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Abstract

This paper proposes an efficient multi-camera to Bird’s-
Eye-View (BEV) view transformation method for 3D per-
ception, dubbed MatrixVT. Existing view transformers ei-
ther suffer from poor efficiency or rely on device-specific
operators, hindering the broad application of BEV mod-
els. In contrast, our method generates BEV features effi-
ciently with only convolutions and matrix multiplications
(MatMul). Specifically, we propose describing the BEV fea-
ture as the MatMul of image feature and a sparse Feature
Transporting Matrix (FTM). A Prime Extraction module is
then introduced to compress the dimension of image fea-
tures and reduce FTM’s sparsity. Moreover, we propose the
Ring & Ray Decomposition to replace the FTM with two
matrices and reformulate our pipeline to reduce calcula-
tion further. Compared to existing methods, MatrixVT en-
joys a faster speed and less memory footprint while remain-
ing deploy-friendly. Extensive experiments on nuScenes and
Waymo benchmarks demonstrate that our method is highly
efficient but obtains results on par with the SOTA method in
object detection and map segmentation tasks.

1. Introduction
Vision-centric 3D perception in Bird’s-Eye-View

(BEV) [17, 20, 24] has recently drawn extensive attention.
Apart from their outstanding performance, the compact
and unified feature representation in BEV facilitates
straight-forward feature fusions [1, 5, 12, 10], and enables
various downstream tasks (e.g. object detection [6, 9, 10],
map segmentation [17, 30], motion planning, etc.) to be
applied thereon easily.

View Transformation (VT) is the key component that
converts multi-camera features to BEV, which has been
heavily studied in previous works [15, 20, 17, 24, 10, 6, 21,
9]. Existing VT methods can be categorized into geometry-
based [13, 19, 17, 9, 18, 30] and learning-based meth-
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Figure 1. The pipeline of Lift-Splat (upper) and our proposed Ma-
trixVT (lower). We compress image features before VT to reduce
memory footprint and calculation. Note that only standard opera-
tors are adopted in MatrixVT.

ods [10, 20, 15]. Among these two categories, geometry-
based methods show superior performance due to the use
of geometric constraints. Lift-Splat [17], as a representa-
tive geometry-based VT, predicts categorical depth distri-
bution for each pixel and “lift” the corresponding features
into 3D space according to the predicted depth. These fea-
ture vectors are then gathered into pre-defined grids on a
reference BEV plane (i.e., “splat”) to form the BEV feature
(Fig. 1, upper). The Lift-Splat-based VT has shown great
potential to produce high-quality BEV features, achieving
remarkable performance on object detection [9, 5] and map
segmentation tasks.

Despite the effectiveness of Lift-Splat-like VT [9], two
issues remain. First, the “splat” operation is not universally
feasible. Existing implementations of “splat” relies on ei-
ther the “cumsum trick” [17, 6] that is highly inefficient,
or customized operators [9] that can only be used on spe-
cific devices, making application of BEV perception meth-
ods costly. Second, the size of “lifted” multi-view image
features is huge, becoming the memory bottleneck of BEV
models. These two issues lead to a heavy burden on BEV
methods during both the training and inference phases. As
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a result, the drawbacks of existing view transformers limit
the broad application of autonomous driving technology

In this work, we propose a novel VT method to address
the above problems. MatrixVT is proposed based on the
fact that the VT can be viewed as a feature transportation
process. In that case, the BEV feature can be viewed as the
MatMul between the “lifted” feature and a transporting ma-
trix, namely Feature Transporting Matrix (FTM). We thus
generalize the Lift-Splat VT into a simple form and elimi-
nate specialized operators.

