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Abstract

Panoptic Scene Graph generation (PSG) is a recently
proposed task in image scene understanding that aims to
segment the image and extract triplets of subjects, objects
and their relations to build a scene graph. This task is
particularly challenging for two reasons. First, it suffers
from a long-tail problem in its relation categories, making
naive biased methods more inclined to high-frequency rela-
tions. Existing unbiased methods tackle the long-tail prob-
lem by data/loss rebalancing to favor low-frequency rela-
tions. Second, a subject-object pair can have two or more
semantically overlapping relations. While existing meth-
ods favor one over the other, our proposed HiLo framework
lets different network branches specialize on low and high
frequency relations, enforce their consistency and fuse the
results. To the best of our knowledge we are the first to
propose an explicitly unbiased PSG method. In extensive
experiments we show that our HiLo framework achieves
state-of-the-art results on the PSG task. We also apply our
method to the Scene Graph Generation task that predicts
boxes instead of masks and see improvements over all base-
line methods. Code is available at https://github.
com/franciszzj/HiLo.

1. Introduction
Scene Graph Generation (SGG) [49] is a crucial task

in image scene understanding that extracts triplets in the
form of subjects, objects and their relations to build a scene
graph. Subjects and objects are represented with bound-
ing boxes. Since this task links vision and text, it holds
great potential for a variety of applications, including visual
question answering [27], image captioning [21, 8], image
retrieval [32, 53, 51] and visual reasoning [1, 55].

Recently a novel variant of SGG was proposed, which
is Panoptic Scene Graph generation (PSG) [62]. Subjects
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Figure 1. An example of the PSG task. We compare the pre-
dicted object relations of different approaches. a) An image and
its panoptic segmentation. Two persons and a sports ball are shown
in different colors. b) A biased method predicts mostly high fre-
quency relations. c) An unbiased method predicts mostly low fre-
quency relations. d) Our method predicts both low and high fre-
quency relations, as well as more relations in total.

and objects are represented with panoptic segmentation [35]
masks. Unless stated otherwise, in this work we focus on
PSG, since it is pixel-level accurate and also covers back-
ground classes and their relations with foreground objects.

The performance of the PSG model is affected by a long-
tail problem in its relation categories. For instance, relations
such as over, in front of and holding occur tens of thousands
of times in the PSG dataset [62], while others like swing-
ing and kissing occur only a few dozen times. This severe
class imbalance in the relation categories can lead to model
predictions that are more inclined to high-frequency rela-
tions, which poses significant challenges to the application
of panoptic scene graphs in real-world scenarios.

Previous methods [12, 18, 39, 17] have often treated the
long-tail problem of the PSG task as equivalent to the long-
tail problem in object-centric tasks such as classification
[15, 5, 29] or semantic segmentation [14, 2]. Consequently,
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these methods have employed re-balancing techniques to
address class imbalance, either through re-sampling the data
[39] or by using a class-balanced loss [33] that assigns dif-
ferent weights to different relation categories.

In contrast, in the relation-centric PSG task, a subject-
object pair can have multiple relations that exhibit rela-
tional semantic overlap, such as being partially or fully
overlapping. For example, in Fig. 1, there are multiple
relations between the boy and the sports ball, such as be-
side, looking at, playing and chasing. For regular biased
models [61, 65, 60, 46], the results are dominated by high-
frequency relations (beside, looking at). For specifically
unbiased models [66, 62], the results are dominated by low-
frequency relations (playing, chasing). However, since the
low frequency relations can be more specific (e.g. on and
standing on) or only partially overlapping with high fre-
quency relations (e.g. looking at and chasing), it is crucial
to include both to fully understand the image. We found
that relational semantic overlap occurs in large numbers in
the PSG dataset [62] and that current methods do not ef-
fectively address it. This is reflected in the increase in the
category-averaged mean recall metric of unbiased methods,
at the cost of the decrease in global recall (see Sec. 4.4).

To address the long-tail problem of scene graphs under
relational semantic overlap, we introduce the HiLo frame-
work. This framework simultaneously learns the high and
low frequency relations in different network branches and
unifies their strengths with the help of two novel consis-
tency loss functions. We apply our framework on top of
a novel baseline. This baseline uses a recent transformer-
based approach [10] for panoptic segmentation and adapts
triplet queries [62] and masked attention [10] for the PSG
task. In summary, we make the following contributions:

• We identify the long-tail problem with relational se-
mantic overlap in the PSG task and propose the HiLo
framework to address this problem. The framework is
general and can be applied to any PSG method.

• We propose a powerful and efficient one-stage end-
to-end baseline. This baseline enhances the interac-
tion between mask and relation prediction in the trans-
former decoder layer.

• We conduct extensive experiments to demonstrate the
effectiveness of our framework and baseline. Our re-
sults outperform the state-of-the-art in both recall and
mean recall on the PSG dataset and show systematic
improvements on the VG dataset.

