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Figure 1: PointOdyssey dataset. We provide point correspondence annotations across long continuous videos. Here we
visualize pixel-coordinate trajectories from frame 0 to frame 1600 in a sample video from our dataset.

Abstract

We introduce PointOdyssey, a large-scale synthetic
dataset, and data generation framework, for the train-
ing and evaluation of long-term fine-grained tracking al-
gorithms. Our goal is to advance the state-of-the-art by
placing emphasis on long videos with naturalistic motion.
Toward the goal of naturalism, we animate deformable
characters using real-world motion capture data, we build
3D scenes to match the motion capture environments, and
we render camera viewpoints using trajectories mined via
structure-from-motion on real videos. We create combinato-
rial diversity by randomizing character appearance, motion
profiles, materials, lighting, 3D assets, and atmospheric ef-
fects. Our dataset currently includes 104 videos, averaging
2,000 frames long, with orders of magnitude more corre-
spondence annotations than prior work. We show that exist-
ing methods can be trained from scratch in our dataset and
outperform the published variants. Finally, we introduce
modifications to the PIPs point tracking method, greatly
widening its temporal receptive field, which improves its
performance on PointOdyssey as well as on two real-world
benchmarks. Our data and code are publicly available at:
https://pointodyssey.com

1. Introduction
In a variety of computer vision tasks, large-scale anno-

tated datasets have provided a highway for the development
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of accurate models. In this paper, we aim to provide such
a highway for the task of fine-grained long-range tracking.
The goal of fine-grained long-range tracking is: given any
pixel coordinate in any frame of a video, track the corre-
sponding world surface point for as long as possible.

While there exist multiple generations of datasets tar-
geting fine-grained short-range tracking (i.e., optical flow)
[6, 13, 40], and annually updated datasets targeting several
forms of coarse-grained long-range tracking (i.e., single-
object tracking [20], multi-object tracking [32], video ob-
ject segmentation [45]), there are only a handful of works at
the intersection of fine-grained and long-range tracking.

Harley et al. [25] and Doersch et al. [16], train fine-
grained trackers on unrealistic synthetic data (FlyingTh-
ings++ [40, 25] and Kubric-MOVi-E [24]), consisting
of random objects moving in random directions on ran-
dom backgrounds, and test on real-world videos with
sparse human-provided annotations (BADJA [8] and TAP-
Vid [16]). While it is interesting that generalization to real
video emerges from these models, the use of such simplistic
training data precludes the learning of long-range tempo-
ral context, and scene-level semantic awareness. We argue
that long-range point tracking should not be treated as an
extension of optical flow, where naturalism might indeed
be discarded without ill effect [50]. Pixels in real video
may move somewhat unpredictably, but they take a jour-
ney which reflects a variety of modellable factors, including
camera shake, object-level motions and deformations, and
multi-object relationships such as physical and social inter-
actions. Realizing the grand scope of this problem, both in
our data and in our methods, is critical for progress.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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MPI Sintel [13] Flyingthings++ [40, 25] Kubric [24] TAP-Vid-Kinetics [16] TAP-Vid-DAVIS [16] PointOdyssey

Resolution 436× 1024 540× 960 256× 256 ≥ 720× 1280 1080× 1920 540× 960
Frame rate 24 8 8 25 25 30

Avg. trajectory count 436× 1024 1,024 Flexible 26.3 21.7 18,700
Avg. span of trajectories 4% 100% 100% 30% 30% 100%

Avg. frames per video 50 8 24 250 67 2,035

Training frames 1064 21818 Flexible - - 166K
Validation frames - 4248 - - - 24K

Test frames 564 2247 - 297K 1999 26K
Total point annotations 7×108 3×108 - 8×107 4×105 4.9×1010

Depth & normals ✓ ✓ ✓ × × ✓
Segmentation masks ✓ ✓ ✓ × × ✓

Retargeted motion × × × × × ✓
Scene randomization × × ✓ × × ✓

Multiple views × × × × × ✓
Continuous ✓ ✓ ✓ × ✓ ✓

Object-object interaction ✓ × ✓ × × ✓
Human-object interaction ✓ × × ✓ ✓ ✓

Human-human interaction ✓ × × ✓ ✓ ✓

Table 1: Comparison of point tracking datasets. PointOdyssey is larger, has longer videos, and includes trajectories which
reflect interactions between the objects and the scene. Note that the TAP-Vid datasets are real-world, with sparse human
annotations, and are typically reserved for testing [16], whereas most synthetic datasets provide train/test splits.