However, transformation with FTM is a kind of degrada-
tion — the mapping between the 3D space and BEV grids
is extreme sparse, leading to the huge size of FTM and poor
efficiency. Prior works [9, 18] seek customized operators,
successfully avoiding such sparsity. In this paper, we argue
that there are other solutions to the problem of sparse map-
ping. First, we propose Prime Extraction. Motivated by an
observation that the height (vertical) dimension of images
is less informative in autonomous driving (see Sec. 3.2), we
compress the image features along this dimension before
VT. Second, we adopt matrix decomposition to reduce the
sparsity of FTM. The proposed Ring & Ray Decomposi-
tion orthogonally decomposes the FTM into two separate
matrices, each encoding the distance and direction of the
ego-centric polar coordinate. This decomposition also al-
lows us to reformulate our pipeline into a mathematically
equivalent but more efficient one (Fig. 1, lower). These two
techniques reduce memory footprint and calculation during
VT by hundreds of times, enabling MatrixVT to be more
efficient than existing methods.

The proposed MatrixVT inherits the advantages of the
Lift-Splat [17] paradigm while being much more mem-
ory efficient and fast. Extensive experimental results show
that MatrixVT is 2-to-8 times faster than previous meth-
ods [9, 6] and saves up to 97% memory footprint among
different settings. Meanwhile, the perception model with
MatrixVT achieves 46.6% mAP and 56.2% NDS for object
detection and 46.2% mIoU for vehicle segmentation on the
nuScenes [2] val set, which is comparable to the state-of-
the-art performance [9]. We conclude our main contribu-
tions as follows:

• We propose a new description of multi-camera to BEV
transformation — using the Feature Transportation
Matrix (FTM), which is a more general representation.

• To solve the sparse mapping problem, we propose
Prime Extraction and the Ring & Ray Decomposition,
boosting VT with FTM by a huge margin.

• Extensive experiments demonstrate that MatrixVT
yields comparable performance to the state-of-the-art
method on the nuScenes object detection and map seg-
mentation tasks while being more efficient and gener-
ally applicable.

2. Related Works

2.1. Visual 3D Perception

Camera-based perception [28, 27, 6, 10, 11] is the most
commonly used method for various scenarios due to its low
cost and high accessibility. Comparing with 2D perception
(object detection [26], semantic segmentation [22], etc.),
3D perception requires additional prediction of the depth
information which is a naturally ill-posed problem [21].

Existing works either predict the depth information ex-
plicitly or implicitly. FCOS3D [28] simply extends the
structure of the classic 2D object detector [26], predict-
ing pixel-wise depth explicitly using an extra sub-net.
CaDDN [18] proposes treating depth prediction as a clas-
sification task rather than a regression task, and project-
ing image feature into Bird’s-Eye-View (BEV) space to
achieve unified modeling of detection and depth prediction.
BEVDepth [9] proposes a heavy and well-designed sub-
net for depth prediction, achieving outstanding performance
among other 3D object detectors. Meanwhile, methods like
PON [20], BirdGAN [24], and EFT [23] use fully learnable
networks to implement feature transformation, learning ob-
ject depth implicitly using segmentation or detection super-
vision. Among theme, EFT [23] proposes using a learnable
matrix for VT, which bears some semblance, in form, to the
Feature Transformation Matrix (FTM) we proposed. How-
ever, the matrices we designed for MatrixVT contains clear
physical meanings with explicit depth modeling, and there
are significant differences in their applicable scenarios and
methods of use.

2.2. Perception in Bird’s-Eye-View

The concept of BEV is firstly proposed for processing
LiDAR point cloud [33, 7, 31, 32], and found effective
for fusing multi-view image features. The core component
of vision-based BEV paradigm is the view-transformation.
OFT [21] firstly propose mapping image feature from Per-
spective View into BEV using camera parameters. This
method projects a reference point from a BEV grid to the
image plane, and sample corresponding features back to the
BEV grid. Following this work, BEVFormer [10] proposes
using Attention module to sample features around the ref-
erence point. These methods fail to distinguish BEV grids
that are projected to the same position on the image plane,
thus showing inferior performance than depth-based meth-
ods.

