This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

F&F Attack: Adversarial Attack against Multiple Object Trackers by Inducing
False Negatives and False Positives

Tao Zhou! Qi Ye!* Wenhan Luo?*

1Zhejiang University

Kaihao Zhang?
2Sun Yat-sen University

Zhiguo Shi!  Jiming Chen'!
3 Australian National University

{zhoutao2015, gi.ye, shizg, cjm}@zju.edu.cn, whluo.china@gmail.com, super.khzhang@gmail.com

Abstract

Multi-object tracking (MOT) aims to build moving tra-
Jjectories for number-agnostic objects. Modern multi-object
trackers commonly follow the tracking-by-detection strat-
egy. Therefore, fooling detectors can be an effective solution
but it usually requires attacks in multiple successive frames,
resulting in low efficiency. Attacking association processes
improves efficiency but may require model-specific design,
leading to poor generalization. In this paper, we propose a
novel False negative and False positive attack (F&F attack)
mechanism: it perturbs the input image to erase original
detections and to inject deceptive false alarms around orig-
inal ones while integrating the association attack implic-
itly. The mechanism can produce effective identity switches
against multi-object trackers by only fooling detectors in
a few frames. To demonstrate the flexibility of the mech-
anism, we deploy it to three multi-object trackers (Byte-
Track, SORT, and CenterTrack) which are enabled by two
representative detectors (YOLOX and CenterNet). Compre-
hensive experiments on MOT17 and MOT20 datasets show
that our method significantly outperforms existing attack-
ers, revealing the vulnerability of the tracking-by-detection
paradigm to detection attacks.

1. Introduction

As a common visual perception task, multi-object track-
ing (MOT) aims to build moving trajectories for number-
agnostic objects. This requires the multi-object tracker
to be capable of perceiving the birth, continuation, and
termination of targets. To this end, most MOT methods
33,22, 37, 34] follow the tracking-by-detection paradigm,
working together with a detector [12, 38]. Given a new
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Figure 1: By erasing original detections and injecting de-
ceptive false alarms around the original ones, our method
misleads multi-object trackers to switch tracking identities
of most targets after only attacking 1 or 2 frames. Bound-
ing boxes with different colors represent different identities.
Best viewed in color.

frame, the detector first finds all objects of interest. These
detections are then associated with historical trajectories by
various cues, like motion cues [3, 33, 37] and appearance
cues [34, 29]. It has important applications in surveillance,
autonomous driving, robotics [ 19], etc. Despite having been
studied for decades and its importance, the robustness of
MOT to attacks has just gained attention in recent years.
In many other computer vision problems, numerous works
have studied adversarial attacks against various visual per-
ception tasks such as detection [28, 30], tracking [32, 14],
semantic segmentation [30], etc since the vulnerability of
deep learning models to adversarial examples is first inves-
tigated in [27].

As detection is fundamental to tracking, attacking the de-
tectors is a primary solution for the MOT attack. By utiliz-
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ing the detection attacker, Daedalus [28], to produce dense
false alarms, MOT is vulnerable to the attack in tracking
targets of medium sizes (discussed in our experiments) and
incurs a large number of identity switches. Also, the false
negative attack, by making the object invisible to the model,
has shown its effectiveness in single object tracking [32].
However, Daedalus shows poor effectiveness in attacking
targets with large sizes, because the sizes of predicted boxes
in Daedalus are extremely compressed to evade the non-
maximum suppression (NMS) process. For false negative
attack, successive attacks for a long period (e.g., 30 frames)
are required to delete a trajectory as MOT usually adopts a
“reserved period” [33, 34, 37] to avoid deleting a trajectory
with occasional miss detections or short-term occlusions,
which results in inefficient attacks.

In contrast, the Hijacking attacker [14], focuses on at-
tacking the association process. It cheats the Kalman fil-
ter [15] inside the tracker by shifting the original detec-
tion box in a direction differing from the correct velocity,
which could possibly trigger identity switches by attacking
1 frame. Despite the efficiency, it has three weaknesses. (1)
The one-on-one mapping between shifted boxes and orig-
inal boxes prefers independent perturbations for attacking
each target, which does not hold when simultaneously at-
tacking multiple targets in the scene. (2) It needs to repeti-
tively forward the association component when solving the
optimal shift (to check whether the shifted box is still cor-
rectly associated). (3) Poor performance in attacking multi-
object trackers without Kalman filters.

