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Figure 1. We propose LivelySpeaker, a novel system that decouples the co-speech gesture generation into two stages, namely semantic-aware
generator (SAG) and rhythm-aware generator (RAG), respectively. Powered by the proposed two-stage framework, our method can generate
semantic-aware gestures (top three rows) other than purely audio-driven results (bottom row). We can also add additional prompts to the text
script to specify the gestures (second line). Last, when we integrate the proposed components altogether, our method can still retain the
semantic gestures and also appropriate rhythm for a lively speaker (third row).

Abstract

Gestures are non-verbal but important behaviors accom-
panying people’s speech. While previous methods are able to
generate speech rhythm-synchronized gestures, the semantic
context of the speech is generally lacking in the gesticula-
tions. Although semantic gestures do not occur very regularly
in human speech, they are indeed the key for the audience
to understand the speech context in a more immersive envi-
ronment. Hence, we introduce LivelySpeaker, a framework

* Equal contribution.
† Corresponding author.

that realizes semantics-aware co-speech gesture generation
and offers several control handles. In particular, our method
decouples the task into two stages: script-based gesture gen-
eration and audio-guided rhythm refinement. Specifically, the
script-based gesture generation leverages the pre-trained
CLIP text embeddings as the guidance for generating ges-
tures that are highly semantically aligned with the script.
Then, we devise a simple but effective diffusion-based ges-
ture generation backbone simply using pure MLPs, that is
conditioned on only audio signals and learns to gesticu-
late with realistic motions. We utilize such powerful prior to
rhyme the script-guided gestures with the audio signals, no-
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tably in a zero-shot setting. Our novel two-stage generation
framework also enables several applications, such as chang-
ing the gesticulation style, editing the co-speech gestures
via textual prompting, and controlling the semantic aware-
ness and rhythm alignment with guided diffusion. Extensive
experiments demonstrate the advantages of the proposed
framework over competing methods. In addition, our core
diffusion-based generative model also achieves state-of-the-
art performance on two benchmarks. The code and model
will be released to facilitate future research.

1. Introduction
During human conversation, non-verbal behaviors are

typically present and among them, the most significant is
gesture language. These non-linguistic gestures serve as an
auxiliary but effective means of conveying key messages,
enriching the conversation with contextual cues, and facilitat-
ing better understanding among participants. [9, 18, 24, 27].
Empowering the digital replicas of humans with the abil-
ity to gesticulate has been a long pursuit in the research
community, as such ability can benefit many downstream
applications, including digital humans in the coming virtual
universe, non-player game characters, robot assistants, etc.

Given the speech content in the form of texts and/or au-
dio streams, the objective is to generate realistic co-speech
gestures. Traditional methods achieve this with hard-coded
rules [10,11,25,41], e.g., “good” in the speech will be simply
represented by the gesture “thump up”. However, these meth-
ods usually produce deterministic results; more importantly,
they can not guarantee smooth transitions in the results. Re-
cently, deep learning-based methods have been prevalent
in the field of gesture generation from multi-modality in-
puts. In particular, these methods formulate the problem as
conditional motion generation and tackle it via training a
conditional generative model that takes as input the speaker
identities [17], audio waves [46], speech texts [8], or a com-
bination of these multi-modal signals [3, 40, 58]. Although
multiple modalities are incorporated in the formulation, the
results are often dominated by the rhythm of the audio sig-
nal since it is highly correlated with the performance of
gestures during speech. While other works recognize the
importance of the semantics conveyed through co-speech
gestures, their framework heavily depends on pre-defined
gesture types [7, 37] or keywords [57], making it difficult to
express more complex intentions effectively.

We begin with insights from the following two perspec-
tives: (i) Real-world human conversations contain a limited
number of semantic gestures (See Fig. 2), which presents
difficulties in learning co-speech gestures that are semantic-
sensitive but rhythm-irrelevant. This partially explains why
prior approaches have yielded results that heavily rely on the
audio rhythm. (ii) Most previous methods are built on gen-
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Figure 2. We plot the L2 loss histogram on the training samples of
the pre-trained trimodal method [58]. Although it is learned from
multiple conditions (e.g., text, audio), their methods are still domi-
nated by repeated rhythm, and hard to model the rarely appeared
diversity gestures, e.g., the semantic-aware motions.

erative adversarial networks (GANs), which might be hard
to train, especially when learning a many-to-many mapping
between the text/audio and the gesture [46].