2. Related Work
2.1. Scene Graph Generation

The Scene Graph Generation (SGG) [49] task plays a
crucial role in connecting vision and language, and has re-
ceived widespread attention in the computer vision commu-

nity. Many methods have been proposed to improve the
performance of SGG, which can be classified into three cat-
egories [70]. The first is to introduce multi-modal infor-
mation, such as appearance [52], space [72], depth [54],
and segmentation [34]. The second is to introduce prior in-
formation and commonsense knowledge, such as statistical
[3, 16, 65, 9] and language prior knowledge [49, 43, 68, 31,
20]. The third category involves designing different model
structures, such as message passing [41, 16, 42, 65, 24, 64],
attention mechanisms [69, 50], tree structures and visual
translation [67, 30]. However, most of these methods are
two-stage methods that cannot learn scene graphs end-to-
end. In contrast, to improve the learning ability of SGG
models, several methods based on transformers have been
proposed, including SGTR [38], RelationFormer [56] and
RelTR [13]. These are end-to-end trainable in a single
stage.

2.2. Unbiased Scene Graph Generation

Solving the long-tail problem in the SGG task has at-
tracted considerable attention from researchers, and several
unbiased methods [59, 63, 12, 18, 25, 39, 19, 22, 37, 40, 17,
66] have been proposed. These methods typically improve
the model from the perspective of data re-sampling [39] or
a class-balanced loss [33]. BGNN [39] uses a two-layer re-
sampling strategy to provide a more balanced data distribu-
tion during training, while CogTree [63] proposal exploits
the semantic relation between different predicate classes
to design a novel CogTree loss. HML [17] improves the
model’s ability to solve long-tail problems by designing a
staged training process, and IETrans [66] proposes an inter-
nal and external transfer method to transfer high frequency
relations to low frequency relations and recover missing re-
lations to train the unbiased model. Dong et al. [19] propose
to group relations by their frequency and train specialized
relation encoders for each group. While these methods are
able to mitigate the long-tail problem, they do not address
relational semantic overlap.

2.3. Panoptic Scene Graph Generation

Contrary to SGG, the PSG task [62] uses panoptic seg-
mentation masks instead of bounding boxes to represent ob-
jects, resulting in a more comprehensive scene graph. PS-
GTR [62], an end-to-end method based on the DETR struc-
ture, was proposed to construct a transformer-based PSG
model. PSGFormer [62] further improved on PSGTR by
introducing Object & Relation Query Learning Blocks and
Query Matching Blocks. Their strong performance on most
relation classes indicates that their method is implicitly un-
biased. In contrast, our approach is the first to explicitly
bias a PSG model, creating separate branches for low and
high frequency relations, which are then fused together.

Since the scene graph in PSG is built upon the sub-
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Figure 2. An overview of our HiLo framework with HiLo baseline. a) HiLo relation swapping module swaps the multiple relations in the
subject-object pair to obtain H-L Data and L-H Data respectively. b) Input data into our HiLo framework with HiLo baseline model, there
are two branches, namely H-L decoder and L-H decoder, which learn H-L Data and L-H Data respectively. c) In addition to task losses
for PSG, we propose HiLo prediction alignment, which includes subject-object consistency loss and relation consistency loss, so that the
parallel branch can be better optimized.

jects, objects and their relations, strong panoptic segmen-
tation [35] is crucial for PSG. Several DETR-based [6]
methods such as Deformable-DETR [71], Segmenter [57],
MaskFormer [11] and Mask2Former [10] have recently
pushed the envelope in panoptic segmentation. These meth-
ods have introduced deformable transformer encoders and
decoders, as well as pixel decoders and multi-scale infor-
mation to improve model performance and speed up con-
vergence. Our proposed baseline builds upon these tech-
niques to further enhance the PSG performance and speed
up model convergence.

3. Method
3.1. Problem Setting

The Panoptic Scene Graph generation (PSG) task aims
to generate a panoptic scene graph G for a given image
I ∈ RH×W×3, where G contains an object set O and a rela-
tional triplet set T , denoted by G = (O, T ). For the i-th ob-
ject oi in O = {oi}Ni=1, we use mi to represent the object’s
mask and ci the object’s category, i.e. oi = (mi, ci). For the
j-th triplet in T = {tj}Mj=1, we use sj to represent the sub-
ject, oj the object, and rj their relation, i.e. tj = (sj , oj , rj).
There are in total C object categories and R relation cate-
gories. For the k-th relation, we denote its frequency in the
training set as fk.

