a certain language. The features are further fed
into a Domain MLP Router (DM-Router) module, which is
designed for domain score estimation, i.e., estimating the
likelihood that the text instance belongs to the languages.
Meanwhile, the i sets of features are fed to their respective
classifiers, where the corresponding recognition character
sequences are obtained. To merge their recognition, we pad
the classification nodes with zeros to |C̃i|, ensuring that all
classifiers are aligned to the same dimension. As a result,
their recognized characters can be merged using weighted
element-wise addition, where the weights are the domain
scores estimated using DM-Router. Finally, the recognition
is conducted by applying a CTC- or attention-based decod-
ing. Since DM-Router plays a critical role in the proposed
method, we provide a detailed illustration below.

3.4. Domain MLP Router

DM-Router uses features that are biased towards differ-
ent language domains to discriminate the language domain
of text instances. It accomplishes this by leveraging both
the rehearsal set and the language data that arrives at the i-
th step. While training a separate single-network classifier,
which takes an image as input and outputs the language do-
main scores, can identify the language domains, we believe
that this approach overlooks inter-domain dependencies that
could be explored for better identification. For instance,
different languages may have distinct appearance patterns,
such as strokes, which differ significantly between Eastern
Asian languages and Latin. Additionally, their features ex-
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and fused to generate the language domain score distribution.

hibit different frequency distributions, which can also aid
language identification.

To achieve this goal, DM-Router accepts all i sets of fea-
tures extracted previously as input and mines the spatial-
domain and channel-domain dependencies for better lan-
guage identification. The detailed structure of DM-Router
is shown in Fig. 4. Features from different skeleton net-
works are concatenated, generating a feature cubic with size
P ×D×C, where P , D, and C stand for the number of re-
shaped spatial patches, language domains, and feature chan-
nels, respectively. Then, a linear projection is applied along
the channel dimension (C Proj), followed by reshaping the
cubic from the patch-domain dimension. Next, a gated-
mechanism is followed to generate the attention scores be-
tween the patch and domain. This is achieved by applying
linear projection along the patch-domain dimension, fol-
lowed by a layer norm and a feature dot product. We re-
shape the generated feature back to a feature cubic of the
same size and merge it with the original cubic. The op-
erations above explore the spatial-domain dependency. A
similar operation is then applied to the merged feature cu-
bic to explore the channel-domain dependence. In the fol-
lowing, the explored feature cubic gradually shrinks to a D-
dimensional score vector that indicates the probability over
the languages. It represents the likelihood of each language
domain for the input text instance.

DM-Router is an MLP-based attention network that tar-
gets language domain weighting. Note that there are a few
similar solutions in the literature. Expert Gate (E-Gate) [2]
developed an expert gating network that identified which
model could be employed based on image reconstruction
loss. However, it might not effectively discriminate IMLTR
due to some languages exhibiting character class overlap-
ping, which can cause classification confusion. On the other
hand, multilingual OCR [29] determines the languages by

Dataset categories Task1 Task2 Task3 Task4 Task5 Task6
Chinese Latin Japanese Korean Arabic Bangla

MLT17[35]
train instance 2687 47411 4609 5631 3711 3237
test instance 529 11073 1350 1230 983 713
train class 1895 325 1620 1124 73 112

MLT19[34]
train instance 2897 52921 5324 6107 4230 3542
test instance 322 5882 590 679 470 393
train class 2086 220 1728 1160 73 102

Table 1. MLT17 and MLT19 statistics in our experiments.

script recognition and selected the corresponding model for
recognition. Unlike these hard-voting methods, MRN em-
ploys soft-voting, which allows for the use of knowledge
from other languages. For instance, Japanese has the abil-
ity to correct Chinese to some extent, given that they share
some common words and similar strokes.

3.5. Training Loss

MRN has two loss terms. One for multilingual text
recognition while the other for language domain prediction.
The total loss function is written as:

Ltotal = Lclf + αLdomain, (2)

where α is an empirical hyperparameter to balance the two.
MRN shows two advantages in dealing with rehearsal-

imbalance. First, it ensures fair use of language. As pre-
viously mentioned, data distribution is uneven across dif-
ferent languages, and if not addressed during model train-
ing, it may lead to bias in the resulting model. By adopt-
ing language-by-language training and parameter freezing,
data-rich and data-poor languages are treated equally, and
class-imbalance is also alleviated. Second, MRN makes
use of inter-lingual dependency in two ways: through the
DM-Router described earlier, and through recognition score
merging. When a character is recognized by more than one
language, it receives confidence scores from each of them,
allowing for the utilization of inter-lingual dependencies.