We propose PointOdyssey, a large-scale synthetic dataset
for the training and evaluation of long-term fine-grained
tracking. Our dataset aims to provide the complexity, di-
versity, and naturalism of real-world video, with pixel-
perfect annotation only possible in simulation. Besides the
length of our videos, the key aspects differentiating our
work from prior synthetic datasets are (1) we use motions,
scene layouts, and camera trajectories mined from real-
world videos and motion captures (as opposed to being ran-
dom or hand-designed), and (2) we use domain randomiza-
tion on a wider range of scene attributes, including environ-
ment maps, lighting, human and animal bodies, camera tra-
jectories, and materials (similar to Shen et al. [48]). Thanks
to progress in the availability of high-quality assets and ren-
dering tools, we are also able to deliver better photo-realism
than possible in years past.

The motion profiles in our data come from large-scale
motion-capture datasets of humans and animals [38, 34].
We use these captures to drive humanoids and animals in
outdoor scenes, producing realistic long-range trajectories.
In outdoor scenes, we pair these actors with 3D assets ran-
domly scattered on the ground plane, which react to the ac-
tors according to physics (e.g., being kicked away as the feet
collide with the objects). To produce realistic indoor scenes,
we use motion captures of indoor scenes [67, 66], and man-
ually replicate the capture environments in our simulator,
allowing us to re-render the exact motions and interactions,
and preserve their scene-aware nature. Finally, we import
camera trajectories computed from real video [35], and at-
tach additional cameras to the synthetic humans’ heads, giv-
ing challenging multi-view data of the scenes. Our capture-
driven approach is in contrast to the mostly random motion
patterns used in Kubric [24] and FlyingThings [40]. We
hope that our data will encourage the development of track-

ing methods which use scene-level cues to provide strong
priors on tracking, pushing past the tradition of relying en-
tirely on bottom-up cues such as feature-matching.

Our data’s visual diversity stems from a large set of simu-
lated assets: 42 humanoid shapes with artist-made textures,
7 animals, 1K+ object/background textures, 1K+ objects,
20 unique 3D scenes, and 50 environment maps. We ran-
domize the scene lighting to achieve a wide range of dark
and bright scenes. We also render dynamic fog and smoke
effects into our scenes, introducing a form of partial occlu-
sion entirely missing from FlyingThings and Kubric.

PointOdyssey unlocks a variety of new challenges, one
of them being: how to use long-range temporal context.
Since prior datasets have only included short videos for
training (< 30 frames, see Table 1), existing models only
exploit similarly short temporal context. For example, the
current state-of-the-art method Persistent Independent Par-
ticles (PIPs) [25], uses an 8-frame temporal window when
tracking. As a step toward leveraging arbitrarily long tem-
poral context, we propose some modifications to PIPs [25],
greatly widening its 8-frame temporal window, and incor-
porating a template-update mechanism. Experimental re-
sults show that our method achieves higher tracking accu-
racy than all existing methods, both on the PointOdyssey
test set and on real-world benchmarks.

In summary, the main contribution of this paper is
PointOdyssey, a large-scale synthetic dataset for long-term
point tracking, which aims to reflect the challenges—and
opportunities—of real-world fine-grained tracking. The
dataset, and the code for the simulation engine, are avail-
able at: https://pointodyssey.com
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2. Related Work
Motion Datasets. For many years, the Middlebury
dataset [6] was the primary benchmark for stereo and mo-
tion estimation methods. This dataset contains a mix of
synthetic and real data, with high-quality annotations, but
is a very small dataset by today’s standards (< 100 frames).
The MPI Sintel dataset [13] provided a large step forward in
visual and motion diversity, by extracting 1064 frames from
a movie animated in Blender [9], including lighting varia-
tion, shadows, specular reflections, complex materials, and
atmospheric effects. Our dataset is similar to Sintel, but is
orders of magnitude larger, both in overall frame count and
in the length of the video clips, and is also far more realistic,
making use of rendering advancements in Blender.