3.2. HiLo Baseline

High-quality panoptic segmentation is crucial for achiev-
ing good PSG performance. We build our method upon
the latest advances in DETR-based panoptic segmentation,
Mask2Former [10]. Below we present its structure, as well
as our proposed modifications for the PSG task.
Mask2Former. This method comprises three key parts: A
backbone (CNN-based or transformer-based) followed by a
pixel decoder, a transformer module with a transformer de-
coder and a task-specific module with different task heads.
Specifically, the backbone takes an input image I and gen-
erates an image feature F . The pixel decoder then gradually
upsamples F to produce multi-scale features F̃ = {F̃i}4i=1.
The transformer decoder takes a set of queries Q of size
N and multi-scale features F̃ as input and outputs a set of
mask features X of the same size with Q.

On top of the transformer decoder, there are two task
heads including a linear classifier that predicts the class
probability for each mask; and a multi-layer perceptron
(MLP) that uses the mask features X to generate the mask
embedding E . The mask prediction is obtained by taking the
dot product of the mask embedding E with the scale feature
of the highest resolution in the multi-scale features F̃ .
Triplet queries. The original query in Mask2Former is to
predict the object. In order to predict both subject, object
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and their relation, we develop the triplet queries Qt inspired
by [62] into our baseline. Each query predicts a triplet that
includes subject, object, and relation. Accordingly, our task
heads comprise three linear classifiers. Each classifier is
responsible for predicting the class probability for subject,
object or relation, respectively. Moreover, we devise two
MLPs to generate mask embeddings for the subject and ob-
ject, denoted by Es and Eo. We use them to compute the
dot product with the scale feature of the highest resolution
in multi-scale feature F̃ and obtain the mask prediction for
the subject and object, respectively.
Masked relation attention. [10] proposes a transformer
decoder variant with masked attention, which extracts spa-
tial features by adding the predicted mask of the object from
the previous decoder layer’s mask prediction. It makes the
model focus on the object-related area in the feature map.
To adapt this scheme to the PSG task, for each relation, we
extend the masked attention to take the union of the binary
masks of the subject and object as input, which represents
the pixels corresponding to the relation.
Network training. We adopt the same losses as PS-
GTR [62], including cross-entropy loss Lso cls for ob-
ject classification of subject-object pairs and a combination
Lso mask of focal loss [44] and dice loss [58] to jointly
supervise mask learning. To supervise the relations, we
use the cross-entropy loss Lrel cls. The baseline loss with
(λ1 = 1, λ2 = 1, λ3 = 4) is thus:
Lbaseline = λ1 · Lso cls + λ2 · Lso mask + λ3 · Lrel cls

(1)

3.3. HiLo Framework

The key insight of our HiLo is to build a model that can
take into account both high frequency and low frequency
relations, and effectively improve the performance on low
frequency relations without degrading the performance on
high frequency relations.

3.3.1 HiLo relation generation

In the PSG task, multiple relations can be used to describe
the connection between a subject and an object from dif-
ferent perspectives, such as spatial relations, actions and
prepositions. Since the subject, object and their relative
position in the image are fixed, all these relations share
the same visual information. This is reflected in the PSG
dataset [62] where many subject-object pairs are annotated
with multiple relation labels. These relation labels are of
different frequencies in the dataset. In this section we in-
troduce the HiLo relation generation module to prepare
two sets of training data, biasing towards high and low-
frequency relations respectively.
Relation augmentation. Similar to [22], we observe that
there are many missing relation annotations in the PSG

dataset [62]. To add the missing relation annotations, we
design a relation augmentation scheme that is inspired by
IETrans [66], which converts high-frequency relations to
low-frequency relations and adds a relation to a subject-
object pair that has no relation. We adapt it by first training
our baseline as a biased model using the original annotated
data. For every subject-object pair in the training set, we
use this model to predict the relation scores for all prede-
fined relation categories:

• If this subject-object pair has annotated relation labels,
we pick the one with the highest predicted score and
use the score as a threshold. For other relations (except
for already labeled ones) whose predicted scores are
greater than the threshold, we add them as the relation
labels of this subject-object pair.

• If this subject-object pair has no annotated relation la-
bels, we use the predicted score of the no-relation class
as a threshold. For other relations whose predicted
scores are greater than this threshold we add them as
the relation labels of this subject-object pair.

This operation allows us to significantly augment the rela-
tion labels for the subject-object pairs in the training data,
which is especially relevant for pairs with zero or no anno-
tated relations.
Relation swapping. We swap the relation labels for each
subject-object pair. Specifically, given a subject-object
pair (s, o) with K relation labels, we have K triplets
(s, o, r1), ..., (s, o, rK), sorted by their relation frequency
in descending order, f1 > ... > fK . We denote by H-
L and L-H the swapping of high-frequency relations with
low-frequency relations and vice versa. This creates two
sets of data:

H-L Data. Given a triplet (s, o, rk), we replace its rela-
tion label rk with that of the next triplet rk+1 with lower fre-
quency. We sequentially process all triplets from (s, o, r1)
until (s, o, rK−1), keeping the last triplet unchanged.