Following this, we present LivelySpeaker, a simple and
effective framework for semantic-aware co-speech gesture
generation. In particular, our framework explicitly decou-
ples the generation into two stages, namely the script-based
gesture generation, and the audio-guided rhythm refinement.
Specifically, the script-based gesture generation leverages
the pre-trained CLIP [47] text embeddings as the guidance
for generating gestures that are highly semantically corre-
lated with the textual script. In the second stage, we devise
a simple but effective diffusion-based gesture generation
backbone with pure MLPs, that is conditioned on only audio
signals and learns to gesticulate with realistic motions. We
utilize such powerful prior to rhyme the script-guided ges-
tures with the audio signals, notably in a zero-shot setting.
In detail, we gradually add Gaussian noise for T steps to
the motion extracted from the dataset, on which an MLP-
based [20] motion denoising model [53] is conditioned on
the corresponding audio and predicts the clean motion. We
show that this diffusion-based model is effective in rhyming
rather smooth gestures produced from the script-based gen-
eration module with the audio signals.

Building upon these two powerful modules, our method
can generate diverse and high-quality co-speech gestures that
are semantically meaningful, given the textual description of
the speech and audio. Extensive experiments show that the
proposed framework yields state-of-the-art performance in
co-speech gesture generation. We also conduct experiments
to show the control ability of our method by extending it to
a number of scenarios that are not possible with competing
methods, including changing the gesticulation style, editing
the co-speech gestures via textual prompting, and controlling
the semantic awareness and rhythm alignment with guided
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diffusion.
The main contribution of this paper is summarised:

• We propose LivelySpeaker, a novel two-stage frame-
work for semantic-aware and rhythm-aware co-speech
gesture generation.

• A novel MLP-based diffusion-based backbone is de-
vised, that achieves state-of-the-art performance on the
two benchmarks for co-speech generation.

• Our framework enables several new applications in co-
speech gesture generation, such as text prompt-based
gesture control, balancing the control between two dif-
ferent condition modalities (i.e., text and audio).

2. Related work
Co-speech Gesture Generation. As aforementioned, the
research of co-speech gesture generation has taken several
routes in the past decades, including rule-based [29, 30, 45],
machine learning-based [26,32,50], and deep learning-based
ones [7, 17, 33, 40, 46, 58]. In our coverage, we mainly re-
view the deep learning-based ones, as they have shown better
performance and are more relevant to our method. Earlier
works along this line consider the problem as an end-to-end
regression of 2D keypoints of the human body, with dif-
ferent dedicated designs on the network architectures. For
example, Speech2Gesture [17] generates personalized 2D
keypoints from audio using a conditional generative adver-
sarial network. Ahuja et al. [1] propose a few-shot method
for personalized motion transfer. Furthermore, being aware
of the many-to-many nature of the co-speech gesture gener-
ation, [46] proposes a novel audio template-based method
to reduce the uncertainty of the generation. Going beyond
simple 2D keypoints, [39] proposes a co-speech generation
framework that leverages an unsupervised motion represen-
tation instead of a structural human body prior and involves
the image-based rendering technique to generate co-speech
videos like talking face generation [63]. These methods are
limited in their applicability to many real-world scenarios
as they generate motions of 2D key points or directly output
2D imagery of the speaker.