Depth-based methods, represented by LSS [17] and
CaDDN [18], predict categorical depth for each pixel, the
extracted image feature on a specific pixel is then projected
into 3D space by doing per-pixel outer product with corre-
sponding depth. The projected high-dimensional tensor is
then “collapsed” to a BEV reference plane using convolu-
tion [18], Pillar Pooling [17, 6], or Voxel Pooling [9]. Lift-
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Splat based methods [17, 9, 6] show outstanding perfor-
mance for downstream tasks but introduce two extra prob-
lems. Firstly, the intermediate representation of image fea-
tures is large and in-efficient, making training and applica-
tion of these methods difficult. Secondly, the Pillar Pool-
ing [17] introduces random memory access, which is slow
and device-demanding (extremely slow on general-purpose
devices). In this paper, we propose a new depth-based view
transformation to overcome these problems while retaining
the ability to produce high-quality BEV features.

3. MatrixVT
The MatrixVT is a simple view transformer based on the

depth-based VT paradigm. In Sec. 3.1, we first revisit exist-
ing Lift-Splat transformation [17, 9] and introduce the con-
cept of Feature Transporting Matrix (FTM) together with
the sparse mapping problem. Then, techniques proposed to
solve the problem of sparse mapping i.e., Prime Extraction
(Sec. 3.2) and Ring & Ray Decomposition (Sec. 3.3), are
introduced. In Sec. 3.4. we designate the novel VT method
utilizing the aforementioned techniques as MatrixVT, and
elaborate its overall pipeline.

For clarity, we use letters of the normal script (e.g. F ) for
tensors, the Roman script for matrices (e.g. M), and Bold
script (e.g. v) for vectors. Besides, A · B denotes Matrix
Multiplication (MatMul), A⊙B denotes Hadamard Product,
and a⊗ b denotes outer product.

3.1. Background

Lift-Splat-like methods exploit the idea of pseudo-
LiDAR [29] and LiDAR-based BEV methods [33, 7] for
View Transformation. Image features are “lifted” to 3D
space and processed like point cloud. We define Nc as the
number of cameras for a specific scene; Nd as the num-
ber of depth bins; HI and WI to be the height and width
of image features; HB and WB be the height and width
of BEV features (i.e., shape of BEV grids); C to be the
number of feature channels. Consequently, let multi-view
image features to be F ∈ RNc×HI×WI×C ; categorical
depth to be D ∈ RNc×HI×WI×Nd ; BEV features to be
FBEV ∈ RHB×WB×C (initialized to zeros). The Lift-Splat
VT first “lift” the F into 3D space by doing per-pixel outer
product with D, obtaining the high-dimensional intermedi-
ate tensor Finter ∈ RNc×HI×WI×Nd×C .

Finter = {Fh,w
inter}HI ,WI

= {F h,w · (Dh,w)T }HI ,WI
(1)

The intermediate tensor can be treated as Nc ×HI ×WI ×
Nd feature vectors, each vector corresponding to a geomet-
ric coordinate. The “splat” operation is then adopted using
operators like Pillar Pooling [17], during which each feature
vector is summed to a BEV grid according to geometric co-
ordinates.

Response

Response

Figure 2. Response strengths along vertical and horizontal dimen-
sions. For autonomous driving, the variance of response on the
width dimension is higher than height dimension.

We find that the “splat” operation is a fixed mapping
between the intermediate tensor and BEV grids. There-
fore, we use a Feature Transporting Matrix MFT ∈
R(HB×WB)×(Nc×HI×WI×Nd) to describe this mapping.
The FTM can be strictly equal to Pillar Pooling in LSS [17]
or encodes different sampling rules (i.e., Gaussian sam-
pling). The FTM enables feature transportation with Matrix
Multiplication (MatMul):

FBEV = MFT · Finter (2)

where Finter ∈ R(Nc×HI×WI×Nd)×C is the “lifted” feature
Finter in matrix format, FBEV ∈ R(HB×WB)×C is the BEV
feature FBEV in matrix format.