L-H Data. Given a triplet (s, o, rk), we replace its re-
lation label rk with that of the previous triplet rk−1 with
higher frequency. We sequentially process all triplets from
(s, o, rK) until (s, o, r2), keeping the first triplet unchanged.
Hence, we obtain two new sets of triplets, denoted by T H-L

and T L-H. We devise two parallel decoders from the shared
encoder of our backbone. They are learned with the H-
L and L-H data, respectively. The H-L and L-H decoders
favour the predictions for low and high-frequency relations,
respectively. Despite their difference, for the correspond-
ing triplet query in the two decoders, their predictions are
highly correlated: on one hand, the subject and object pre-
dictions should be the same; on the other hand, the distri-
bution of relation predictions should be overlapping. Below
we first build the query correspondence in the two decoders
and then introduce the HiLo subject-object and relation con-
sistency loss to align the predictions from two the decoders.
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3.3.2 HiLo prediction alignment

Training two different relation distributions simultaneously
confuse the model. To make the model differentiate
between the two branches, we built a HiLo prediction
alignment module, including triplet query correspondence,
subject-object consistency loss and relation consistency loss
respectively.
Triplet query correspondence. In order to construct
the subject-object consistency loss and relation consistency
loss, we first need to construct the correspondence between
the triplet queries in the H-L and L-H decoders. The same
query index in the two decoders is not naturally matched.
In order to find the query correspondence, we need to rely
on the ground truth assignment: we use Hungarian match-
ing to assign the triplet label to the corresponding triplet
query, and record the relation label index corresponding to
the triplet query. This label index allows us to construct
the correspondence between the triplet queries in both de-
coders. We calculate the consistency loss for the triplet
query prediction with the same relation label index in the
two decoders.
Subject-object consistency loss. Having the correspond-
ing predictions from the two decoders, both their subjects
and objects have the same ground truth and should be equal.
We propose a subject-object consistency loss Lobj to min-
imize the mean squared error (MSE) of the corresponding
predictions from the two decoders.

Lobj = Lcls + Lmask (2)

Lcls = ∥softmax(pH-L
c )− softmax(pL-H

c )∥2 (3)

Lmask = ∥sigmoid(pH-L
m )− sigmoid(pL-H

m )∥2 (4)

Here Lcls and Lmask represent the MSE losses for class
prediction and mask prediction, respectively.

pH-L
c and pL-H

c are the class prediction logits from the H-L
and L-H decoders. After a softmax, they are C-dimensional
probability vectors. After a sigmoid, pH−L

m and pL−H
m are

the mask prediction logits for the H-L and L-H decoders.
Relation consistency loss. Given a pair of subject and ob-
ject, we have previously swapped the high-low frequency
relation labels to create data for the H-L and L-H decoders.
For H-L, the prediction of the low-frequency relation logit
is of high value; while for L-H, the prediction of the high-
frequency relation logit is of high value. For the predictions
on the rest logits, they should be similar, since it is the same
pair of subject and object for the two decoders. Based on
this observation, we introduce the relation consistency loss.

Specifically, for a pair of subject and object, we use pH-L
r

to denote the predicted relation logits from the H-L de-
coder, pL-H

r the predicted relation logits from the L-H de-
coder. They are R-dimensional probability vectors after
softmax. We can map between the distributions of the two
vectors by swapping the logit values between the high- and

low-frequency relation indices, which is named Relational
Index Exchange operation. We use RIE(·) to denote this
operation. RIE(·) includes a stop gradient operation, which
creates copies from original predictions of two branches,
enabling value exchanges. For example, for relations rk and
rk+1, RIE(·) exchanges the values between pr,k and pr,k+1

in pr. We can therefore compute the distance between pH-L
r

and its mapped counterpart from pL-H
r , vice versa:

DistHiLo =∥softmax(pH-L
r )− RIE (softmax(pL-H

r ))∥2

+∥RIE (softmax(pH-L
r ))− softmax(pL-H

r )∥2

(5)

The relation consistency loss is defined to minimize DistHiLo
with a margin of m:

Lrel = max(DistHiLo −m, 0), (6)

where m is a small constant. Adding m is due to the fact
that the high- and low frequency relations might be only
partially semantically overlapping.
Network training. Our subject-object consistency loss and
relation consistency loss can seamlessly integrate with the
losses of any baseline method to jointly supervise the train-
ing of the entire model. Notably, we supervise the output of
each transformer decoder layer to ensure effective learning.
The final loss L is thus:

L = Lbaseline + Lobj + Lrel (7)

3.3.3 HiLo inference fusion

The H-L and L-H decoders favour low-frequency relation
prediction and high-frequency relation prediction, respec-
tively. To combine the strength of both during inference, we
introduce the HiLo inference fusion module. Specifically,
we denote by GH-L and GL-H the predicted panoptic scene
graphs from H-L and L-H decoders, respectively. There are
N1 triplets in GH-L and N2 triplets in GL-H.