To generate motions for 3D avatars, TriModal [58] ex-
tracts diverse upper body motions from the TED talks and
designs an LSTM-based neural network that is conditioned
on the audio, text, and identity and generates co-speech
gestures. Speech2AffectiveGesture [7] extends this work
for more semantic-aware gesture generation. Nevertheless,
they have only demonstrated on five predefined gesture
classes. As a follow-up that increases the effectiveness of
Speech2AffectiveGesture, HA2G [40] further extracts the
hand keypoints on TED datasets and uses a hierarchical
GRU [13] network. More recently, Ao et al. [3] propose a
method using VQ-VAE [55], and SEEG [37] is designed

to generate semantic gestures of several kinds. In summary,
most of these methods learn in an end-to-end fashion, where
the conditional audio in fact dominates the conditional gen-
eration, and only focuses on limited types of semantic ges-
tures [7, 37]. Differently, our framework can produce co-
speech gestures that are highly semantically aligned with the
textual description of the speech provided by the user.
Conditional Motion Generation. Co-speech generation is
also a sub-topic of human motion generation, which aims at
generating 3D human motion from various conditions. One
hottest topic is text-to-motion. Language2Pose [2] employs
a curriculum learning approach to learn a joint embedding
space for both text and pose. The decoder can thus take text
embedding to generate motion sequences. Ghost et al. [16]
extend it through manifold representations for the upper
body and the lower body movements. Similarly, Motion-
CLIP [52] also tends to align text and motion embedding but
proposes to utilize CLIP [47] as the text encoder and employ
rendered images as extra supervision. It shows the ability to
generate out-of-distribution motion and enable latent code
editing. As for the generation of the simple action, several
methods [5, 43, 44, 60] have been proposed by a pre-defined
action class [43], an additional text encoder [44] and tempo-
ral motion compositions from a series of natural language
descriptions [5]. Guo et al. [19] also proposes to incorporate
motion length prediction from text to produce motion with
reasonable length. Motion can also be generated with music
[4, 12, 31, 34–36], which has a similar form as our task but
they only focus on the rhythm. e.g., [12] produce a graph-
based network to optimize the choreography-aware features,
Li et al. [35] generate the dance motions from a transformer-
based network and a high-quality dataset. Li et al. [36] train
a separate VQ-VAE [55] to model the upper body and lower
body individually. Through sharing a similar goal with these
works, our work differs from them as we consider both the
semantic and rhythm awareness in our unified framework.
Diffusion-based Motion Generation. Very recently, the
denoising diffusion-based models have also shown very
promising results in generating human motion. Prior works
of MDM [53] and MotionDiffuse [62] generate realistic
motions from noise inspired by the denoising diffusion
model [22]. PhysDiff [59] extend MDM via the physics-
aware restriction. EDGE [54] design a stronger dance gener-
ation network using the powerful pre-trained audio model,
jukebox [14]. These methods only use the diffusion-based
model for conditional generation, whereas our method finds
more interesting applications via the diffusion-based model
in motion synthesis.

3. Method
Given the speech content in the form of audio, its corre-

sponding text script, and the identity information, our system
aims to generate 3D skeletal gestures that are semantically
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Figure 3. We propose a two-stage framework for semantic-aware gesture generation (a) and rhythm-aware gesture generation (b), respectively.
Then, we combine them via a beat empowerment method as in (c) for the full pipeline of the proposed LivelySpeaker.

and rhythmically aligned with the speech.
We tackle this problem with a two-stage framework con-

sisting of a semantic-aware generator (SAG), and a rhythm-
aware generator (RAG), as shown in Fig. 3 (a) and (b), re-
spectively. After training each component, we can generate
the gestures from the text scripts first, and then leverage the
rhythm-aware network as a beat empowerer as in Fig. 3 (c).
In the following, we first present the details of the semantic-
aware and rhythm-aware generator in Sec. 3.1 and Sec. 3.2,
followed by details of the inference pipeline and application
of the whole framework in Sec. 3.3.

3.1. Generating Semantic Gestures from Text Script

Current co-speech generation approaches [37, 40, 58] of-
ten consider the script and audio features equally with iden-
tical timestamps concatenation. In these approaches, the text
features aligned with timestamps are more likely to act as
alternative beat signals generating the rhythm-dominant ges-
tures, which have a small effect on previous methods. To
utilize the semantic information well, in the first stage of our
framework, we only train a semantic-aware generator (SAG)
to generate the gesture from text scripts.