The KITTI dataset [23] provides stereo and flow anno-
tations for real-world driving scenes. Real-world annota-
tion is difficult, and therefore approximated: the authors use
LiDAR combined with egomotion information to estimate
motion in the static parts of the scene, and then fit 3D mod-
els to the cars to estimate the motion of car pixels. We opt
for synthetic data generation to avoid these approximations
and to ensure perfect fine-grained ground truth.

A series of synthetic datasets have been introduced
specifically for training neural nets for motion estimation:
FlyingChairs [17], FlyingThings3D [40], FlyingThings++
[25], AutoFlow [50], and Kubric [24]. These datasets con-
sist of random objects moving in random directions on ran-
dom backgrounds, yielding unrealistic but extremely di-
verse data. Of these, only FlyingThings++ [25] and Kubric-
MOVi-E [24] provide multi-frame trajectories (as opposed
to 2-frame motion). Our dataset has similar motivations, in
terms of enabling generalization via diversity, but is targeted
toward longer-range tracking—across thousands of frames,
instead of merely dozens. Our dataset also includes hu-
mans, which interact with each other and with the scene,
which we hope will give advantage to methods that use
high-level contextual cues (such as scene layout), in addi-
tion to the low-level motion and appearance signals.

The recently released TAP-Vid benchmark [16] aligns
well with our work: it argues for the importance of
fine-grained multi-frame tracking, and suggests a train/test
pipeline where training happens in synthetic data (Kubric-
MOVi-E [24] and RGB-stacking [33]), and testing happens
in real data, which consists of manually annotated point
tracks for videos in Kinetics [30] and DAVIS [46]. We show
that by training in our new richer synthetic data, we improve
performance on the TAP-Vid test set. The “test” split of
our dataset also covers a gap in TAP-Vid by providing ac-
curate annotations during occlusions, while TAP-Vid only
provides annotations during visibility.

There is also a long line of work which trains directly
on unlabelled data, using a variety of auxiliary objectives to
encourage tracking to emerge [65, 60, 62, 29, 7]. An ad-

vantage of these works is that they need not worry about a
sim-to-real gap, because they train directly on real video.
On the other hand, current rendering tools deliver such high
photo-realism that the risk of a sim-to-real gap may be much
smaller than seen in years past, making synthetic supervi-
sion increasingly viable [18, 61].
Motion Understanding. Early motion estimation methods
cast point tracking as an optimization problem defined on
handcrafted features [27, 37, 57, 52, 12], and these tech-
niques continue to drive structure-from-motion [11, 31, 43]
and simultaneous localization and mapping systems [54].
Given the success of neural networks in other computer vi-
sion tasks, researchers now typically train deep neural nets
to solve the task in a feedforward manner [17, 28], or mix
feedforward and iterative inference [51, 55].

While most early work focuses on estimating optical
flow (the motion field that links two consecutive frames),
there has recently been a push to estimate fine-grained cor-
respondences across multiple frames. PIPs [25] estimates
8-frame trajectories for pixels, using a learned iterative in-
ference procedure that considers match costs and an implicit
temporal prior, considering all 8 timesteps jointly with a
powerful MLP-Mixer [56]. These 8-frame trajectories can
be chained across time to produce longer-range tracks, but
these longer tracks are more susceptible to drift, and slow
to compute. TAP-Net [16] estimates correspondences for
pixels by taking the argmax of frame-by-frame cost maps,
which are computed efficiently using time-shifted convo-
lutions [36]. Empirically, TAP-Net outperforms PIPs when
there are long occlusions or hard cuts in the video, likely be-
cause the 8-frame temporal window in PIPs is incapable of
resolving occlusions that exceed this window, and because
hard cuts are inconsistent with the learned prior [16].

In this work, we extend PIPs by eliminating its hard 8-
frame constraint, allowing it to take much wider tempo-
ral context into account. We achieve this by replacing the
MLP-Mixer component (in which some parameters were
tied to the size of the temporal window), with a deep 1D
convolutional network (in which fixed-length kernels are
applied to arbitrary temporal spans). We show that our
model, trained from scratch in PointOdyssey, outperforms
both PIPs and TAP-Net. Additionally, we retain a key ad-
vantage of PIPs over TAP-Net, which is the ability to pro-
duce reasonable estimates during occlusions, by tracking
multiple timesteps jointly instead of frame-by-frame.