4. Experiments
4.1. Datasets and Implementation Details

ICDAR 2017 MLT (MLT17) [35] has 68,613 training in-
stances and 16,255 validation instances, which are from
6 scripts and 9 languages: Chinese, Japanese, Korean,
Bangla, Arabic, Italian, English, French, and German. The
last four use Latin script. The samples are from natural
scenes with challenges like blur, occlusion, and distortion.
We use the validation set for test due to the unavailability
of test data. Tasks are split by scripts and modeled sequen-
tially. Special symbols are discarded at the preprocessing
step as with no linguistic meaning.
ICDAR 2019 MLT (MLT19) [34] has 89,177 text instances
coming from 7 scripts. Since the inaccessibility of test set,
we randomly split the training instances to 9:1 script-by-
script, for model training and test. To be consistent with
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MLT17 MLT19
Model : CRNN (TPAMI’17) [39]

T1 T2 T3 T4 T5 T6 AVG T1 T2 T3 T4 T5 T6 AVG
Bound - - - - - - 92.1 - - - - - - 84.9

Baseline 91.1 51.7 51.0 37.2 29.3 22.3 47.1 85.1 49.6 46.5 35.5 27.6 20.7 44.2
LwF (TPAMI’17)[31] 91.1 53.7 53.4 38.2 29.7 23.7 48.3 85.1 51.6 49.2 36.5 27.7 22.0 45.3
EWC (PNAS’17)[30] 91.1 56.5 50.4 37.2 30.5 21.5 47.9 85.1 55.5 46.3 35.8 28.8 19.9 45.2
WA (CVPR’20) [52] 91.1 54.6 48.7 38.2 28.5 23.1 47.4 85.1 52.2 44.3 36.7 26.8 21.6 44.4
DER (CVPR’21)[46] 91.1 76.3 55.8 46.4 39.3 35.8 57.5 85.1 75.2 40.4 45.1 36.6 34.2 52.8

MRN 91.1 88.6 77.2 73.7 69.8 69.8 78.4 85.1 85.1 73.2 68.3 65.3 65.5 73.7
Model : TRBA (ICCV’19) [3]

T1 T2 T3 T4 T5 T6 AVG T1 T2 T3 T4 T5 T6 AVG
Bound - - - - - - 94.9 - - - - - - 90.5

Baseline 91.3 49.6 47.3 36.1 28.6 24.0 46.1 85.4 49.4 44.0 34.8 27.4 23.1 44.0
LwF (TPAMI’17)[31] 91.3 55.7 38.8 28.7 22.6 18.7 42.6 85.4 54.2 35.0 27.2 20.5 17.0 39.9
EWC (PNAS’17)[30] 91.3 50.4 43.6 33.1 25.6 21.9 44.3 85.4 49.4 40.6 31.7 24.8 20.6 42.1
WA (CVPR’20) [52] 91.3 45.4 41.8 30.7 23.5 19.6 42.1 85.4 44.0 37.9 29.2 21.6 18.1 39.4
DER (CVPR’21)[46] 91.3 60.1 53.0 38.8 31.4 28.6 50.5 85.4 60.7 50.3 37.2 30.3 28.1 48.7

MRN 91.3 87.9 75.8 72.2 71.5 68.7 77.9 85.4 84.5 73.2 67.8 66.7 64.8 73.7
Model : SVTR-Base (IJCAI’22) [18]