Replacing the “splat” operation with FTM eliminates the
need for customized operators. However, the sparse map-
ping between the 3D space and BEV grids can lead to a
massive and highly sparse FTM, which harms the efficiency
of matrix-based VT. To address the sparse mapping problem
without customized operators, we propose two techniques
to reduce the sparsity of FTM and speed up the transforma-
tion.

3.2. Prime Extraction for Autonomous Driving

The high-dimensional intermediate tensor is the primary
cause of the sparse mapping and the low efficiency of Lift-
Splat-like VT. An intuitive way to reduce sparsity is reduc-
ing the size of Finter. In the context of autonomous driving,
a notable observation can lead to feature compression. As
can be seen in Fig. 2, the height dimension of camera im-
ages contains less informative data. The height dimension
is filled with redundant and background features, making it
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Figure 3. The Prime Extraction module. The categorical depth is
reduced guided by Prime Depth Attention, while the image feature
is reduced by Prime Feature Extractor (PFE), which consists of
MaxPooling and convolutions for refinement.

ideal for feature compression. Therefore, we propose Prime
Extraction, which is a compression technique that can be
used in autonomous driving and other scenarios with infor-
mation redundancy of this nature.

As shown in Fig. 3, the Prime Extraction module pre-
dicts Prime Depth Attention for each direction (a column
of the tensor) guided by the image feature. It generates the
Prime Depth as a weighted sum of categorical depth distri-
butions. Meanwhile, the Prime Feature is obtained by the
Prime Feature Extractor (PFE), which consists of position
embedding, column-wise max-pooling, and convolutions
for refinement. By applying Prime Extraction to matrix-
based VT, we successfully reduce the FTM to M′

FT ∈
R(HB×WB)×(Nc×WI×Nd), which is HI times smaller than
the raw matrix. The pipeline of generating the BEV fea-
ture using the Prime Feature and the Prime Depth is demon-
strated in Fig. 4 (yellow box).

The prime extraction is motivated by an observation:
The image feature’s height dimension has a lower response
variance than the width dimension. This observation in-
dicates that this dimension contains less information than
the width dimension. We thus propose to compress im-
age features on the height dimension. Previous works have
also exploited reducing the height dimension of image fea-
tures [20, 1], but we firstly propose compressing both image
features and corresponding depth to boost VT.

In Sec. 4.4, we will show that the extracted Prime Fea-
ture and Prime Depth effectively retain valuable informa-
tion from the raw feature and produce BEV features of the

same high quality as the raw feature. Moreover, the Prime
Extraction technique can be individually adapted to existing
Lift-Splat-like VTs to enhance their efficiency at almost no
performance cost.

3.3. “Ring and Ray” Decomposition

The sparsity of FTM can be further reduced by matrix
decomposition. To this end, we propose the “Ring & Ray”
Decomposition. Without loss of generality, we can set the
Nc to 1 and view M′

FT as a tensor M ′
FT . In that case, the

shape of M ′
FT would be HB ×WB ×WI × Nd. We note

that its dimension of size WI can be viewed as the direc-
tion in a polar coordinate, since each column of the im-
age feature represents information of a specific direction.
Likewise, the dimension of size Nd can be viewed as the
distance in the polar coordinate. In other words, the im-
age feature required for a specific BEV grid can be located
by direction and distance. We thus propose to orthogo-
nally decompose the M ′

FT into two separate matrices, each
encoding the directional or distance information. Specifi-
cally, we use a Ring Matrix MRing ∈ RNd×(HB×WB) to
encode distance information and a Ray Matrix MRay ∈
RWI×(HB×WB) to encode directional information (see Ap-
pendix 1.1 for pseudo code). The Ring & Ray Decompo-
sition effectively reduces the size of static parameters. The
number of predefined parameters (size of FTM) is reduced
from WI ×Nd ×HB ×WB to (WI +Nd) ×HB ×WB ,
which is typically 30 to 50 times less1.