• First, we merge the triplets in GH-L and GL-H and sort
them in the descending order according to their rela-
tion scores. We obtain a list of N1 +N2 triplets.

• Second, starting from the first triplet, we de-duplicate
the triplet list. For the i-th triplet Ti, we identify its du-
plicated versions from the (i+1)-th triplet until the end
of the list. Remove any follow-up triplet from the list if
it 1) has the same subject, object and relation classes to
that in Ti and 2) has a mask IoU greater than a thresh-
old, e.g. 0.5, between the predicted subject/object and
the corresponding subject/object in Ti.

• Third, after deduplication, for each triplet in the list,
we multiply the relation, subject and object scores as
an overall score for it. We sort the triplet list accord-
ing to this score in descending order to obtain the final
panoptic scene graph GHiLo.
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Scene Graph Detection
Method Backbone R@20 mR@20 R@50 mR@50 R@100 mR@100
IMP [61] R50 16.5 6.5 18.2 7.1 18.6 7.2
MOTIF [65] R50 20.0 9.1 21.7 9.6 22.0 9.7
VCTree [60] R50 20.6 9.7 22.1 10.2 22.5 10.2
GPSNet [46] R50 17.8 7.0 19.6 7.5 20.1 7.7
PSGTR [62] R50 28.4 16.6 34.4 20.8 36.3 22.1
PSGFormer [62] R50 18.0 14.8 19.6 17.0 20.1 17.6
HiLo (ours) R50 34.1 23.7 40.7 30.3 43.0 33.1
HiLo (ours) Swin-B 38.5 28.3 46.2 35.3 49.6 39.1
HiLo (ours) Swin-L 40.6 29.7 48.7 37.6 51.4 40.9

Table 1. Comparison between our HiLo and other methods on the PSG dataset. Our method shows superior performance compared to all
previous methods.

4. Experiments

4.1. Datasets

Panoptic Scene Graph Generation (PSG) [62]. This is
the first Panoptic Scene Graph generation dataset. It has a
total of 48,749 labeled images including 2,177 test images
and 46,572 training images. The object categories comprise
80 thing classes and 53 stuff classes, which is the same as
the COCO [45] and COCO-Stuff datasets [4]. The rela-
tion categories comprise 56 classes, including positional re-
lations, common object-object relations, common actions,
human actions, actions in the traffic scene, actions in the
sports scene and interactions between backgrounds [62].

Visual Genome (VG) [36]. VG is a widely used benchmark
dataset for Scene Graph Generation. Following previous
work [65, 7], we adopt the widely accepted split, VG-150,
which contains 150 object categories and 50 relation cate-
gories. The object categories cover a wide range of classes,
such as animals, vehicles and household items. The relation
categories include both spatial and semantic classes, such
as on, in and wearing.

4.2. Tasks and Metrics

Three subtasks have been proposed for the SGG and
PSG tasks, which are Predicate Classification, Scene Graph
Classification and Scene Graph Detection [61]. We focus
on Scene Graph Detection for both datasets, since it is the
most comprehensive and addressed by [62]. This subtask
requires the model to first localize the objects and then pre-
dict the object classes and relations. Note that Scene Graph
Detection in PSG includes the detection on stuff classes,
while in SGG it does not.

Following previous work [60, 63, 62], we use Recall@K
(R@K) and mean Recall@K (mR@K) as our metrics,
where the former metric is dominated by high-frequency re-
lations, while the latter assigns equal weight to all relation
classes.

4.3. Implementation details

In our experiments, we follow the training strategy of
PSGTR [62]. We use the AdamW optimizer [48], with a
learning rate of 1e−4 and weight decay of 1e−4, except
for the backbone, which is trained with a learning rate of
1e−5. For initialization, we use Mask2Former [10] pre-
trained on COCO [45] to initialize our backbone and pixel
decoder. Following Mask2Former [10], we use 100 triplet
queries for the H-L and L-H decoders respectively. Addi-
tionally, both the H-L and L-H decoders are initialized with
Mask2Former’s transformer decoder. To ensure consistent
comparison with PSGTR, we adopted the same data aug-
mentation settings. Our model is trained for 12 epochs with
a step scheduler at epoch 10, taking approximately 18 hours
to train on four A100 GPUs with a batch size of 1 for each
GPU.