To achieve both effective and efficient attacks, we pro-
pose the false positive and false negative attack (F&F at-
tack) mechanism, which is a complementary integration of
false alarm attack, false negative attack, and the idea of the
association attack. The inspiration for our attack comes
from the observation that in crowded scenes, severe oc-
clusions between objects and frequent changes in visibil-
ity pose challenges in detection and association, leading
to high probabilities of identity switches. Such challeng-
ing crowded scenes are simulated in our attack by eras-
ing the original detection and injecting multiple deceptive
false alarms around the original one. Specifically, three de-
signs are adopted to increase the threat of false alarm at-
tacks against multi-object trackers. (1) Instead of extremely
compressing the size of each box to achieve a higher false
alarm density, we trade off lower density for larger, more
deceptive false alarms. (2) We erase the original detection
to ensure one of the false alarms inherits the original iden-
tity, misleading association components to get incorrect es-
timations (e.g., velocity estimations). (3) We adopt a shifted
and scaled design for false alarms to better evade NMS and
further mislead association components. Note that, with the
idea of association attack being implicitly integrated, our
method attacks the multi-object tracker by fooling its detec-

tor component alone.

The F&F attack has the following advantages. (1) Ef-
fectiveness. The one-to-many design naturally benefits the
simultaneous attack on multiple targets, as it better tolerates
non-independent perturbations. (2) Simplicity. Our method
efficiently fools multi-object trackers without accessing or
forwarding association components. (3) Flexibility. The
F&F attack is not specifically designed for attacking a cer-
tain multi-object tracker. Instead, attacks against trackers
enabled by the same detectors share the same design. Be-
sides, since detectors often share similar components, the
F&F attack can be deployed on more detector families with
minor modifications. This further broadens the scope of
multi-object trackers at risk. As shown in Fig. 1, by per-
turbing a few frames, our method triggers high identity
switching rates on several multi-object trackers, i.e., Byte-
Track [33], SORT [3], and CenterTrack [37].

To summarize, our contributions are as follows:

* We propose a novel adversarial attack mechanism to
efficiently cheat multi-object trackers by erasing the
original detection, injecting deceptive false alarms,
and integrating the association attack implicitly.

* We show the high flexibility of the mechanism by de-
ploying it to different types of multi-object trackers.

* 24 experiments are constructed for four attackers at-
tacking three modern trackers (CenterTrack, SORT,
and ByteTrack) on two public datasets to study the dif-
ferent attacking behaviors and demonstrate the superi-
ority of the proposed attack.

2. Related Work
2.1. Multi-Object Tracking

Given a video sequence, MOT builds moving trajecto-
ries for number-agnostic objects [20]. Most modern MOT
methods [33, 22, 37, 34, 4, 8, 36] follow the tracking-by-
detection paradigm. These methods can be roughly grouped
into online ones [33, 37, 34, 29], where trajectories are ex-
tended at each time step, and offline ones [4, 8], which up-
date trajectories after processing a batch of frames. In the
tracking-by-detection paradigm, a detector [38, 24, 12] is
first adopted to find objects of interest. Trackers then link
these detections to historical trajectories by various cues.
For example, the Kalman filter [15] is commonly used to
estimate the motion cues. Zhou et al. [37] proposed to
link targets by estimating their displacements across adja-
cent frames. FairMOT [34] and JDE [29] involved appear-
ance embeddings to boost tracking performance. Recent
transformer-based multi-object trackers [22, 26] used query
embeddings to implicitly achieve detection and association,
resulting in a new tracking paradigm.
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Enabled by advanced detectors, modern multi-object
trackers have achieved significant progress. However, the
strong dependency on detectors may expose the vulnerabil-
ity of MOT methods to detection attackers. In this paper,
we reveal this risk by introducing a novel attack method,
which achieves efficient attacks against multi-object track-
ers by solely fooling detectors.

2.2. Adversarial Attack

The vulnerability of deep learning models to adversarial
examples was first investigated by Szegedy et al. [27]. After
that, several methods, like FGSM[13] and PGD [21] were
proposed to solve the perturbation efficiently. Recently, nu-
merous works have studied adversarial attacks against vari-
ous visual perception tasks such as detection [28, 30], track-
ing [32, 14], semantic segmentation [30], etc. Some stud-
ies [31, 6, 35, 10] further brought adversarial attacks to the
physical world.

Close to MOT, several single object tracking (SOT) at-
tackers [32, 7] were proposed based on different intuitions.
Besides, there are some detection attackers aiming to trig-
ger different misbehaviors, like missed detections [17], or
false alarms [28], etc. However, these methods show lim-
ited effectiveness in attacking multi-object trackers due to
the mission gap. Recently, Jia et al. [ 14] introduced an MOT
attacker that focused on cheating the Kalman filter [15] in-
side the multi-object tracker. To maximize the effective-
ness, [14] repetitively forwards the association component
when solving the perturbation. Instead, we propose to at-
tack multi-object trackers by fooling detectors alone, treat-
ing the association component as a black box.