Inspired by the progress of text to motion [52, 53, 60], we
consider the text script as a kind of semantic description to
generate the corresponding motion. As shown in Fig. 3 (a),
we split the motion sequences into fixed segments and send
them into an encoder-decoder-like Transformer [56] for mo-
tion generation [7, 58]. Our network contains 3-layer en-
coders and decoders. Each Transformer layer has a latent
dimension of 512, and the dimension of the feed-forward
layer equals 1024. To integrate the semantic-aware infor-
mation, we use a pre-trained CLIP [48] of ViT-B/32 as the
text embedding network, getting 512-dimension semantic
features of the whole script sequences, other than the frame-
wise semantic feature as in previous works [40, 58].

For training, we feed the ground truth pose sequences
x1:t to the transformer encoder to generate the motion latent:
zemb = E(x1:t) ∈ R512, and a decoder is used to decode
this latent code to reconstruct a sequence of poses x̂1:t =
D(E(x1:t)). Then, we calculate the distance between the
semantic embeddings of CLIP zCLIP and the latent code
zemb using a cosine similarity loss Lcos. We also measure
the reconstruction loss Lrec between the generated motion
and the original one using simple mean square error. The
full training objective of SAG is:

Lfull = Lrec(x0, x̂0) + λLcos(zCLIP , zemb), (1)

where we set λ = 1 empirically. In testing, we generate the
motion sequences directly from the CLIP embedding.

3.2. Diffusion-Based Rhythm-Aware Generator

Although our SAG can produce some semantic-aware
gestures, the out-sync gestures also restrict the realism of the
generated motion. However, it is hard to align the temporal
information of the generated motion only and keep other
content unchanged. We take advantage of the diffusion-based
model for its powerful ability in distribution modeling [22,
53] and editing [42, 51].

The denoising diffusion model is a Markov noising pro-
cess, which first shows its potential in image generation [22].
Following the human motion diffusion model [53], the input
pose sequences can be defined as {x1:N

t }Tt=0, where x1:N
0 is

sampled from the data distribution and

q(x1:N
t |x1:N

t−1) = N(
√
αtx

1:N
t−1, (1− αt)I). (2)

Here, αt ∈ (0, 1) are constant numbers. When αt is suf-
ficiently small, we can make an approximation that x1:N

t

follows a normal distribution with mean 0 and variance I .
Henceforth, we will refer to the complete sequence at noise
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step t as xt. In our task, we also follow previous work [22]
to predict the signal itself, i.e., x̂0 = G(xt, t, c), where c is
the conditional audio and G is our denoising backbone.

As for the network structure, our audio encoder C is sim-
ply constructed using four 1d-convolution blocks activated
by leaky ReLU, where we feed in a raw audio waveform
and generate a sequence of 256-channel feature vectors. We
have also tested other similar audio encoders in previous
work [15, 40], however, there is no observed performance
gain. As for the denoising diffusion network G, different
from the original MDM [53], we use N layers MLP-based
network [20] to construct, which generates better rhythm
and generate more smooth results. In detail, we first use
a linear layer to project input data to a higher-dimension
latent space. After applying a series of MLP blocks, a last
linear layer is used to project the latent feature back to poses
as output. Each MLP block is composed of one FC layer
for temporal merging and one FC layer for spatial merging.
For each MLP block, we use layer normalization (LN) [6]
as pre-normalization, SiLU [49] as activation, and apply
skip-connections [21]. As for the additional conditions, we
concatenate the audio feature to the sampled pose and add
the time step embedding temb to each MLP block. We also
embed the speaker id into the vector and calculate the style
embedding s through reparameterization, where s is concate-
nated along the temporal dimension.

For training the denoising network, we split the long
motion sequence to the specific length and calculate the
reconstruction loss via the Huber loss Lhuber [58] of the
diffusion model as:

Lrec = Ex0∼q(x0|c),t∼[1,T ][Lhuber(x0, x̂0)]. (3)

Similarly, we add velocity loss as:

Lvel = Ex0∼q(x0|c),t∼[1,T ][Lhuber(ẋ0, ˙̂x0)]. (4)

Besides, since human motion is subject-related [40, 58],
the Kullback–Leibler divergence [28] LKL is used to regu-
larize the distribution of all speakers on the s embeddings.