4.4. Comparison to the state-of-the-art

PSG. Tab. 1 reports the performance of our method com-
pared to the state-of-the-art on the PSG dataset [62]. We
separate the methods into two groups. The first are two-
stage methods consisting of a separate segmentor and rela-
tion predictor, which are modified for the PSG task in [62].
The second are one-stage end-to-end methods, which are
able to simultaneously predict panoptic segmentation and
relations. Our method belongs to the second category. For
a fair comparison between the different methods, we use
the same Resnet-50 [26] backbone. Our method shows
superior performance compared to all previous methods.
Particularly, it outperforms the previous best-performing
method PSGTR [62] by a large margin, i.e. +6% in R@100
and +11% in mR@100. Our model is able to converge
within only 12 epochs of training, whereas PSGTR [62] is
trained for 60 epochs. We also evaluate our method using
pre-trained transformer-based backbones, i.e. Swin-B and
Swin-L [47], with the latter being a bigger model. Our
results are consistently improved over all metrics due the
powerful feature representation ability of the transformer.
We also conducted a visual comparison, as shown in Fig. 3.
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Scene Graph Detection
Method R/mR@50 R/mR@100
MOTIF [65] 31.0 / 6.7 35.1 / 7.7

+IETrans [66] 26.4 / 12.4 30.6 / 14.9
+HiLo (ours) 26.2 / 14.7 30.3 / 17.7

VCTree [60] 30.2 / 6.7 34.6 / 8.0
+IETrans [66] 25.4 / 11.5 29.3 / 14.0
+HiLo (ours) 27.1 / 12.9 29.8 / 15.2

Transformer [59] 30.0 / 7.4 34.3 / 8.8
+IETrans [66] 25.5 / 12.5 29.6 / 15.0
+HiLo (ours) 25.4 / 14.6 29.2 / 17.6

GPSNet [46] 30.3 / 5.9 35.0 / 7.1
+IETrans [66] 25.9 / 14.6 28.1 / 16.5
+HiLo (ours) 25.6 / 15.8 27.9 / 18.0

Table 2. Comparison between our HiLo framework and other
methods on the VG-150 dataset. Similar to [66], we apply IETrans
and our own method on top of four leading baselines.

SGG. Here we study whether our approach that was de-
veloped for the PSG task can also be applied to the SGG
task. In Tab. 2, we conduct experiments on the VG-150
dataset. Following IETrans [66], we extend our unbiased
HiLo framework (Sec. 3.3) without our PSG-specific base-
line (Sec. 3.2) to four state-of-the-art biased SGG meth-
ods, namely MOTIF [65], VCTree [60], Transformer [59]
and GPSNet [46], using the implementation of [66]. Com-
pared to the unbiased IETrans [66] method, our method
improves mean recall without sacrificing recall, demon-
strating its effectiveness in enhancing the performance of
low-frequency relations. Compared to the biased baselines
[65, 60, 59, 46], our method achieves a significantly larger
mean recall, while still maintaining an acceptable recall.
This indicates that our method can improve the performance
of low-frequency relations while also taking into account
the performance of high-frequency relations. It also shows
that the HiLo framework is a general technique that yields
systematic improvements in both the PSG and SGG tasks.

4.5. Ablation Studies

Consistent with the paper, we use HiLo with a Resnet-
50 backbone to perform ablation experiments on the PSG
dataset.
HiLo framework for different baselines. In this sec-
tion we investigate whether our HiLo framework (Sec. 3.3)
yields improvements for other baselines, rather than just the
one presented in Sec. 3.2. Tab. 3 shows the results for two
baselines, with and without the HiLo framework. We ob-
serve that our biased baseline outperforms the previous PS-
GTR [62] method on all metrics. Furthermore, by apply-
ing the HiLo framework, we can substantially improve the
performance over both baselines. It is worth mentioning
that the HiLo framework improves recall and mean recall
simultaneously, whereas other methods typically improve
one metric at the cost of the other [59, 63].
HiLo relation augmentation. We observe that out of

Baseline HiLo R/mR@20 R/mR@50 R/mR@100
HiLo baseline ✓ 34.1 / 23.7 40.7 / 30.3 43.0 / 33.1
HiLo baseline - 32.6 / 20.9 38.0 / 27.4 38.9 / 28.4
PSGTR [62] ✓ 30.1 / 20.2 36.6 / 23.9 38.3 / 24.5
PSGTR [62] - 28.4 / 16.6 34.4 / 20.8 36.3 / 22.1

Table 3. Comparison of different baselines, with and without HiLo
framework. Using the HiLo framework, we see significant im-
provements on both metrics.

Relation Aug. Multiple relations R/mR@50 R/mR@100
✓ 40% 40.7 / 30.3 43.0 / 33.1
- 10% 40.1 / 28.1 42.8 / 32.5

Table 4. Ablation study for HiLo relation augmentation. Relation
augmentation affects the ratio of subject-object pairs with multiple
relations. The larger this ratio, the more relations can be swapped,
which leads to better results.