Then we show how to use these two matrices for VT.
Given the Prime Feature and Prime Depth, we first do the
per-pixel outer product of them as in Lift-Splat to obtain the
“lifted feature” Finter ∈ RWI×Nd×C .

Finter = {Fw
inter}WI

= {Fw ⊗ (Dw)T }WI
(3)

Then, as illustrated in Fig. 4, instead of using M′
FT to di-

rectly transform it into a BEV feature (yellow box), we
transpose Finter, view it as a matrix Finter ∈ RNd×(WI×C),
and do MatMul between the Ring Matrix and Finter to ob-
tain an intermediate feature. The intermediate feature is
then masked by doing a Hadamard Product with the Ray
Matrix, summed on the dimension of WI to obtain the BEV
feature. (Fig. 4, blue box, summation omitted).

F∗
inter = MRay ⊙ (MRing · Finter) (4)

FBEV =
∑
w

F ∗w
inter (5)

where F ∗
inter ∈ RWI×C×HB×WB is F∗

inter in tensor form.
However, this decomposition do not reduce the FLOPs

during VT and introduces the Intermediate Feature in Fig. 4
(blue) whose size if huge and depends on feature channel

1Under feature width 44 and 88, with 112 depth bins.
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C. To reduce the calculation and memory footprint during
VT, we combine Eq. 3 to Eq. 5 and rewrite them in a math-
ematically equivalent form (see Appendix 1.2 for proof):

FBEV = F · (MRay ⊙ (MRing ·D)) (6)

With this reformulation, we reduce the calculation during
VT from 2×WI ×C ×Nd ×HB ×WB FLOPs to 2(C +
Nd + 1)×WI ×HB ×WB FLOPs; the memory footprint
is also reduced from WI ×Nd×HB×WB to (WI +Nd)×
HB ×WB .

3.4. Overall Pipeline

With above techniques, we reduce the calculation and
memory footprint using FTM by hundreds of times, making
VT with FTM not only feasible but also efficient. Given
the multi-view images for a specific scene, we conclude the
overall pipeline of MatrixVT as follows:

1. We first use an image backbone to extract image fea-
tures from each image.

2. Then, a depth predictor is adopted to predict categor-
ical depth distribution for each feature pixel to obtain
the depth prediction.

3. After that, we send each image feature and correspond-
ing depth to the Prime Extraction module, obtaining
the Prime Feature and the Prime Depth, which is the
compressed feature and depth.

4. Finally, with the Prime Feature, Prime Depth, and the
pre-defined Ring & Ray Matrices, we use Eq. 6 (see
also Fig. 1, lower) to obtain the BEV feature.

4. Experiments

In this section, we compare the performance, latency,
and memory footprint of MatrixVT and other existing VT
methods on the nuScenes benchmark [2].

4.1. Implementation Details

We conduct our experiments based on BEVDepth [9],
the current state-of-the-art detector on the nuScenes bench-
mark. In order to conduct a fair comparison of performance
and efficiency, we re-implement BEVDepth according to
their paper. Unless otherwise specified, we use ResNet-
50 [3] and VoVNet2-99 [8] pre-trained on DD3D [16] as
the image backbone and SECOND FPN [31] as the image
neck and BEV neck. The input image adopts pre-processing
and data augmentations same as in [9]. We use BEV fea-
ture size 128× 128 for low input resolution and 256× 256
for high resolution on detection. Segmentation experiments
use 200 × 200 BEV resolution as in LSS [17]. We use
the DepthNet [9] to predict categorical depth from 2m to
58m in nuScenes, with uniform 112 division. During train-
ing, CBGS [34] and model EMA are adopted. Models are
trained to converge since MatrixVT converges a little slower
than other methods, but no more than 30 epochs.