3. False Negative and False Positive Attack

In this section, we first introduce the attack formulation
in Sec. 3.1. Then, in Sec. 3.2, we explain the proposed
attacking mechanism of misleading the trackers to switch
tracking identities. Finally, in Sec. 3.3, we deploy the mech-
anism to attack different types of multi-object trackers.

3.1. Attack Formulation

frames V =
WxHx3
R X X s

Given a sequence of video
{I,--- ,It;--- ,In}, where I €
we add perturbations to a small subset of the
frames, resulting in an attacked video \Y% =
{Il~7 s 7It—1a It7 s aIt—‘rn—la It_;,_n, s ,[N}, where
I, I indicate original frames and attacked frames, respec-
tively. The goal is to mislead multi-object trackers to switch
tracking identities after the attack (i.e., since frame I ,).

A tracking-by-detection MOT system primarily consists
of two parts, a detector module, and an association module.
We deceive the MOT system by only attacking its detec-
tion module. To this end, we conduct targeted attacks on
detectors with the aim of producing a targeted detection set

Algorithm 1: F&F Attack
Data: Video subsequence V = [I4, ..., [t1,,—1] to be
attacked, object detector D(-).

Result: Attacked video subsequence
V= [Ita (X223} It+n71]-

1 V=]
2 for I inV do
3 | D*« D(I)

/ * get targeted detections according to

Sec. 3.3 x/

4 D < get_targeted _detection(D*)

/* solve perturbations with Eq. 1-2 */
5 I < solve_perturbation(I, D, D(-))
6 V.append (1)

7 end

that misleads the association and triggers identity switches
to the maximum. In our experiments, we implement the
detection attack under a white-box assumption but treat the
association module as a black box.

Formally, given a detector D(-|f) parameterized by 0,
the original input image I, and the targeted detection set
D, the perturbations J is optimized to minimize the targeted
loss Ly (D and Ly are detailed in Sec. 3.3):

§ = argmin L (D(I +6|6),D). (1)
6,[10llec <e

We adopt PGD [21] to iteratively solve the perturbations
under /.-norm constraint:

0" = clip_ g (—1,1-1) (0" +asgn(Vs L (D(1+4]0), D)),

2
where € limits the maximum perturbation for each pixel, a
controls the step length of each iteration, V indicates the
gradient operation, and sgn(+) extracts the sign of gradients.
Perturbations are clipped to meet the ¢,,-norm constraint
and to ensure the perturbed input is within [0, 1]. We use
zero initialization for §°, and obtain the final perturbation
6% after R iterations.

Alg. 1 shows the pipeline of our method. To conduct at-
tacks on frame I;, we first get the original detection set D*
by forwarding the detector D(-) with the clean image I;.
Then we get targeted detections by erasing original detec-
tions and injecting deceptive false alarms according to the
design specified in Sec. 3.3. Finally, the perturbation ¢ is
solved by PGD [21] aiming at minimizing Eq. 1. As we do
not access or forward association components when solving
perturbations, our attack pipeline is concise.

3.2. F&F Attack Mechanism

The main idea of the mechanism is two-fold. (1) F&F
injects false alarms into the attacked frame I, letting them
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Figure 2: Diagrams of existing attackers and an example of our method. In the example, circles filled with different colors
identify detections with different tracking identities. To attack the target d* ‘|s—1 with tracking identity k, we erase its original
detection d|; in the attacked frame I; and inject 4 deceptive false alarms {d1 |4 do |4 d3|t, d4| } around d|;. With such pertur-
bation at time step ¢, the tracker may link one of the false alarms to the existing trajectory with identity & (resulting in d¥|;)
and spawn 3 new trajectories for the remaining false alarms with new identities, [, m, n, respectively. Then, at time step ¢ + 1,
the 4 trajectories with identities k, [, m, n compete for the detection d|;11 in the unattacked frame I;1 1. An identity switch
(IDSW) occurs if one of the newly spawned trajectories (i.e., with the identity of 7 in the figure) wins the competition.

compete for the correct tracking ID and prevent the ID from
being correctly propagated from I;_; to I;4;. (2) F&F
erases the correct detections in the attacked frame I;, en-
suring that the ID in frame [;_; is inherited by one of the
false alarms.