260,296 labeled triplets in the PSG dataset, only about 10%
of subject-object pairs have multiple relations, for which
we can apply relation swapping (Sec. 3.3.1). After applying
our proposed relation augmentation technique (Sec. 3.3.1),
this ratio significantly increases to 40%. Our experimental
results in Tab. 4 demonstrate that only applying the HiLo
framework on 10% already gives an improvement over the
baseline from Tab. 3. As the number of swappable triplets
increases due to augmentation, the model’s performance is
further enhanced, highlighting the potential of our method.
HiLo prediction alignment. We conduct ablation exper-
iments on the subject-object consistency loss and relation
consistency loss (Sec. 3.3.2), which are used to align the
predictions from the high and low frequency branches. The
results, as presented in Tab. 5, demonstrate that using both
losses yields the best performance. It is worth mentioning
that we have explored the margin in the relation consistency
loss and found that setting the margin to zero leads to a
small performance degradation. This finding confirms that
there is a partial semantic overlap between swapped rela-
tions, indicating that they are not entirely consistent.

To investigate the impact of relational index exchange
(RIE) on the relation consistency loss, we conducted exper-
iments to verify the effect of omitting RIE. In the absence
of RIE, we solely compute the consistency loss for relation
categories that are not involved in relation swapping and ex-
clude the swapping component from the calculation of the
consistency loss. The outcomes of this experiment are pre-
sented in Tab. 6, and demonstrate a notable reduction in the
mean recall and a decline in the model’s performance for
relations with relational semantic overlap when RIE is not
utilized.
HiLo inference fusion. We ablate the inference fu-
sion (Sec. 3.3.3) and evaluate the performance of each
branch’s output separately. In Tab. 7, experimental results
suggest that fusion can effectively leverage the uniqueness
of the high and low frequency branch predictions to achieve
comprehensive improvements on all metrics.
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Figure 3. Visualization of panoptic segmentations and the top 20 predicted triplets compared with ground truth. The upper left is the
original image, the lower left is the ground truth and on the right are the predictions. The highlighted triplets represent the subject-object
pairs with multiple relations, where the blue highlights represent the high frequency relations and the red highlights represents the low
frequency relations. The visualization results show that our method can predict both high frequency and low frequency relations.

Object Relation Margin R/mR@50 R/mR@100
✓ ✓ 0.5 40.7 / 30.3 43.0 / 33.1
- ✓ 0.5 40.6 / 29.7 42.8 / 32.8
- ✓ 0.0 40.5 / 29.5 42.7 / 32.8
✓ - - 40.4 / 29.0 42.8 / 32.2
- - - 39.7 / 28.6 42.4 / 32.0

Table 5. Ablation study for different losses in HiLo prediction
alignment. Object refers to the subject-object consistency loss and
relation refers to the relation consistency loss. The margin param-
eter is defined in Eq. 6.

Whether to use RIE R/mR@20 R/mR@50 R/mR@100
✓ 34.1 / 23.7 40.7 / 30.3 43.0 / 33.1
- 33.5 / 22.3 40.3 / 29.0 42.6 / 32.3

Table 6. Ablation study for relation consistency loss in HiLo pre-
diction alignment.

We also attempted to average the tensor generated by
the two branches and obtain the PSG result through post-
processing. However, we found that this approach leads
to a substantial drop in performance, as evident in Tab. 8.
This can be attributed to the inconsistent prediction results
of the two branches for the same query index. These find-
ings validate that the inference fusion method effectively
merges the results from the two branches. Furthermore,
our experimental results demonstrate that the query associ-
ated with the identical index in two branches does not pre-
dict the same subject-object pair. Thus, directly averaging
the tensor produced by the two branches results in predic-
tion ambiguity, ultimately leading to a substantial decline
in performance. This observation underscores the necessity
of conducting triplet query correspondence when perform-
ing prediction alignment. In particular, due to the incon-
sistent query prediction content for the corresponding index

H-L Result L-H Result R/mR@50 R/mR@100
✓ ✓ 40.7 / 30.3 43.0 / 33.1
✓ - 38.8 / 29.9 39.8 / 30.9
- ✓ 38.5 / 26.5 39.5 / 27.8

Table 7. Ablation study for HiLo inference fusion.

Fusion method R/mR@20 R/mR@50 R/mR@100
inference fusion 34.1 / 23.7 40.7 / 30.3 43.0 / 33.1
average tensor 19.6 / 13.1 23.1 / 15.7 23.9 / 16.3

Table 8. Ablation study for HiLo inference fusion. Inference fu-
sion refers to the method proposed in the paper to fuse the results
of two branches. Average tensor refers to the fusion method that
directly averages the tensor output by the two branches.

Attention focus R/mR@20 R/mR@50 R/mR@100
subject-object 32.6 / 20.9 38.0 / 27.4 38.9 / 28.4
full image 30.4 / 19.3 36.5 / 25.9 37.1 / 26.8

Table 9. Ablation study for masked relation attention.

in the two branches, a one-to-one correspondence must be
constructed based on the label assigned by each query to
achieve prediction alignment.