Overall, the loss function of training the rhythm-aware
generator can be written as:

Lfull = Lrec + λLKL + βLvel, (5)

where λ and β equals to 1e−2 and 1, respectively. We follow
the previous works [40, 58] and set the threshold for the
Lhuber to 0.1. To generate longer motions, we concatenate
4 previous frames to achieve visual continuity similar to
previous works [17, 40, 58].

3.3. Full LivelySpeaker Pipeline and Applications

After training both the semantic-aware and rhythm-aware
generator models, we can utilize the latter to address the
rhythm issues with the output of the former. In detail, as

shown in Fig. 3 (c), after generating the semantic-aware
motions from the SAG, following SDEdit [42], we can in-
vert the generated motion by adding K steps noises, and
then, we consider this motion as the generated motion of
T −K (K = 20 in our cases), denoising it to a new distribu-
tion via the guidance of the audio using DDIM (T = 100).
When inferring a long sequence, we repeat the procedure
mentioned above for each motion clip (consisting of 34
frames) sequentially and then concatenate them together.
Thanks to the power of the diffusion-based model, this
simple beat empowerment step keeps both the diversities
from the semantic-aware generator and hugely increases the
rhythm’s alignment.

Since we learn each stage individually and each stage
models a different distribution, our methods enable some
interesting applications. Below, we give brief introductions:
Semantic motion generation via new text prompts. We
find that the individual learned semantic-aware generator is
also a good controllable gesture generator. We can add some
new text prompts to the CLIP encoder of our semantic-aware
generator, and our method also generates the corresponding
motions. We give a brief visualization in Fig. 1 where the
generated gestures are in the new pose. This phenomenon
reveals that even if the semantic information rarely appears
in the dataset, it is also learned by our network. We give
more examples in the supplementary videos to show the
effectiveness of the proposed methods.
Interpolating poses between different modalities. Our
method enables the applications of generating different ges-
tures of the script-based motion and the rhythm-based re-
finements by controlling the denoising steps of the diffusion
model (see Fig. 3 (c)). We give the comparison and details
in the supplementary materials.

4. Experiments

4.1. Datasets

We validate our pipeline using two datasets, including the
TED Gesture dataset [58] and BEAT dataset [38]. The TED
Gesture dataset [58] contains 1766 videos sourced from on-
line TED speech videos and utilizes three modalities: audio,
text, and speaker identity. The human pose is represented by
direction vectors of 10 upper body joints.

Besides the body movements, clean finger movements are
also essential for a lively speaker’s delivery. Therefore, in-
stead of using the noisy TED-Expressive [40] which captures
the figure motion by OpenPose, we evaluate the performance
of the newly introduced high-quality dataset BEAT [38] for
its high fidelity on hand poses. BEAT [38] is constructed
using a commercial MOCAP system, including additional
annotations for emotion and semantic modalities. It captures
the rotation angles of joints that are invariant to body shape.
During training, we convert its origin Euler angle to rot6d
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representation [64] to ensure better convergence.
Following the previous settings [38, 40], both datasets

are resampled into 15 fps and divided into fragments of 34
frames in length with overlapping clips.

4.2. Evaluation Metrics

We adopt three main metrics to evaluate the generation
quality, including Frechet Gesture Distance (FGD) [58], Beat
Consistency Score (BC [40]), and Diversity [40] as previous
methods [40, 58]. FGD is a metric to measure the distribu-
tion disparity between generated output and ground truth
across the entire dataset, where a pre-trained autoencoder
is used to project motion into latent space. On TED [58]
dataset, we use the autoencoder provided in [58] for a fair
comparison, while on BEAT [38] we re-train the autoen-
coder using rot6d representation. Beat Consistency Score
calculates the average distance between every audio beat and
its nearest motion beat. Intuitively, the denser the motion
beats are, the better BC. Thus, it would be invalid in cases of
anomalous gesture sequences that contain numerous motion
beats. Fortunately, we can take FGD as a reference to solve
it. Diversity is assessed by measuring the variations in gener-
ated gestures, which are also calculated using a pre-trained
autoencoder [58]. It is computed by the L1 distance between
randomly sampled motion feature pairs [40].