4.2. Comparison of Performances

4.2.1 Object Detection

We conduct experiments under several settings to evaluate
the performance of MatrixVT in Tab. 1 and Tab. 2. On
the nuScenes benchmark, we first adopt the ResNet fam-
ily as the backbone without applying multi-frame fusion.
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Method Backbone Resolution MF mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑
BEVDet [6] Res-50 256× 704 × 0.286 0.724 0.278 0.590 0.873 0.247 0.372
PETR [11] Res-50 384× 1056 × 0.313 0.768 0.278 0.564 0.923 0.225 0.381
BEVDepth [9] Res-50 256× 704 × 0.337 0.646 0.271 0.574 0.838 0.220 0.414
MatrixVT Res-50 256× 704 × 0.336 0.653 0.271 0.473 0.903 0.231 0.415

BEVDet [6] Res-101 384× 1056 × 0.330 0.702 0.272 0.534 0.932 0.251 0.396
FCOS3D [28] Res-101 900× 1600 × 0.343 0.725 0.263 0.422 1.292 0.153 0.415
PETR [11] Res-101 512× 1408 × 0.357 0.710 0.270 0.490 0.885 0.224 0.421
BEVFormer [10] R101-DCN 900× 1600 × 0.375 0.725 0.272 0.391 0.802 0.200 0.448
MatrixVT Res-101 512× 1408 × 0.396 0.577 0.261 0.397 0.870 0.207 0.467

BEVFormer [10] R101-DCN 900× 1600 ✓ 0.416 0.673 0.274 0.372 0.394 0.198 0.517
BEVDet4D [5] Swin-B 640× 1600 ✓ 0.421 0.579 0.258 0.329 0.301 0.191 0.545
BEVDepth [9] V2-99 512× 1408 ✓ 0.464 0.528 0.254 0.350 0.354 0.198 0.564
MatrixVT V2-99 512× 1408 ✓ 0.466 0.535 0.260 0.380 0.342 0.198 0.562

Table 1. Experimental results of object detection on the nuScenes val set. The “MF” indicates multi-frame fusion.

Method Backbone mAP↑ mAPH↑ mAPL↑
BEVDepth [9] Res-50 0.290 0.208 0.253

MatrixVT Res-50 0.304 0.215 0.259
Table 2. Performance of object detection on Waymo val set.

MatrixVT achieves 33.6% and 49.7% mAP with ResNet-50
and ResNet-101, which is comparable to the BEVDepth [9]
and surpasses other methods by a large margin. We then test
the upper bound of MatrixVT by replacing the backbone
with V2-99 [8] pre-trained on external data and applying
multi-frame fusion. Under this setting, MatrixVT achieves
46.6% mAP and 56.2% NDS, which is also comparable to
the BEVDepth. Further, we validate if MatrixVT can be
generalize to other benchmark. We conduct experiments on
the Waymo benchmark [25], results show that MatrixVT
still showing comparable or even better performance under
this setting.

4.2.2 Map Segmentation

We also conduct experiments on map segmentation tasks to
validate the quality of the BEV feature generated by Ma-
trixVT. To achieve this, we simply put a U-Net-like [22]
segmentation head on the BEV feature. For fair compari-
son, we put the same head on the BEV feature of BEVDepth
for experiments, and results are reported as “BEVDepth-
Seg” in Tab. 3. It is worth noting that previous works
achieve the best segmentation performance under different
settings (different resolution, head structure, etc.); thus, we
report the highest performance of each method. As can be
seen from Tab. 3, the map segmentation performance of Ma-
trixVT surpasses most existing methods on all three sub-
tasks and is comparable to our baseline, BEVDepth.