T1 T2 T3 T4 T5 T6 AVG T1 T2 T3 T4 T5 T6 AVG
Bound - - - - - - 90.1 - - - - - - 83.2

Baseline 90.6 32.5 40.5 30.8 24.5 19.9 39.8 84.8 31.3 37.0 29.2 22.6 19.1 37.3
LwF (TPAMI’17)[31] 90.6 28.0 38.4 29.9 24.1 18.3 38.2 84.8 27.0 34.6 28.4 22.3 17.0 35.7
EWC (PNAS’17)[30] 90.6 33.0 41.2 31.1 24.6 20.0 40.1 84.8 31.3 37.7 29.5 22.6 19.0 37.5
WA (CVPR’20) [52] 90.6 28.0 37.9 30.4 24.8 19.8 38.6 84.8 26.7 34.6 28.3 22.6 18.6 35.9
DER (CVPR’21)[46] 90.6 74.5 55.7 55.0 49.5 45.7 61.8 84.8 71.6 52.9 52.2 46.6 43.6 58.6

MRN 90.6 86.4 73.9 65.6 63.4 58.1 73.0 84.8 83.7 69.4 64.4 57.8 53.1 68.9

Table 2. Accuracy (%) of different text recognizers and incremental learning methods on MLT17 and MLT19. Baseline denotes the model
trained solely based on the rehearsal set and language data arrived at that step. The language incremental order is introduced in Sec. 4.1.

MLT2017 dataset, we discard the Hindi script and also spe-
cial symbols. Statistics of the two datasets are shown Tab. 1.

Height and width of the images are scaled uniformly to
32 × 256. The maximum length of a character sequence is
set to 25. All models, each corresponding to a language do-
main, are trained with 10,000 iterations, using the Adam op-
timizer and the one-cycle learning rate scheduler [42] with
a maximum learning rate of 0.0005. The batch size is set
to 256. To mitigate the dataset variance, in each batch we
evenly sample training samples from both datasets, that is,
half from MLT17 and half from MLT19. A random order
for the six languages is employed, which is Chinese, Latin,
Japanese, Korean, Arabic, Bangla. Other orders will be dis-
cussed later. For the rehearsal setting, we limit the rehearsal
size to 2000 samples unless specified. We conduct the ex-
periments using two NVIDIA RTX 3090 GPUs.

4.2. Comparison with Existing Methods

We equip MRN with different text recognizers and com-
bine them with different IL methods. Specifically, we con-
sider three typical STR schemes: CTC-based (CRNN [39]),
attention-based (TRBA [3]), and ViT-based (SVTR [18]).
Meanwhile, four popular IL methods are chosen, i.e., Lwf

[31], EWC [30], WA [52] and DER [46]. All models retain
their original settings, except for the removal of the auxil-
iary loss of DER, which reduces its performance in our task.

In Tab. 2, we give the results at different incremental
steps, where the language is added one-by-one and the av-
erage accuracy of different methods is reported. Bound, the
model trained using all training data, is also listed as the or-
acle for reference. As can be seen, MRN consistently out-
performs all the compared methods by significant margins
under different settings, no matter which recognizer is em-
ployed. When looking into the general-purpose IL methods,
their accuracy mostly decreased rapidly as the incremental
steps due to the affection of rehearsal-imbalance. DER has
the highest accuracy among them, as its dynamic expansion
architecture has certain advantages in fighting against catas-
trophic forgetting. However, there is still a clear accuracy
gap between DER and our MRN, and the gap widens as the
incremental step increases. We attribute the accuracy im-
provement achieved by MRN to two factors. First, IMLTR
is a task that differs significantly from image classification,
where most IL methods have been experimented on. These
methods do not well accommodate the challenge raised by
IMLTR. For example, the rehearsal-imbalance issue. Sec-
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ond, MRN develops an elegant pipeline that implements the
recognition in a domain routing and result fusion manner.
It works particularly well for scenarios where incremental
tasks exhibit significant differences.

When comparing the recognizers, MRN equipped with
CRNN has the highest overall accuracy. The result is in-
teresting as CRNN has a simpler architecture and generally
performs worse than the other two methods on typical STR
tasks. We attribute this to parameter freezing, where the fea-
ture extraction backbone (e.g., Hi) and the decoder cannot
be jointly optimized. Therefore, advanced models are more
severely affected, while the simpler one is less affected and
can better mitigate catastrophic forgetting.

model MLT17 MLT19
Avg Last Avg Last

None 64.8 37.9 60.8 35.6
MLP 68.5 60.5 65.3 56.3

CycleMLP[11] 75.5 63.5 71.1 60.0
ViP[25] 76.4 62.6 72.2 59.6

gMLP[33] 77.5 68.2 73.1 64.2
DM-Router 78.4 69.8 73.8 65.5

Table 3. Performance comparisons on different MLP models.