To elaborate on the mechanism, we construct an example
in Fig. 2. For simplicity, we analyze the case of tracking a
single target and we neglect the probationary period. We
denote each original detection at time step ¢ as d|;. It is
further denoted by d”|; if it inherits the tracking identity
k after association. Similarly, false alarms are denoted by
d~i|t where ¢ indicates the detection index. Assuming that
trackers conduct associations in a greedy manner, then false
alarms with indexes of @ = arg max;(sim(d*|;_1,d;|;))
and b = arg max; (sim(d¥|,,1,d;|;)) transfer the identity
kin time stept — 1 — tand t — t 4+ 1, respectively,
where sim(-, -) indicates the similarity measurement (e.g.,
intersection over union (IoU)) used in association. In Fig. 2,
we have ¢ = 1 and b = 4. One identity switch is triggered
if Eq. 3 to Eq. 6 are satisfied:

sim(d®|;_1,da|s) > T, 3)
sim(dles1,dblt) > 7, 4)

a#b, (5)

sim(dlig1, dyle) > sim(di1,d*[i-1), (6)

where T indicates the prior similarity threshold inside track-
ers above which the association is accepted. Eq. 3 to Eq. 5
ensure that separate false alarms (with indexes of a and b)
transfer the identity in time stept — 1 — tand ¢t — ¢t + 1,

respectively. Eq. 6 avoids the rebirth of the original trajec-
tory.

Notice that the attack mechanism does not explicitly ac-
cess the similarity measurement inside the tracker (i.e., the
function sum(-,-)). Instead, it maximizes the probability
of Eq. 3 to Eq. 6 being met through the design of targeted
detections D (detailed in Sec. 3.3).

3.3. Targeted Attack Design
3.3.1 Target-Size-Aware Shift Strategy

Two conflicts pose challenges in the design of the F&F at-
tack. Firstly, association modules and detector modules
have conflicted preferences for box overlap. Association
modules favor greater overlaps (higher similarity), but heav-
ily overlapped boxes are eliminated by NMS. Secondly, the
F&F attack requires dense isolated responses on the confi-
dence prediction map (in order to erase the original detec-
tion and inject false alarms near the original ones), which
conflict with the spatial smoothness of network predictions.

To address these challenges, we propose a target-size-
aware shift strategy. In specific, we set targeted detections
D by replacing each original detection with v (e.g., v = 4)
shifted false alarms so that (1) leaves space for smooth vari-
ations in the confidence prediction map and (2) makes the
overlaps between false alarms and original detections de-
ceptive (i.e, neither be dropped by NMS nor be rejected in
association). Each false alarm is shifted by (kw, kh) away
from the original one in + different directions, where « con-
trols the overlaps between shifted false alarms, w and h
are the width and height of original detection, respectively.
Another benefit of this design is its ability to perturb the
state estimation (e.g., velocity estimation) of the association
module.
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Additionally, in order to further reduce the overlap be-
tween false alarms and to further mislead association mod-
ules, the height and width of false alarms are respectively
scaled to sh and sw, where the hyperparameter s € [0, 1].
By involving translation and scaling, F&F integrates the
idea of association attack. We discuss the settings of (k, )
in Sec. 4.3.

3.3.2 Perturbation Solving

Targeted Loss for Attacking ByteTrack. The targeted loss
is designed as

YOLOX
’Clgt

= Lobj + ALL1, (7N
where Lo and L1 are inherited from the training loss of
YOLOX [12], supervising the classification task and the re-
gression task, respectively. We use A = 1.

Before calculating the loss, a detector typically needs
a strategy to assign anchors to ground truth. Originally,
YOLOX adopts a dynamic k assignment policy [ 1] dur-
ing training, based on the intuition that the number of posi-
tive anchors should differ across targets with different sizes
and occlusion states. However, using this biased assign-
ment mechanism when minimizing the targeted attack loss
Ly leads to imbalanced attack performance across targets
and limits the number of positive anchors assigned to each
target. We address these two limitations by fixing the k to a
reasonably large value (e.g., k = 16).

As SORT [3] and ByteTrack are enabled by the same
detector in our experiments, the F&F attack on SORT thus
shares the same design of attacking ByteTrack.

Targeted Loss for Attacking CenterTrack. To showcase
the flexibility of the F&F attack, we deploy it to attack Cen-
terTack [37], which is enabled by another representative de-
tector (CenterNet [38]). Given the targeted detection set D,
we render a center heatmap following [38]. Similar to at-
tacking ByteTrack, the targeted loss for attacking Center-
Track is designed as

CenterTrack
Lig

=Ly + ALy, 3)
where £, supervises the heatmap prediction and £ super-
vises the box regression. Both of them are inherited from
the training loss of CenterTrack [37]. We set A\ = 0.1.

Considering that detectors often share similar com-
ponents (e.g., a classification branch and a localization
branch), the F&F attack can be easily deployed to attack
more detector families with minor modifications, thereby
expanding the scope of threatened MOT systems.

Original tracking results —> Evaluate MOT metrics without attack
[Oginl tacing sl

Attacked tracking results —> Evaluate MOT metrics with attack

Clean frames

Clean frames gl Attacked frames L Clean frames

IIIIII

Wait for K. F
Calculate immediate identity switches IDSW, |

Figure 3: The attack performance evaluation contains two
parts. (1) We evaluate the MOT metrics of newly assembled
sequences containing unattacked frames from each result
(in gray). (2) Attack success rate is defined as the ratio of
immediate identity switches IDSWjy, right after the attack.