3. PointOdyssey Dataset
A sample from our dataset is shown in Fig. 1, and an

overview of our data generation pipeline is shown in Fig. 2.
To generate complex but realistic long-range motion, we
use humanoids, robots, and animals, driven by motion cap-
ture data [38, 34, 67, 66]. This allows us to render long-
term dynamic sequences that incorporate long-range inter-
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Figure 2: Overview of our data generation pipeline. We randomly generate physically realistic and semantically plausible
scenes, by sampling human and animal subjects, motion trajectories for the subjects and the camera, 3D physical assets,
materials, environment maps for outdoor scenes, manually created environments for indoor scenes, as well as lighting and
atmospheric effects. From these scenes we render videos, paired with various ground truth.

actions between the deformable characters and the 3D envi-
ronments. We maximize the diversity of the dataset by ran-
domizing the scenes with various materials, textures, and
lighting. To add further visual complexity, we introduce
random noise to the scene volume density to create chang-
ing fog and smoke, which act as a natural occluder and have
a significant impact on the appearance and visibility of the
scene. This section summarizes our data collection process.

3.1. Long-Term Motion Data
Deformable Characters. We collect 42 open-sourced
artist-designed humans and robots from BlenderKit [1],
Mixamo [2], and TurboSquid [4], along with 7 animals from
DeformingThings4D [34]. These assets provide high-poly
meshes, along with photorealistic materials and textures,
and are rigged to enable animation.

Motion Retargeting. To animate the humanoid characters,
we use real-world human motion data [38, 67, 66]. We re-
target the source motions represented as SMPL-X [44] se-
quences to target characters, using the motion retargeting
algorithm from the Rokoko Toolkit [49]. Defining SRig as
the rig of the SMPL-X human model and TRig as the rig of
the target character with z-axis up in the resting body pose,
we equalize the scale between two rigs as:

s =
Zmax(TRig)− Zmin(TRig)

Zmax(SRig)− Zmin(SRig)
, (1)

where s is then applied to the source rig as S′
Rig = SRig/s.

Defining Bi(pi) as a bone in a rig parameterized by pi, (e.g.,
head and tail location and rotation) we align the source rig
with the target rig, setting pS

∗

i = pTj , where pS
∗

i is the pa-
rameter of the bone Bi in the source rig, and pTj denotes the

Human motion in a scanned scene Animated character in the rebuilt scene

Figure 3: We use real-world motion capture data [67, 66]
within 3D scenes manually re-built to match the motion
capture environments.

parameter of the corresponding bone in the target rig, using
the bone mapping between the two rigs. Using the aligned
source rig S∗

Rig , we copy the animation to the target rig.
For animals, since the motions in DeformingTh-

ings4D [34] are already bound to the meshes, we do not
need a retargeting process.

3.2. 3D Environment Context
Our dataset contains outdoor scenes, which involve ran-

domized but physically coherent agent-object and object-
object interactions, and indoor scenes, which involve real-
istic agent-scene and agent-agent interactions.

Outdoor Scenes. Similar to Kubric [24], we populate out-
door scenes with random rigid objects from GSO [19] and
PartNet [42]. We animate our deformable characters to
move around in these scenes, and treat these characters
as passive objects with infinite mass, causing the scattered
rigid objects to react as though being kicked. We also apply
random forces to the rigid objects at random timesteps, to
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Figure 4: We randomize the textures, materials, atmo-
spheric volume, and lighting, to maximize data diversity.

create difficult near-random motion trajectories, with real-
istic physical collisions. We use HDR environment textures
collected from PolyHaven[3] mapped into a dome-like re-
gion [41] to simulate natural backgrounds.

Indoor Scenes. We manually build twenty 3D indoor
scenes to replicate specific 3D environments from our mo-
tion capture datasets [67, 66], matching the scene layouts
and furniture as closely as possible, sourcing furniture as-
sets from Blenderkit [1] and 3D-FRONT [21, 22]. We then
use motion capture data from these same scenes to animate
our characters in the environments, yielding collision-free
and naturalistic motion, as shown in Fig. 3. We note that
unlike the outdoor scenes and unlike prior work, these mo-
tions reflect true affordances of the 3D environments.