4.3. implementation Details

The training is composed of two stages. For Seman-
tic Aware Generator, we train it with the Adam optimizer
(lr = 0.0001, β = (0.9, 0.99)) for 400 epochs. As for
Rhythm Aware Generator, we train it with the AdamW opti-
mizer (lr = 0.0001, β = (0.9, 0.999)) for 1200 epochs. The
total diffusion steps T = 1000 in training, in inference, we
generate the motion via 20 steps DDIM sampler. All exper-
iments are conducted with a batch size of 512 on a single
NVIDIA A100. When evaluating metrics, we use DDIM [51]
with 100 steps for faster sampling.

4.4. Baselines

We compare our method with the following methods.
Speech2Gestures [17] and Trimodal [58] are two represen-
tative methods in co-speech gesture generation. Trimodal
fuses three-modality information and achieves better per-
formance than S2G. HA2G [40], the SOTA model on TED
Gesture dataset, implements a coarse-to-fine hierarchical ges-
ture generator and learns a powerful audio extractor through
contrastive learning. CaMN [38], the SOTA model on the
BEAT dataset, designs a cascaded architecture and takes into
account all six modalities present in the BEAT dataset. All
these methods are learned in an end-to-end fashion where
the audios are dominated the gesture generation process. We
implement their open-source code on two datasets to conduct
a fair comparison.

Methods FGD↓ BC ↑ Diversity↑
Real Video 0 0.697 108.780
S2G [17] 24.887 0.723 97.272
TriModal [58] 4.501 0.659 102.978
HA2G [40] 5.429 0.698 106.290
Ours Rhythm (w=1) 2.152 0.656 107.988
Ours Rhythm (w=1.5) 2.359 0.676 112.327
Ours Rhythm (w=2.2) 6.622 0.699 113.051
Ours Full (w=1) 11.310 0.634 108.663
Ours Full (w=1.5) 9.154 0.664 107.781
Ours Full (w=2.2) 8.446 0.696 109.880

Table 1. Comparison with baselines on TED Gesture dataset. Our
method outperforms the three baselines in most cases.

Methods FGD↓ BC ↑ Diversity↑
Real Video 0 0.867 216.541
S2G [17] 24.887 0.872 152.367
TriModal [58] 20.513 0.621 173.214
CaMN [40] 8.169 0.768 183.671
Ours Rhythm (w=1) 7.845 0.886 193.060
Ours Rhythm (w=1.5) 7.561 0.892 206.969
Ours Full (w=1) 10.863 0.886 183.201
Ours Full (w=1.5) 9.269 0.893 194.362

Table 2. Comparison with baselines on BEAT dataset. Our method
achieves the best performance in most cases.

Note that several recent works [3, 37] also achieve notice-
able performance. We do not compare to SEEG [37] since
they utilize additional data annotations (Semantic Prompt
Gallery). Rhythmic Gesticulator [3] lacks open-source codes.
It employs an elaborately designed rhythm-based segmenta-
tion strategy to construct its training data, which is different
from previous settings [37, 40, 58].