4. Attack Evaluation
4.1. Experiment Methodology

Evaluation Metrics. As shown in Fig. 3, our evaluation
contains two parts. First, given the track results L. and L of
the clean sequence and the attacked sequence, respectively,
we assemble new sequences by extracting the parts of
unattacked frames from each result to evaluate the MOT
metrics, including CLEAR [2], IDF1 [25], and HOTA [18].
Note that, we exclude the attacked frames in the evaluation
to avoid distorted or meaningless association metrics.
Second, in order to provide a straight view of attack
performance, we calculate the ratio of immediate identity
switches IDSWj,, right after the attack. Considering that
the Kalman filter may require several time steps to catch up
with rapidly changing observations (detections), we leave
one additional clean frame waiting for the Kalman filter
before counting the IDSWj,,, (otherwise, some targets may
be regarded as missed detections instead of experiencing
identity switching).

Datasets. We conduct experiments on two widely used
pedestrian tracking datasets, MOT17 [23] and MOT?20 [9].
MOT17 is characterized by various viewpoints and different
target sizes. MOT?20 is characterized by high density and
heavy occlusion. Since we need ground truth to evaluate
the MOT metrics with and without attacks, all experiments
are conducted on the training splits of two datasets. Follow-
ing common practices [33, 34, 37], we split each training
sequence into two halves, using the first half for training
models and the rest for evaluating attacks. To enrich the
sequence, we split each evaluation sequence into segments
every 30 frames, resulting in 83 segments on MOT17 and
148 segments on MOT20. For each segment, we only at-
tack once, starting from the 5% frame (instead of starting
from the beginning frame) for practice considerations.
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Table 1: Detailed experimental settings.

Tracker ‘ € « #iter P 7TNMS  Tiack HFmM.

ByteTrack | 4/255 1/255 150 1 0.7 0.1 3
SORT 4/255  1/255 150 1 0.7 0.3 3
CenterTrack | 8/255 1/255 60 0 - 1

Implementation Details. We evaluate our attack against
three multi-object trackers, CenterTrack [37], Byte-
Track [33], and SORT [3]. Detailed experimental settings
are provided in Table 1, where #iter is the number of itera-
tions, P is the probation period, Tnvs is the NMS threshold,
Tirack 18 the IoU threshold below which an association is re-
jected, and #Fm. is the number of attacked frames. For Cen-
terTrack and ByteTrack, we adopt their official implemen-
tations and follow the same tracking settings as the authors.
For SORT, we adopt the implementation from ByteTrack,
which is enabled by the YOLOX detector. We set greater
€ when attacking CenterTrack because it stacks two frames
as input but we only add perturbations to a single frame.
Besides, we find trackers using standard NMS operations
slightly benefit from more iterations. We set #iter=150,
v=4, k=0.2, and s=0.8 by default when attacking ByteTrack
and SORT. We provide discussions of better effectiveness
and fewer iterations in the ablation study. More implemen-
tation details can be found in the supplement.

4.2. Compare to Existing Attackers

In Table 2, we compare our method with three baseline
attackers: (1) False Negative attacker [32, 17], which is
usually used in attacking detectors and single-object track-
ers, aiming to make the target invisible to the model; (2)
Daedalus [28], a detection attacker, which induces dense
false alarms by raising the confidence predictions along
with compressing the predicted sizes of boxes; (3) Hijack-
ing [14], an MOT attacker, which is designed to cheat the
Kalman filter inside the tracker. Due to the space limit, we
do not list hybrid metrics (i.e., HOTA and MOTA) consider-
ing that they can be calculated by HOTA = v/DetA - AssA
and MOTA = 1 — FN — FP — IDSW.

According to Table 2, we have the following observa-
tions and analysis.

Effectiveness of Our Attack Mechanism. Shown by the
higher attack success rate IDSWj,, and the greater decline in
association metrics including AssA, IDF1, and IDSW, our
method significantly and consistently outperforms baseline
attackers. It might be noticed that the decline in detection
metrics (e.g., DetA, FN, and FP) is less remarkable. This is
due to the exclusion of attacked frames during the evalua-
tion, as depicted in Fig. 3.