Masked relation attention. We investigate the impact of
different mask input types for cross-attention on the HiLo
baseline (Sec. 3.2) performance. Specifically, we compare
two different attention focus regions, namely the subject-
object region and the full image. The results are shown in
Tab. 9. Focusing on the full image presents a more challeng-
ing optimization task for the model since no target region
is specified. Consequently, we observe a drop of 1.8% in
R@100 and 1.6% in mR@100. This shows that it is crucial
to apply masked relation attention to the subject and object.
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Method All Rare All Overlap
PSGTR 22.1 6.2 22.1 23.5
HiLo (ours) 33.1 (+11.0) 20.3 (+14.1) 33.1 (+11.0) 38.8 (+15.3)

Table 10. Verification of the improvements in the long-tail problem
and relational semantic overlap. All refers to testing on the whole
test set. Rare refers to testing only on rare relations. Overlap refers
to testing only on data with relation semantic overlap.
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Figure 4. Convergence speed analysis of different methods. Our
method converges significantly faster than previous methods.

4.6. Analysis

To further demonstrate the efficacy of our method, we
conduct the following analysis on HiLo.
Long-tail problem and relational semantic overlap. To
verify whether the problems of long-tail and relational se-
mantic overlap have been tackled, we conduct experiments
shown in Tab. 10. For the long-tail problem, we consider
relations appearing less than 500 times (28 relations) in the
PSG dataset (relations appear on average 4787 times) as
rare relations, and report their mR@100. There is a 14%
improvement for rare relations and an 11% improvement
for all relations. This suggests that our method addresses
the long-tail problem.

For the relational semantic overlap, we select all test im-
ages that have this problem (927 images) and report their
mR@100. Our method shows a 15.3% improvement over
PSGTR on images with semantic overlap relations, exceed-
ing the overall improvement across all test images. This
suggests that our approach addresses the problem of rela-
tional semantic overlap.
Convergence speed and time cost analysis. We evalu-
ate the convergence of our model by assessing its perfor-
mance on the validation set at various epochs, as illustrated
in Fig. 4. Our analysis reveals that our proposed method
outperforms prior methods [62] both in terms of final per-
formance and convergence speed. Specifically, PSGTR [62]
achieves negligible performance in the initial 12 epochs, re-
quiring 60 epochs to converge, as per the authors. In con-
trast, our HiLo method achieves better results in just 12
epochs, indicating its superior convergence speed.

For time cost, we primarily analyze relation augmenta-
tion and swapping. 1) Relation augmentation, inspired by

Method GFlops Param. (M) Train Mem. (G) Infer. Time (ms)
PSGTR 461.3 44.2 26.5 140
HiLo (ours) 229.4 58.7 16.1 156

Table 11. Training and inference cost.

IETrans [66], involves training a baseline model and then
using it to predict relation labels so as to augment the orig-
inal relation labels. For the PSG dataset, following our ex-
perimental setup (see Sec. 4.3), this takes 18 hours. Af-
terwards, the training of our HiLo model requires 18 hours,
which makes the whole process 36 hours. In contrast, the
PSGTR model training takes 48 hours. Both our method
and PSGTR utilize ResNet-50 as the backbone for fair com-
parison. Our method’s rapid convergence (see Sec. 4.5) re-
duces training time compared to PSGTR, making the addi-
tional time cost for relation augmentation tolerable. 2) Rela-
tion swapping is a quick operation on relation labels during
training and does not significantly contribute to overall time
consumption.
Training and inference cost. Training and inference cost is
shown in Tab. 11. Despite using two transformer-based de-
coders, our method requires less resource. Given the same
input sizes (1280, 800) and ResNet-50 as backbone, the re-
source usage is shown in Tab. 11. PSGTR [62] generates
mask features for subject and object separately, while our
method reduces this computation by only generating mask
features once. Our inference time is marginally higher due
to more complex post-processing. Using H-L and L-H data
only changes the labels between two branches, not increas-
ing resource use.

5. Conclusion
In this work we proposed the HiLo framework to tackle

the long-tail problem with relational semantic overlap in
Panoptic Scene Graph generation. The HiLo framework si-
multaneously learns the high and low frequency relations
in different network branches and unifies their strengths by
aligning their predictions. We also constructed a HiLo base-
line to allow high-quality panoptic segmentation to improve
PSG performance. Experimental results demonstrate that
our method achieves state-of-the-art performance on the
PSG dataset, confirming its effectiveness. In future work,
we will investigate how knowledge distillation [28, 23] can
be used to fuse the high and low branches in our method,
as well as its application to downstream tasks such as visual
question answering and image captioning.
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