4.5. Quantitative Evaluation

4.5.1 Rhythm-aware Diffusion Generator

Thanks to the ability of the diffusion-based method, we
can generate the co-speech gestures with varying guidance
weights w during inference by employing the classifier-free
guidance sampler [23]. We exhibit the numerical results in
the Table. 1 and Table. 2 marked with Ours Rhythm. We
can observe that the Beat Consistency Score and Diversity is
proportional to the guidance weight. Meanwhile, we achieve
our best FGD when w = 1. As demonstrated in Table. 1, our
RAG is able to beat all baselines in most cases on the TED
dataset [58]. S2G [17] achieves the highest Beat Consistency
Score. However, our observation reveals that it generates
rapid and unnatural body movements regardless of the audio
beats, as shown in our supplementary video, resulting in the
worst FGD and abnormal Beat Consistency Score, which
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Figure 4. Visual comparisons with three baselines. We display the scope of gestures across frames in the blue background area. Larger
scopes mean better diversity. Despite the close Beat Consistency Scores compared to the three baselines, our method stands out by clearly
greater diversity as shown in both examples. On the left side of the figure, we roughly show the rhythm of the proposed method. According
to Table. 1, these methods all achieve high and closely comparable BC scores. However, upon visualizing the results, our result excels in
terms of diversity. Specifically, our result changes hands from left to right and then waves both hands. In contrast, the baselines maintain a
consistent motion pattern throughout. On the right of the figure, we give the text scripts (“... a lot of...”), where the proposed method can
produce semantic-aware gestures whether other methods may fail.

further shows the weakness of this metric as discussed in
recent work [54]. Meanwhile, on the BEAT [38] dataset,
Ours Rhythm and CaMN outperform previous works across
all metrics. Despite utilizing only three modalities (audio,
emotion, and speaker ID) as input, our results show compa-
rable FGD as the state-of-the-art model that employs all five
modalities. Furthermore, our rhythm-aware Diffusion Gener-
ator excels in generating diverse and rhythmically complex
gestures thanks to our powerful MLP-based diffusion model.

4.5.2 Full System

As mentioned in Sec. 3.3, our RAG has the capability to
add beats to any motion sequence in a two-step process of
diffusing and denoising through DDIM [51]. We evaluate the
whole system as in Fig. 3 (c) with 20 diffuse steps by adding
Gaussian noise to the generated motion. The results of our
full system are listed in Tab. 1 and 2 marked with Ours Full.
On the TED dataset, our full system is also competitive when
compared to existing methods. As discussed in SEEG [37],
the slight downgrade in the FGD can be attributed to the
fact that the semantic gestures exhibit worse metrics. A simi-
lar observation has been founded in Tab. 2, where our full
network still keeps the similar Beat Consistency.

Since human motion is hard to be visualized, we give a
simple comparison of the diversity and the semantic-aware
gestures in Fig. 3, where the proposed method generates
very diverse gestures than the baseline methods. Besides, the
proposed method also shows the semantic-aware gestures
from this example. This further shows that the proposed SAG

Methods Natural Smooth Diversity Semantic
S2G [17] 41.6% 36.4% 33.3% 37.5%
TriModal [58] 6.30% 5.20% 10.4% 6.30%
HA2G [40] 9.40% 9.40% 10.4% 11.4%
Ours Full 42.7% 49.0% 45.8% 44.7%

Table 3. The percentage of the user’s favorite methods in terms of
naturalness, smoothness, diversity, and semantics.

learns some out-of-domain knowledge in terms of FGD and
Diversity but still keeps the Beat Consistency. We give more
examples in the supplementary video for comparison.

4.5.3 User Studies

Since the generated content is very subjective, we conduct a
user study to show the effectiveness of the proposed method
over the state-of-the-art methods. Specifically, we ask 16
subjects on four different methods (i.e., Speech2Gesture [17],
Trimodal [58], HA2G [40] and ours). We provide 12 samples
of the results and let them choose the best one in terms of the
motion naturalness, the motion smoothness, the diversity of
the generated content, and the semantic preservation, yet 768
opinions in total. We then calculate the percentage of each
task on each metric. As shown in Tab. 3, the participants like
our methods most in terms of four metrics.

4.6. Ablation Studies

We ablation two different designs in our method on the
TED dataset [58] for ablation studies. Firstly, we evaluate
the effectiveness of the whole system. On the other hand, we
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ablate the performance of our rhythm-aware diffusion model.
More experiments are provided in the supplementary.