Superiority to False Negative Attack and Daedalus. The
false negative attack (denoted by “FN Attack™) shows poor
effectiveness because multi-object trackers are designed to
resist occasional miss detections. The Daedalus (false alarm

attack) shows effectiveness in attacking ByteTrack on the
MOT20 dataset, where the majority of the targets are of
medium size. However, its effectiveness remarkably de-
creases when applied to the MOT17 dataset, which con-
tains a variety of object sizes. This validates the sensi-
tivity of Daedalus to target sizes. In contrast, the consis-
tent and better performance of our method suggests that
the weakness of Daedalus is overcome in our design. An-
other observation is that SORT shows robustness against
Daedalus, mainly because it adopts a higher association
threshold (7o = 0.3) by default. This higher threshold
rejects the association between trajectories and small-sized
false alarms generated by Daedalus.

Superiority to Hijacking. The Hijacking attack performs
worse on the MOT20 dataset compared to that on MOT17,
while our method exhibits an opposite trend in performance.
Considering the higher target density in the MOT20 dataset,
this highlights the advantage of our one-to-many design.
We provide further visualization analysis in the supplement.
As the Hijacking attack is specifically designed to attack
Kalman filters, our method significantly outperforms Hi-
jacking when the Kalman filter is absent (in CenterTrack),
validating the high flexibility of our method.

Impacts of Different NMS Mechanisms. CenterTrack
adopts a 3 x 3 max pooling operation on the confidence
heatmap as an alternative to classic NMS operation, leading
to the defacto detection set ID (obtained by forwarding the
model with the perturbated image) being controllable. With
v = 4, we inject 4 false alarms for each original detection
in CenterTrack, resulting in an expected value of 75% for
IDSWin,, which is close to the experimental results in Ta-
ble 2. In contrast, when attacking YOLOX-enabled track-
ers, the defacto detections D are observed to differ from I
due to the lower controllability of the classic NMS opera-
tion. Benefitting from our modifications in the label assign-
ment strategy, this low controllability yields a higher attack
performance than expected (i.e., IDSWy, > 75% when at-
tacking ByteTrack and SORT).

4.3. Ablation Study

As shown in Table 3, we ablate our design on attack-
ing ByteTrack as an example. Two untargeted attackers are
adopted as baselines of our targeted detection design: the
FN attacker, and the FP attacker, where miss detections or
false alarms are blindly induced. The poor performance of
untargeted attackers validates the effectiveness of our tar-
geted design. Besides, the attack performance decreases
without fixing the % in label assignment (denoted by “w/o
fixed k” in Table 3) due to the reduction in the numbers
of deceptive false alarms and the unbalanced attack perfor-
mance between objects with different sizes. Removing the
regression loss £ ; (denoted by “w/o L ;” in Table 3) also
harms the attack effectiveness on ByteTrack. This is mainly
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Table 2: Attack performance comparison.

Dataset Tracker Attacker | #Fm. | IDSWin?T | DetA]l  AssAl IDF1] FN(%)t FP(%)t IDSW(%)} IDst
Clean - - 56.61  82.61 80.11 29.07 2.76 0.23 1615

EN Attack 1 1.05% 5643  82.34(-027)  79.78 (-0.33) 29.66 248 0.25 1614

CenterTrack | Daedalus 1 6.27% 56.50  80.80 (-1.81) 78.96 (-1.15) 28.90 3.34 0.43 1809
Hijacking 1 25.12% | 5642  74.68(-7.93)  75.82(-4.29) 29.45 2.70 0.81 1712

Ours 1 74.38% | 5623 57.48(-25.13) 64.93(-15.18)  28.95 3.40 2.89 2704

Clean - - 66.67 8550 87.58 17.92 3.88 0.18 1739

EN Attack | 3 3.45% 66.34  84.57(-0.93)  86.78 (-0.80) 18.26 3.99 0.36 1755

MOT17 | ByteTrack | Daedalus 3 5121% | 6190 69.28 (-16.22) 77.07 (-10.51)  18.39 6.03 2.57 2768
Hijacking 3 68.17% | 65.03  66.34(-19.16) 77.28 (-10.30)  19.02 3.94 2.14 2218

Ours 3 85.00% | 63.83 60.63 (-24.87) 73.76 (-13.82)  17.39 5.05 3.13 3105

Clean - - 66.72  84.15 86.44 16.15 6.21 0.84 2242

EN Attack | 3 4.02% 66.58  83.50(-0.65)  85.89 (-0.55) 16.39 6.21 0.98 2261

SORT Daedalus 3 8.48% 66.55 82.03(-2.12)  84.53(-1.91) 16.05 6.58 1.62 2725
Hijacking 3 68.03% | 6591  66.79 (-17.36) 76.04 (-10.40)  16.92 6.17 2.98 3077