4.3. Ablation Study

We perform a series of controlled experiments to gain a
deeper understanding of MRN. CRNN is employed as the
text recognizer unless specified.
Effectiveness of DM-Router: There are multiple ways to
deduce the language domain scores. We enumerate several
of them that have been used in existing studies, as shown
in Tab. 3. None denotes no dependence is explored, which
corresponds to the worst result. It, in turn, demonstrates
the necessity of utilizing language dependence. Among
the rest competitors, MLP enables a naive learning mecha-
nism while the remaining three are based on more advanced
MLP-like models, which are typically more effective. De-
spite this, DM-Router attains the highest accuracy among
the methods. The results clearly demonstrate the rational-
ity of the DM-Router structure in terms of language depen-
dence exploration.
Influence of the size of the rehearsal set: We conduct ana-
lytical experiments to evaluate the influence of the rehearsal
size on the accuracy of Lwf [31], DER [46] and MRN.
Fig. 4 shows the accuracy under different rehearsal sizes.
As anticipated, increasing the rehearsal set size leads to ac-
curacy gains, as more past memories are retained. We ob-
serve that larger gains are obtained in LwF and DER, partic-
ularly DER. This reveals the accuracy of general-purpose IL
methods is largely affected by the rehearsal size in IMLTR,
while MRN is less affected. MRN has already achieved rel-
atively high accuracy, and the performance of MRN in iden-

Size Method MLT17 MLT19
Avg Last Avg Last

2k
LwF[31] 48.3 23.7 45.4 22.0
DER[46] 57.5 35.8 52.8 34.2

MRN 78.4 69.8 73.8 65.5

3k
LwF[31] 52.2 24.9 48.8 23.6
DER[46] 60.9 42.0 58.7 40.6

MRN 80.2 72.7 75.4 68.2

4k
LwF[31] 55.5 27.5 52.2 26.1
DER[46] 66.4 48.7 63.8 46.6

MRN 81.5 75.0 76.5 70.6

Table 4. Ablation study on the size of the rehearsal set.

Order Method MLT17 MLT19
Avg Last Avg Last

O1
LwF[31] 48.3 23.7 45.4 22.0
DER[46] 57.5 35.8 52.8 34.2

MRN 78.4 69.8 73.8 65.5

O2
LwF[31] 46.9 23.8 43.1 22.9
DER[46] 63.1 39.1 58.7 39.6

MRN 80.5 65.3 74.1 61.5

O3
LwF[31] 57.7 34.7 55.7 34.2
DER[46] 69.6 41.3 65.7 38.2

MRN 82.9 70.6 78.3 66.0

Table 5. Ablation study on language order.

Sampling Strategy MLT17 MLT19
Avg Last Avg Last

Confidence 56.4 43.8 54.0 41.2
Length 71.0 50.3 66.6 48.9

Frequency 72.6 56.6 67.8 53.7
Random 78.4 69.8 73.8 65.5

Table 6. Ablation study on rehearsal sampling strategy.

tifying language domains is less affected by the rehearsal
size. The results indicate that MRN is robust to rehearsal
scarcity and can better fight against data imbalance.
Influence of language incremental order: In addition to
the order in Sec. 4.1 (O1), we assess two other orders as fol-
lows: 1) Arabic, Chinese, Latin, Japanese, Bangla, Korean
(O2); 2) Latin, Arabic, Bangla, Chinese, Japanese, Korean
(O3). The two orders either alternate the three Eastern Asia
languages, which have large vocabularies and show more
stroke commonalities, or group them together at the end.
We also include Lwf and DER for comparison.