Method IoU-Drive↑ IoU-Lane↑ IoU-Vehicle↑
LSS [17] 0.729 0.200 0.321

FIERY [4] - - 0.382
M2BEV [30] 0.759 0.380 -

BEVFormer [10] 0.775 0.239 0.467

BEVDepth-Seg 0.827 0.464 0.450
MatrixVT 0.835 0.448 0.462

Table 3. Experimental results of BEV segmentation on the
nuScenes val set. We implement map segmentation on the
BEVDepth by placing a segmentation head on the BEV feature.

4.3. Efficient Transformation

We compare the efficiency of View Transformation in
two dimensions: Speed and Memory Consumption. Note
that we measure the latency and memory footprint (using
fp32) of view transformers since these metrics are affected
by backbone and head design. We take the CPU as a repre-
sentative general-purpose device where customized opera-
tors are unavailable. For a fair comparison, we measure and
compare the other two Lift-Splat-like view transformers.
The LS-BEVDet is the accelerated transformation used in
BEVDet (with default parameters); the LS-BEVDepth uses
the CUDA [14] operator proposed in BEVDepth [9] that is
not available on CPU and other platforms. To demonstrate
the characteristics of different methods, we define six trans-
formation settings, namely S1∼S6, varies in image feature
size, BEV feature size, and feature channels that are closely
related to model performance.

As can be seen in Fig. 5, the proposed MatrixVT boost
the transformation significantly on the CPU, being 4 to 8
times faster than the LS-BEVDet[6]. On the CUDA plat-
form [14], where customized operators enable faster trans-
formation, MatrixVT still shows a much faster speed than
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Figure 5. Latency (left, middle) and the number of intermediate parameters (right) of MatrixVT and two implementations of Lift-Splat, the
S1∼S6 denote transformation settings represented by image feature size (C ×HI ×WI ) to BEV feature size (C ×HB ×WB). Note that
the LS-BEVDet raises Out Of Memory error under S5 and S6 on CUDA. The LS-BEVDepth is not available without the CUDA platform.

the LS-BEVDepth under most settings. Besides, we calcu-
late the number of intermediate variables during VT as an
indicator of extra memory footprint. For MatrixVT, these
variables include the Ring Matrix, Ray Matrix, and inter-
mediate matrix; for Lift-Splat, intermediate variables in-
clude the intermediate tensor and the predefined BEV grids.
As illustrated in Fig. 5 (right), MatrixVT consumes 2 to 15
times less memory than LS-BEVDepth and 40 to 80 times
less memory than LS-BEVDet.

In Tab. 4, we adopt our proposed methods onto the
BEVDepth step-by-step and evaluate improvements in
memory footprint and latency. It can be seen that Prime Ex-
traction effectively reduced memory footprint and latency
by a large margin. For the low-resolution setting (Res-
50 & 256), the Ring & Ray FTM further reduces the re-
source consumption. For the high-resolution setting (V2-99
& 512×1408), the application of Ring & Ray FTM enabled
VT without custom operators at cost of extra computation.

4.4. Effectiveness

In this section, we validate the effectiveness of the pro-
posed methods by performance comparison and visualiza-
tion.

4.4.1 Effects on Performance

As mentioned in Sec. 3.2, we argue that the features and
corresponding depths can be compressed with little or no
information loss. We thus individually adopt the Prime Ex-
traction and the Ring & Ray FTM onto the BEVDepth [9] to
verify their effectiveness. To adopt Prime Extraction indi-
vidually, we compress image features and the depths before
the common Lift-Splat. As shown in Tab. 4, the BEVDepth
with our improvements achieves 41.5% NDS with Res-50
and 56.2% NDS with VovNetv2-99 [8], which is compara-
ble to the baseline. Thus, we argue that Prime Extraction
effectively retained key information from raw features, and

Backbone PE RR NDS Mem. Lat. (ms)

Res-50 0.416 528M 1.79
Res-50 ✓ 0.416 94M 1.42
Res-50 ✓ ✓ 0.415 83M 1.33

V2-99 0.564 2.14G 8.85
V2-99 ✓ 0.563 405M 2.04
V2-99 ✓ ✓ 0.562 498M 3.19

Table 4. Effects of using Prime Extraction (PE) and Ring & Ray
FTM (RR) on BEVDepth. The memory consumption and latency
reported is the memory footprint and time duration on PyTorch
during View Transformation (VT).

the application of Ring & Ray FTM would not harm the
final performance.