Ours 3 78.29% | 65.67 63.67(-20.48) 73.89 (-12.55)  16.24 6.58 3.81 3686

Clean - - 62.56  82.29 86.46 20.57 291 0.15 19268

FN Attack 1 0.62% 61.82  81.54(-0.75)  85.60 (-0.86) 22.04 2.44 0.17 19189

CenterTrack | Daedalus 1 18.36% | 61.68 75.40(-6.89)  81.74 (-4.72) 20.94 3.73 0.86 22841
Hijacking 1 37.09% | 61.90 68.77 (-13.52) 78.78 (-7.68) 20.66 3.83 1.20 21733

Ours 1 75.09% | 60.18  52.66(-29.63) 65.46 (-21.00)  18.60 8.26 4.44 41685

Clean - - 71.64 8542 92.77 10.67 232 0.11 20106

FN Attack | 3 0.35% 7148  8535(-0.07)  92.63 (-0.14) 11.00 2.19 0.11 20074

MOT20 | ByteTrack | Daedalus 3 80.96% | 67.75 62.74(-22.68) 78.67 (-14.10)  11.25 3.53 2.86 35684
Hijacking 3 57.97% | 69.98  66.87 (-18.55) 82.89 (-9.88) 11.63 2.62 2.02 22975

Ours 3 88.56% | 69.54 61.00(-24.42) 7825(-14.52)  10.14 3.26 3.09 37256

Clean - - 7251 8544 93.14 9.58 2.88 0.21 22022

FN Attack | 3 0.78% 72.50  85.39 (-0.05)  93.10 (-0.04) 9.62 2.86 0.21 22010

SORT Daedalus 3 6.32% 7234 84.10 (-1.34)  92.10(-1.04) 9.59 3.06 0.44 23883
Hijacking 3 58.92% | 71.71 68.87(-16.57) 83.27 (-9.87) 10.19 3.07 223 28950

Ours 3 87.59% | 71.09 61.49(-23.95) 77.76(-15.38)  9.58 3.14 3.47 40376

Table 3: Ablation study on the MOT17 dataset.

Tracker ‘ Ablations ‘IDSW(im.)T ‘ AAssA] AIDF1,

FN attack 3.45% -0.93 -0.80

FP attack 50.17% -17.74 -11.57

ByteTrack | w/o fixed k 71.16% -19.84 -11.04
w/o Li 64.05% -18.02 -10.5

Full method 85.00% -24.87 -13.82

because ByteTrack performs association based on box rep-
resentation. The regression loss £ ensures that deceptive
false alarms are injected at expected locations with expected
sizes.

To further highlight the advancement of our method, we
analyze the attack performance under different experimen-
tal settings. If not specified, experiments are conducted on
attacking ByteTrack.

Object sizes. We investigate the attack performance
against different object sizes in Fig. 4a, where we follow
the definition of object sizes from the COCO dataset [16]
and we use red bars to indicate the object size distribution
in the validation split of MOT17 dataset. It can be observed
that Daedalus has poor effectiveness on small-sized objects
and extremely poor effectiveness on large-sized objects,
while the Hijacking attack and our method are not sensitive

to object size.

Number of attacked frames.

adopted by some trackers [

A probationary period is
, 3] when spawning a new

trajectory in order to prevent tracking of occasional false
positives. Due to the probationary period within ByteTrack
and SORT, we set the default number of attacked frames
to 3 when attacking these two trackers. As an ablation,
we evaluate the attack performance by attacking {1, 2, 3,
4, 5} frames in Fig. 4b. Our method shows a significant
increase in performance when the attacked frame number
(i.e., 2) exceeds the probationary period (i.e., 1) and
shows constantly better performance compared to baseline
attackers. After each attack, the Hijacking attacker checks
whether each target has been successfully attacked and only
attacks the unattacked targets in subsequent frames, leading
to a decreasing attack difficulty. However, our method does
not perform this check because we promise not to access
the association module.

Covariance of measurement noise. The prior mea-
surement covariance settings in the Kalman filter affect
the effectiveness of the attack. A lower measurement
covariance results in the filter placing more trust in the
measurements (i.e., detections), while a higher one makes
the filter more confident in the predictions. We conduct
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Figure 4: Attack success rate with regard to (a) object sizes (b) the number of attacked frames (c) measurement noise

covariance settings of the Kalman Filter.

Table 4: Attack effectiveness with different shift (x) and
scale (s) settings on the MOT17 dataset.

K s ‘ IoU; IoU, IDSWj,(ByteTrack) IDSW;,(SORT)
0.1 04| 016 033 87.73% 24.18%
0.1 06 | 036 0.50 81.73% 80.82%
0.1 08 | 064 0.60 73.58% 72.42%
02 04 | 0.16 0 94.43% 18.91%
02 06| 036 0.20 93.82% 81.04%
02 08| 043 033 85.00% 78.29%
03 04 | 0.16 0 95.02% 11.90%
03 06 | 023 0 92.62% 48.77%
03 08| 028 0.14 83.50% 71.13%

Table 5: Experiments of attacking ByteTrack on MOT17
dataset with fewer iterations.