Tab. 5 gives the results and two observations. First, O3
shows the best accuracy, while O2 also performs better than
O1. It is because the three Eastern Asia languages are more
difficult to recognize due to their large vocabulary sizes,
therefore introducing them later leads to a better average ac-
curacy. Meanwhile, putting them together also reduces the
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Method Select Model Voting MLT17 MLT19 Params (M) FLOPs (G)Avg Last Avg Last
Baseline – – – 47.1 22.3 44.2 20.7 9.5 3.5
DER[46] – – – 57.5 35.8 52.8 34.2 33.8 12.3
E-Gate[2] Re-Const. Autoencoder Hard 37.2 15.2 34.8 14.2 32.5 12.2
E-Gate[2] Stacking Autoencoder Hard 62.7 15.2 59.3 14.2 35.5 12.4

MRN Stacking DM-Router Hard 74.4 62.9 69.9 57.7 33.5 12.4
MRN Stacking DM-Router Soft 78.4 69.8 73.8 65.5 33.5 12.4

Table 7. Comparisons on different routing strategies.

oscillation during parameter learning and generates a better
model, due to their stroke commonalities. The experiment
suggests that careful selection of the order of languages can
attain better accuracy. Second, O1 shows the largest accu-
racy gaps between MRN and other methods. This is because
in O1, the large vocabulary languages appear earlier, while
the rehearsal set is fix-sized, resulting in the most severe
class imbalance among the three orders. The result indi-
cates that MRN can better handle class imbalance.
Influence of rehearsal sampling strategy: The determi-
nation of text instances being sampled to the rehearsal set
is an issue also worthy of ablating. Tab. 6 gives the accu-
racy of four sampling strategies, i.e., Confidence that se-
lects instances with the highest recognition scores, Length
that selects instances with the largest number of characters,
Frequency that selects instances with the most frequently
occurred characters, and Random adopted in our MRN that
randomly selects the instances. Interestingly, Random gives
the best accuracy. We attribute the reason to: the rehearsal
set obtained from Confidence or Frequency cannot fully rep-
resent the true data distribution, where difficult or less oc-
curred instances are excluded. Length, to some extent, over-
looks the varying-length characteristic of IMLTR. On the
contrary, Random, despite simple, well mimics the under-
lying data distribution and well handles the variable length
challenge.
Comparison on routing strategy: We compare MRN with
E-Gate and its variants. E-Gate [2] treats different sub-
networks as experts, and each time selects the most appro-
priate one for inference. In Tab. 7 we provide the model
details. Raw E-Gate performs poorly in IMLTR. When
stacking is used to build feature extractors, the accuracy im-
proves significantly and outperforms DER. We also evaluate
MRN with hard-voting. It reports a worse result. Compared
to other routing strategies, our MRN shows clear superior-
ity in terms of accuracy, while incurring only a negligible
cost in parameters and computational complexity.

4.4. Qualitative Results Analysis

Fig. 5 gives several recognition results of MRN. It cor-
rectly read instances of different languages, even with the
presence of common recognition difficulties. More impor-
tantly, MRN also recognizes character classes that are not

GT:    丁香素雅洁净、香馥醉人,是爱
情和幸福的象征,被人

Pred: 丁香素雅洁净、香馥醉人,是爱
情和幸福的象征,被人

GT:    让您尽享浓郁果仁滋味
Pred: 让您尽享浓郁果仁滋味

GT:    잘못턴
Pred: 잘못턴

GT:    草薙
Pred: 草薙

Figure 5. Illustrative recognition examples, where red denotes
characters that are absent from the rehearsal set.

present in the rehearsal set. These results again demonstrate
that our MRN is effective in handling rehearsal-imbalance
and can generalize well to unseen character classes.

5. Conclusion

In this work, we introduce a new task called incremen-
tal multilingual text recognition (IMLTR). IMLTR handles
text recognition in an incremental learning setting, therefore
is suitable for applications like streaming data processing.
IMLTR faces a distinct problem of rehearsal-imbalance, in-
cluding data imbalance, class imbalance, and variable char-
acter length. To address this challenge, we designed a Mul-
tiplexed Routing Network (MRN) that first trains a multi-
language correlated DM-router to weight the language do-
mains, and then votes the separately trained recognition
branches for final text recognition. Experiments on pub-
lic benchmarks show that MRN significantly outperforms
existing general-purpose IL methods by large margins. As
the first attempt to apply IL to multilingual text recognition,
we hope that this work will broaden the applications of text
recognition and inspire further research in this area.
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