4.4.2 Prime Information in Object Detection

We then delve into the mechanism of Prime Extraction by
visualization. Fig. 6 shows the inputs and outputs of the
Prime Extraction module. It can be seen that the Prime Ex-
traction module trained on different tasks focusing on dif-
ferent information. The Prime Depth Attention in object
detection focuses on foreground objects. Thus the Prime
Depth retained the depth of objects while ignoring the depth
of the background. Also, it can be seen from the yellow car
in the second column, which is obscured by three pedestri-
ans. Prime Extraction effectively distinguishes these objects
at different depths.

4.4.3 Prime Information in Map Segmentation

For the map segmentation task, we take lane segmentation
as an example — the Prime Extraction module focus on lane
and road that is closely related to this task. However, since
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Figure 6. Depth Prediction, Prime Depth Attention, and Prime Depth for object detection and lane segmentation task. The categorical depth
prediction is illustrated using distances with largest probability, while the Prime Depth is illustrated by raw probability values.

the area of the target category is a wide range covering sev-
eral depth bins, the distribution of Prime Depth is uniform
in the target area (see Fig. 6, 3rd and 4th columns). The
observation indicates that Prime Extraction generates a new
form of depth distribution that fits the map segmentation
task. With the Prime Depth that is rather uniform, the same
feature can be projected to multiple depth bins since they
are occupied by the same category.

4.5. Extraction of Prime Feature

In the Prime Feature Extractor, we propose using max
pooling followed by several 1D convolutions to reduce and
refine the image feature. Before reduction, the coordinate of
each pixel is embedded into the feature as position embed-
ding. We conduct experiments to validate the contribution
of each design.

A possible alternative of the max pooling is the Col-
lapseConv as in [18] and [20], which merges the height di-
mension into the channel dimension and reduces the merged
channel by linear projection. However, the design of Col-
lapseConv brings some disadvantages. For example, the
merged dimension is of size C ×H , which is high and re-
quires extra memory transportation. To address these prob-
lems, we propose using max pooling to reduce the image
feature in Prime Extraction. Tab. 5 shows that reduction
using max pooling achieves even better performance than
CollapseConv while eliminating these shortcomings.

We also conduct experiments to show the effectiveness
of the refine sub-net after reducing in Tab. 5. The results
indicate that the refine sub-net plays a vital role in adapting

Reduction Refine Pos. Emb. mAP NDS

Max Pooling 0.328 0.393
Max Pooling ✓ 0.332 0.414
Max Pooling ✓ ✓ 0.336 0.415
CollapseConv ✓ ✓ 0.334 0.404

Table 5. Performance of MatrixVT with different feature reduction
methods. The “Refine” indicates the refine convs, the “Pos.Emb.”
indicates using front-view position embedding.

the reduced feature to BEV space, without which a perfor-
mance drop of 0.9% mAP will occur. Finally, the exper-
imental results in Tab. 5 have shown that the position em-
bedding brings an improvement of 0.4% mAP, which is also
preferable.

5. Conclusion
This paper proposes a new paradigm of View Transfor-

mation (VT) from multi-camera to Bird’s-Eye-View. The
proposed method, MatrixVT, generalizes VT into a fea-
ture transportation matrix. We then propose Prime Extrac-
tion, which eliminates the redundancy during transforma-
tion, and the Ring & Ray Decomposition, which simplifies
and boost the transformation. While being faster and more
efficient on both specialized devices like GPU and general-
purpose devices like CPU, our extensive experiments on
the nuScenes benchmark indicate that the MatrixVT offers
comparable performance to the state-of-the-art method.
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