3.3. Camera Motion
For outdoor scenes, we drive the camera using trajec-

tories extracted from YouTube videos via structure-from-
motion [35]. For indoor scenes, we manually create cine-
matic camera trajectories consisting of orbits, swoops, and
zooms, as well as render ego-centric videos by attaching
cameras to the heads of the virtual subjects. Similar to real-
world egocentric video [15], our synthetic ego-centric views
yield particularly challenging motion trajectories.

3.4. Scene Randomization
We add diveristy by randomizing our synthetic scenes,

in steps similar to iGibson [48]. For indoor scenes, we ran-
domize the texture of floors, walls, and ceilings, by sam-
pling from 80 high-quality materials from BlenderKit [1],
and randomize the lighting. For outdoor scenes, we ran-
domize the textures of objects by sampling from 1000 tex-
ture maps from GSO [19]; we randomize the appearance
of the animals by sampling from 24 high-fidelity fur ma-
terials from Blenderkit; we randomize the background by
sampling from 50 4K-resolution HDR images from Poly-
Haven [3]. We additionally generate fog and smoke by
adding procedural atmospheric effects to the scene volume.
As shown in Fig. 4, these scene randomization steps add

Figure 5: We export 2D and 3D point trajectories, instance
masks, depth, normals, and camera calibration data.

diversity and difficulty to the data.

3.5. Annotation Generation
We generate point trajectories by exporting tracked 2D

and 3D coordinates of random foreground and background
vertices. We additionally compute visibility annotations,
by comparing the depth of the tracked points to the ren-
dered depth values at the projected coordinates. As shown
in Fig. 5, we also export depth, normals, instance segmen-
tation, camera extrinsics, and camera intrinsics. While our
focus is on point tracking, we hope these extra annotations
will support a wide set of applications.

3.6. Statistics
Our dataset consists of 43 outdoor scenes and 61 indoor

scenes, totaling 216K 540 × 960 images at 30 FPS. The
data was rendered in 2600 GPU hours using the Cycles
engine in Blender. We divide the dataset into 166K frames
for training, 24K frames for validation, and 26K frames for
testing. Table 1 summarizes key statistics of our dataset
compared to related works.

4. Long-Term Tracking with PIPs++
In this section, we propose a method that takes advan-

tage of PointOdyssey’s realistic long-range motion anno-
tations, both to establish a reasonable benchmark on the
dataset’s “test” split, as well as to improve state-of-the-art
on real-world performance. We base our approach on “Per-
sistent Independent Particles” (PIPs) [25], a state-of-the-art
method for fine-grained tracking. Its main advantage over
prior work is that it inspects 8 frames at a time, whereas
prior work typically used just 2. This gives the model some
robustness to occlusions, since it can use frames before and
after occlusions to estimate the missing parts of the trajec-
tory. We highlight two key limitations, which we aim to ad-
dress in the following subsections: (1) the temporal field of
view is only 8 frames, meaning that the method cannot sur-
vive occlusions which are longer than this timespan, and (2)
the model relies entirely on the first-frame appearance of the
target, making correspondence difficult across appearance
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Figure 6: Overview of our method. Top: for any query
point pt, we first compute the similarity cost volume Cpt .
We propose to leverage informative features within the local
context and incorporate global guidance to maintain consis-
tent and robust tracking. Bottom: we iteratively update the
trajectory of positions with a 1D Resnet.

changes. We begin by describing the PIPs architecture in
detail, and then describe how we resolve these limitations.

4.1. Preliminaries (PIPs)
PIPs takes an 8-frame RGB video as input, along with

a coordinate p1 = (x1, y1) indicating a target to track. It
produces a 8 × 2 matrix as output, representing the trajec-
tory of the target across the given frames. This process can
be repeated across 8-frame segments, to produce long-range
tracks. An arbitrary number of targets can be tracked in par-
allel, but there is no message-passing between the trajecto-
ries (hence persistent independent particles). Inference has
two main stages: initialization, and an iterative loop.