4.6.1 System Overview

Since each stage is considered individually, we can numeri-
cally evaluate the performance of each stage. As shown in
Table. 1 and Table. Table. 2, we have evaluated that our full
pipeline can utilize the rhythm of the rhythm-aware generator.
Here, we give more ablation studies. As shown in Table. 4,
although our SAG generates a very different distribution
than the original model (FGD) and bad beat consistency, our
single semantic-aware generator gains much more diverse
motions than previous methods. As a combination of our two
networks (in the third row), the proposed diffusion model
will hugely pull the distribution to the trained one (as rep-
resented by FGD and BC) but still has very diverse results.
We also try another method that utilizes the fast Fast Fourier
Transform (FFT) to remove the high-frequency beat infor-
mation and synthesize the hand-crafted dataset for training
the beat alignment network, as shown in the second row
of Table. 4, this beat alignment network is less effective in
terms of FGD and only improve the beat consistency a little.

4.6.2 Network Structure Ablation on the Rhythm-
Aware Diffusion Model

As for the rhythm-aware diffusion model, we set the guid-
ance weights of classifier-free guidance w = 1 in this section.
To validate the effectiveness of our MLP-based model, we
replace it with a widely-used transformer structure in the
recent motion diffusion model [53]. Specifically, we keep
others unchanged and utilize the noisy motion sequence as
a query and employ the audio features as the key and value
to calculate the cross attention. As demonstrated in the sec-
ond row of Table. 5, our MLP-based model exhibits clear
superiority over the model built upon the Transformer De-
coder, especially in terms of the Beat Consistency Score.
This is crucial for ensuring effective beat empowerment.
Meanwhile, we conducted an ablation study on the audio en-
coder. In this regard, we rebuilt the audio encoder using 2D
convolutions and utilized a 128-channel Mel-spectrogram as
the audio input. As shown in the third row of Table 5, the
result indicates that a relatively simple audio encoder proves
to be sufficiently expressive for the task. Additionally, we
also evaluate the impact of our loss components. The KL
divergence loss item improves FGD and the diversity metrics
to a certain extent since it regulates the talking style.

4.7. Limitation

We propose a diffusion-based rhythm-aware generator
that acts as a beat empowerment module, allowing for editing
given motion in diffusing first and then denoising manner.
Therefore, the inversion steps K are of great significance.

Methods FGD↓ BC ↑ Diversity↑
SAG 56.878 0.388 128.894
SAG + Syn. data 65.718 0.472 133.753
LivelySpeaker (Ours) 8.446 0.696 109.880

Table 4. Ablation Studies on the whole framework where the pro-
posed rhythm-aware Generator can be considered as a stronger beat
empowerer.

Methods FGD↓ BC ↑ Diversity↑
Ours Rhythm (w = 1) 2.152 0.656 107.988
w/ Transformer 6.509 0.418 104.737
w/ Mel-Spectrogram 4.951 0.568 101.952
w/o KL loss 5.256 0.650 105.126

Table 5. Ablation studies on the network structure of the proposed
rhythm-aware generator.

For instance, when editing with large diffusing steps K (in
extreme cases up to 100), the original motion would be
drowned out by the Gaussian noise. If we could get the pair
various data of paired sync and out-of-sync data, our results
would be further improved via controllable adaptor [61].
Similarly, for long sequence generation, individual guidance
weight w should also be taken into consideration. As for
our semantic-aware generator, its performance is limited by
sentence splitting. Take Fig. 1 as an example, we cannot
generate a semantic-aware motion with the bad phrases split,
like ‘... from left’ and ’to right...’. Instead of splitting data
using a sliding window (as done in most recent methods), we
would pursue a better solution, like pre-parsing the sentence
during the training and testing.

5. Conclusion

In this paper, we present LivelySpeaker, a novel semantic-
and rhythm-aware system for co-speech gesture genera-
tion. To achieve this, we first generate the motion from the
semantic-aware generator, after that, we train a diffusion-
based rhythm-aware generator and utilize it for rhythm-
aware refinement. Powered by our decoupled framework,
our method enables multiple new applications in co-speech
generation, including text-based pose style controlling, and
interpolating between the text- and audio-based gestures.
Besides, our pure diffusion-based backbone also achieves
state-of-the-art performance in co-speech gesture generation.
Acknowledgments The work is supported by NSFC
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