Method Attack Success Rate IDSWip, (%) 1

#iter=2  #iter=4  #iter=6  #iter=8  #iter=10
Daedalus 1.4 10.6 20.6 27.9 36.0
Hijacking 7.0 15.9 22.7 29.5 36.1
Ours 5.5 26.5 47.5 62.0 69.5

Table 6: Effectiveness under common defense algorithms.

No Defense  CJ GN SS AT

IDSWin (%) T 91.4 90.8 86.9 758 (+EoT) 82.0 ({, #iterf)

experiments on SORT where a classic Kalman filter is
adopted, supporting the independent adjustment of obser-
vation covariance. The original measurement covariance
is scaled by {0.01x,0.1x,1x,10x,100x} times in
experiments. As shown in Fig. 4c, our method consistently
outperforms the Hijacking attack under a wide range of
measurement covariance settings.

Better Effectiveness. For the sake of generalization, we
use kK = 0.2 and s = 0.8 for both attacking ByteTrack
and attacking SORT. However, setting specific values for
attacking different trackers can lead to better effectiveness.
Table 4 details the attack performances under different
(k, s) combinations. In addition, we use IoU; to denote the
IoU between the original detection and one of its shifted
false alarms, and use IoU, to denote the maximum IoU
between the shifted false alarms that belong to the same
original detection. According to Table 4, we have two
observations. (1) Setting « and s to make IoU; slightly
higher than the association threshold T,k leads to the
best attack performance. (2) By involving translation and
scaling in our design, the false alarm boxes effectively
evade the NMS (i.e., IoU; < mnms)-

Fewer Iterations. We report the attack performance using
fewer iterations in Table 5, where we set k=0.3 and s=0.4
for F&F. F&F achieves an attack success rate of 69.5%
within 10 iterations. To further reduce the time cost of each
iteration, an asynchronous attack (attacking a small subset

of targets within the image at a time) could be implemented
on the engineering side.

4.4. Discussion

Limitation. Though our method achieves advanced ef-
fectiveness and efficiency in attacking motion-based multi-
object trackers (e.g., ByteTrack, SORT, CenterTrack, etc.),
the effectiveness may degrade when attacking some re-
identification-based trackers due to the natural limitation
of fooling detectors alone. The major challenge lies in
the smooth updating of appearance embeddings inside the
tracker, which leads to the violation of Eq. 5 and Eq. 6. We
elaborate on this limitation in the supplement by deploy-
ing the F&F attack to attack FairMOT [34], where we also
provide suggestions for enhancing the F&F attack. Another
limitation of F&F is that the current version remains in the
digital domain. We leave the implementation in the physical
world as future work.

Defense. Based on the limitation mentioned above,
strengthening the smoothness constraint in state estimation
(e.g., velocity, appearance) can reduce the effectiveness of
F&F, but it may also impact clean tracking performance.
Checking abrupt changes in the number of detections could
be another feasible way. Besides, Table 6 summarizes the
effectiveness of F&F under some common defense algo-
rithms, where we deploy the F&F to attack ByteTrack on
the MOT17 dataset and set x=0.3, s=0.4, #iter=30, and
£5o=4/255 by default. F&F is found to be robust to color
jitter CJ (where the jitter for each color channel is inde-
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Figure 5: Qualitative results of deploying F&F to attack ByteTrack. We list the detection results in the first line and the
association results in the second line. Tracking identities are coded by color. The target highlighted by red triangles validates
our hypothesis presented in Fig. 2. For more results and analysis please refer to the supplement.

pendently sampled within £50/255) and minor Gaussian
noise GN (0=2/255). If facilitated by the commonly used
EoT [I] technique, F&F becomes robust to local spatial
smoothing SS (e.g., 3x3 average smoothing). Finally, F&F
keeps effective against adversarially trained AT [5] models
if larger bounds and greater iteration numbers are allowed
(e.g., £oo=064/255, #iter=80).

5. Conclusion

In this paper, we propose a novel attack mechanism,
F&F attack, which attacks multi-object trackers by solely
conducting detection attacks while integrating the associ-
ation attack implicitly. The challenging crowded scenes
are simulated by erasing original detections along with in-
jecting deceptive false alarms, finally misleading trackers
to switch tracking identities. The flexibility of the pro-
posed mechanism is demonstrated by deploying it to attack
three multi-object trackers, ByteTrack, SORT, and Center-
Track, which are enabled by detectors using different NMS
mechanisms. The advanced performance of our method is
witnessed in comprehensive experiments on MOT17 and
MOT?20 datasets. We hope that the vulnerability of MOT
methods to detection attacks revealed in this paper can in-
spire the MOT community.
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