Initialization. Before tracking begins, we compute a fea-
ture map Ft for each frame, with a 2D residual convnet [26].
We obtain a vector representing the appearance of the tar-
get, by bilinear sampling at the target’s position on the
first frame’s feature map: fp1

= sample(Ft, p1). Us-
ing this first coordinate and feature vector, we initialize a
list of positions and features, {(pt, ft)} = {(p1, f1)} for all
t ∈ {1, 2, · · · , T}.

Iterative Updates. The main inference stage is an itera-
tive update process, which primarily aims to improve the
positions pt, so that they track the target more closely. De-
noting the current iteration’s workspace on iteration k as
{(pkt , fk

t )}, we begin an iteration by measuring the simi-

larity between the per-timestep feature vectors and the per-
timestep feature maps, within local windows centered at the
current estimates:

Ck
pt

= fk
t ⊗ multicrop(Ft, p

k
t )/σ (2)

where ⊗ denotes a dot product, multicrop(Ft, p
k
t ) pro-

duces multi-scale crops from Ft centered at pkt , and σ is a
temperature parameter. A 12-block MLP-Mixer [56] takes
these correlations as input, along with the apparent point
motions pkt − pk1 , and the features ft, and produces updates
to the full sequence of positions and features: {∆pkt ,∆fk

t }.
These updates are then applied additively, which leads to
sampling new local correlations in the next iteration. The
feature vectors are eventually fed to a linear layer, which
produces per-timestep visibility estimates.

Limitations. PIPs is locked to the temporal field of view
that it is trained with, due to the use of the MLP-Mixer
in the iterative stage. While the tracker can be chained
across time to produce long tracks, these are sensitive to
drift, especially when the target becomes occluded beyond
the range of the temporal window. We also note that the
visibility-aware chaining proposed in PIPs cannot be eas-
ily parallelized, and so long-range multi-particle tracking
is computationally very expensive. Additionally, we point
out that the feature-update operator cannot perform a task
resembling a template-update, because it does not have ac-
cess to the input frames. The residual updates to the feature
list likely only serve visibility estimation.

4.2. Expanding the temporal field of view (PIPs+)
Our first proposed modification to PIPs aims to widen

its temporal field of view, and enable longer-range track-
ing. The key component here is the MLP-Mixer, which
(by design) has a fixed-width temporal field of view, set
to 8 in PIPs. We propose to replace the MLP-Mixer
with an 8-block 1D Resnet [26], doing convolutions across
time.1 This means learning kernels that slide across the
time axis. Each residual block consists of two convolution
layers with kernel size 3, with instance normalization [58]
and ReLU [5]. At the final block, the receptive field is 35
timesteps. Note however that since this module is iterated
during inference, the effective receptive field is much larger.

We find that this convolutional variant of PIPs, which we
name PIPs+, improves long-range tracking accuracy, and
also speeds inference in long videos (from 4 FPS on aver-
age, to 55 FPS on average, at 720×1080 on an Nvidia V100
GPU). The convolutional design enables us to train and test
with videos of different lengths, similar to how fully convo-
lutional 2D networks can train and test with different image

1In the PIPs paper, Harley et al. [25] briefly mention an unsuccessful
attempt at using temporal convolutions instead of the MLP-Mixer. It may
be that their effort failed due to lack of long-sequence training data.
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sizes, but in practice we find it is still important to train and
test with roughly similar sequence lengths.

4.3. Extending to multiple templates (PIPs++)
Tracked targets are likely to undergo appearance changes

across time, and it is important to keep up with these
changes. In the original PIPs architecture, the first-frame
feature f1 (ignoring the negligible feature-update step al-
ready discussed) is used for cross-correlation on every
frame in the temporal span. This is liable to produce weak
matches after appearance changes, and erroneous matches
during occlusions. Our second proposed modification to
PIPs aims to tackle this “template update” problem [39].

Our main idea is simply to accommodate appearance
changes by collecting “recent appearance” templates along
the estimated trajectory, to complement the “initial appear-
ance” template from the first frame [10]. Specifically, when
computing local correlations for frame t, we use the esti-
mated trajectory to extract new features at fixed temporal
offsets from this timestep, such as {t − 2, t − 4}. This
means using pt−k to extract a temporary feature vector
ft−k = sample(Ft−k, pt−k). We use these features to
compute additional correlations in the current frame’s fea-
ture map Ft, as done in Eq. 2. This process is illustrated
in Fig. 6. The key idea is that if tracking was successful on
one of these offset frames, then the extracted feature will
reflect the updated appearance of the target, and will yield
a more-useful correlation map than the one from f1. These
multiple correlation maps are simply concatenated, increas-
ing the channels input to our 1D Resnet. Note that similar
to current methods in object tracking [63], we always retain
the initial template f1, to help prevent “forgetting”.

An alternative strategy here would be to generate tem-
plates exclusively from timesteps with high visibility con-
fidence, as commonly done in object tracking [63]. While
this is intuitively appealing, we note that our simpler strat-
egy instead allows the model to (temporarily) capture the
appearance of an occluder, which can sometimes be the ap-
propriate entity to track (e.g., during object self-occlusions).

Our multi-template strategy, combined with temporally-
flexible computation, obviates the residual feature updates,
so we simply omit this component. We also omit visibility
estimation for simplicity. We name our full model PIPs++.

5. Experiments
In this section we explain our experimental setup and re-

sults. We recommend watching the supplementary video
for better visualization of our dataset and results.

5.1. Experimental setup
Baselines. We benchmark point trackers, PIPs [25], TAP-
Net [16], our proposed PIPs+ and PIPS++, an optical flow
method RAFT [55] (estimating the flow between consecu-

tive pairs of frames and chaining the flows to form trajecto-
ries), and a strong feature-matching method, DINO [14].

Implementation details. We use the official code of
PIPs [25], RAFT [55], and DINO [55], and reimplement
TAP-Net [16] in PyTorch. For RAFT and DINO, we use
the pretrained weights for evaluation. We train and test
PIPs and TAP-Net on our dataset, using 4-8 A5000 GPUs in
parallel. In addition to evaluating on the PointOdyssey test
set, we evaluate on TAP-Vid-DAVIS [16] and CroHD [53],
which are real-video evaluation benchmarks. TAP-Vid-
Davis mostly consists of videos of animals and humans,
with sparse tracks annotated on foreground and background
points; CroHD consists of surveillance-like recordings of
crowds (e.g., in train stations), with tracks annotated on all
human heads. We leave out TAP-Vid-Kinetics [16], as it
contains hard cuts, while our focus is on continuous video.

5.2. Evaluation
Evaluation metrics. We report the average position accu-
racy δavg as proposed in TAP-Vid [16]. This measures the
percentage of tracks within a threshold distance to ground
truth, averaged over thresholds {1, 2, 4, 8, 16}, defined in a
normalized resolution of 256 × 256. We use Median Tra-
jectory Error (MTE) to measure the distance between the
estimated tracks and ground truth tracks. While Harley
et al. [25] reported average trajectory error (ATE) using a
mean, we find the median more informative, as it is less sen-
sitive to outliers. We also measure a “Survival” rate, which
we define as: the average number of frames until tracking
failure, and report this as a ratio of video length. Failure is
when L2 distance exceeds an error threshold, i.e., 50 pixels
for long-term data and 16 pixels for short-term data in the
normalized 256× 256 resolution.

Quantitative results. We compile our results in Table 2.
First, inspecting results across rows (i.e., comparing meth-
ods), we can see that PIPs+ and PIPs++ achieve the best
results among all methods, demonstrating the effective-
ness of the wide temporal awareness. The narrow gap be-
tween PIPs+ and PIPs++ suggests that the multi-template
strategy has only a modest effect, but is helpful on aver-
age. The results also demonstrate that prior methods per-
form better on real-world datasets when they are re-trained
(from scratch) in our dataset. An exception here is TAP-
Net [16], where model trained by the authors (on Kubric)
performs best; this is likely due to our smaller compute bud-
get. All of our models are trained on 4-8 GPUs (c.f. 64
TPU-v3 cores in the original TAP-Net). Inspecting the re-
sults across columns (i.e., comparing datasets), we observe
that PointOdyssey appears to be a more challenging bench-
mark than TAP-Vid-DAVIS [16] and CroHD [53]. We can
also observe that the ranking of methods appears consis-
tent among PointOdyssey and the two real-world datasets,
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Method Training
PointOdyssey TAP-Vid-DAVIS [16] CroHD [59]

MTE ↓ δ ↑ Survival50 ↑ MTE ↓ δ ↑ Survival16 ↑ MTE ↓ δ ↑ Survival50 ↑

TAP-Net [16] Pretrained 92.00 23.75% 17.01% 10.56 53.40% 60.14% 101.12 23.39% 34.28%
RAFT [55] Pretrained 319.46 10.07% 32.61% 9.16 50.93% 70.68% 82.76 15.82% 62.22%
DINO [14] Pretrained 118.38 8.61% 31.29% 20.14 34.35% 60.22% 116.80 8.46% 37.11%
PIPs [25] Pretrained 147.45 16.53% 32.90% 4.75 64.01% 82.20% 19.23 40.23% 75.15%

TAP-Net [16] Kubric 92.70 26.92% 9.59% 32.57 39.68% 59.41% 99.15 18.08% 28.43%
TAP-Net [16] PointOdyssey 63.51 28.37% 18.27% 18.49 44.46% 62.54% 60.94 22.24% 35.00%
PIPs [25] PointOdyssey 63.98 27.34% 42.33% 4.30 66.97% 86.01% 11.94 44.02% 74.93%

PIPs+ PointOdyssey 28.93 32.41% 49.88% 4.61 69.13% 88.11% 11.20 45.51% 75.07%
PIPs++ PointOdyssey 26.95 33.64% 50.47% 4.16 69.68% 89.73% 11.21 44.09% 75.43%

Table 2: Tracking performance on the PointOdyssey test set, TAP-Vid-DAVIS [16], and CroHD [59].

GT

Ours

PIPs

Figure 7: Qualitative results on our dataset. Left to right
columns show the start, middle and end frame respectively.

suggesting a correlation between progress on PointOdyssey
and progress on videos in the wild. Fig. 8 plots survival rate
over time in PointOdyssey, revealing that all methods strug-
gle to keep tracks “alive” over long durations, but the PIPs
models degrade more slowly than the rest.

Qualitative results. We show qualitative results in Fig. 7.
Our method generates more-stable point trajectories com-
pared to PIPs [25] and other baselines. Please see the sup-
plementary for video visualizations. We find that all meth-
ods have difficulty with targets which are close to bound-
aries (e.g., targets on thin objects are the hardest).

6. Limitations
PointOdyssey currently lacks large outdoor scenes where

the camera travels a large distance, which is, for exam-
ple, a frequent scenario in driving data [18]. It would be
interesting to explore long-range agent-scene and agent-
agent interactions in that context. We also note that our
human and animal motion profiles are limited by our base
datasets, and this constraint could be lifted with the help
of recent generative models [47, 64]. While the focus in
this paper is on point tracking, our dataset connects to a

PIPs++
PIPs
DINO
RAFT
TapNet

Su
rv

iv
al

Frame number

Figure 8: Survival rate over time in PointOdyssey. Higher is
better. We show the mean and standard deviation for each
method. Note that the endpoints correspond to the values
reported in Table 2.

wide range of applications which we have not yet explored,
such as 3D scene flow estimation, novel view synthesis
in dynamic scenes (which would be especially challenging
with PointOdyssey’s atmospheric effects), human and ani-
mal pose estimation, and ego-centric vision. Finally, while
PIPs++ takes a step toward modelling longer-range tempo-
ral priors, it is still a fairly low-level tracker, relying entirely
on appearance-matching cues and a temporal prior. This
leaves open the challenge of leveraging scene-level and se-
mantic cues for tracking, where we expect PointOdyssey’s
training data will be especially valuable.

7. Conclusion
PointOdyssey is a large-scale synthetic dataset, and data

generator, for long-term point tracking. The data is di-
verse and naturalistic, making it an ideal resource for train-
ing general-purpose fine-grained trackers. We demon-
strate its usefulness through a new tracker called PIPs++,
which leverages long-term temporal context and outper-
forms state-of-the-art. PointOdyssey also opens opportu-
nities for developing trackers which utilize scene-level and
semantic cues, though we have not explored this yet. We
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hope our work will also be useful beyond point tracking, en-
abling work in 3D and 4D scene analysis, and higher-level
video understanding.
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