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Abstract

Masked Autoencoders (MAE) and its variants have
proven to be effective for pretraining large-scale Vision
Transformers (ViTs). However, small-scale models do not
benefit from the pretraining mechanisms due to limited ca-
pacity. Sparse training is a method of transferring represen-
tations from large models to small ones by pruning unim-
portant parameters. However, naively combining MAE fine-
tuning with sparse training make the network task-specific,
resulting in the loss of task-agnostic knowledge, which is
crucial for model generalization. In this paper, we aim
to reduce model complexity from large vision transformers
pretrained by MAE with assistant of sparse training. We
summarize various sparse training methods to prune large
vision transformers during MAE pretraining and finetun-
ing stages, and discuss their shortcomings. To improve
learning both task-agnostic and task-specific knowledge,
we propose SparseMAE, a novel two-stage sparse train-
ing method that includes sparse pretraining and sparse
finetuning. In sparse pretraining, we dynamically prune
a small-scale sub-network from a ViT-Base. During finetun-
ing, the sparse sub-network adaptively changes its topology
connections under the task-agnostic knowledge of the full
model. Extensive experimental results demonstrate the ef-
fectiveness of our method and its superiority on small-scale
vision transformers. Code will be available at https:
//github.com/aojunzz/SparseMAE.

1. Introduction

Recently, several pretrained Masked Image Model-
ing (MIM) methods, such as MAE [15] and data2vec [1],
have achieved great success in various computer vision tasks.
They usually involve a two-stage training scheme where the
model learns task-agnostic knowledge through a pretrain-
ing pretext task, and is subsequently finetuned on down-
stream tasks to acquire task-specific knowledge. Among
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these models, Masked Autoencoders (MAE) demonstrate
superior learning capability on large-scale vision transform-
ers (Fig. 1 (a)), thanks to large models’ strong capacity to
learn powerful general representations in the pretraining
phase and versatile transferability to specific vision tasks.
Yet, the large deep models are burdensome and difficult to be
deployed to computationally restricted real-world scenarios.
On the other hand, smaller and more efficient models, such
as ViT-Tiny and ViT-Small, fail to perform well after pre-
trained by MAE or data2vec frameworks. For example, ViT-
Tiny’s finetuning results are even inferior to fully-supervised
training (see Fig. 1 (b)). These empirical findings suggest
that, under MIM frameworks, when the model is scaled
down, it becomes more difficult to learn well via masked
pretraining due to its limited capacity during pretraining and
consequently hinders its performance when transferred to
downstream tasks. In the realm of MIM pretraining, model
capacity becomes a key ingredient to learning task-agnostic
knowledge via the pretext tasks.

In our studies, we try to tackle the issues of MIM pre-
training for small-scale vision transformers. Particularly,
we apply pruning techniques [28, 20, 4, 42, 23] in the MIM
frameworks in order to obtain performant small-scale models
from larger ones. As a first step in our exploration, we use
existing sparse training methods [42, 23] for MAE pretrain-
ing and finetuning on unstructured and hardware-friendly
N:M sparsity to obtain a model with a similar scale to ViT-
Tiny, which is pruned from ViT-Base (see Tab. 5 row 3). It
achieves notably improvements compared to directly training
ViT-Tiny using MAE on downstream ImageNet finetuning
accuracy (77.6% vs. 71.6%) and ADE20K [43] semantic
segmentation (39.8 mloU vs. 37.6 mloU). The empirical
results indicate that on small-scale ViTs sparse training via
pruning has promising applications under the MIM pretrain-
ing paradigm. However, there is still a large performance gap
between the sparse model and the vanilla ViT-Base trained
densely under MAE in their ImageNet finetuning accura-
cies (77.6% vs. 83.2%). The sparsity constraints adversely
limit the model capacity and prevent it from learning good
task-agnostic knowledge, similar to the predicament faced
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Figure 1: (a) Top-1 accuracy of large-scale models on
ImageNet-1K, showing that large-scale vision transform-
ers and self-supervised training can bring significant im-
provement. (b) On tiny-scale and small-scale, our Sparse-
MAE outperforms other self-supervised methods, such as
data2vec [1], MAE [15], and training from scratch.

by ViT-Tiny when it is directly pretrained under MAE.

To obtain more powerful small-scale models, we propose
SparseMAE, a simple and unified sparse training method
for Masked Autoencoders. Specifically, SparseMAE trains
an adaptive sub-network in conjunction with its correspond-
ing large dense model during pretraining. Both the large
model and the sparse sub-network predict the same recon-
struction objective and are optimized end-to-end. The large
full model provides a strong capacity to learn task-agnostic
knowledge, while the sparse sub-network can better preserve
the knowledge by rewiring the connections in the full model.
To better learn task-specific knowledge in downstream tasks,
the sparse sub-network inherits the task-agnostic knowledge
from the pretraining stage and also dynamically adjusts its
connections during the finetuning phase.

We conduct extensive experiments on a variety of tasks,
including image classification, object detection, segmenta-
tion, and robustness evaluation, to thoroughly evaluate the
effectiveness of our proposed approach. Notably, our method
achieves a top-1 accuracy of 80.5% with only 6M parame-
ters on ImageNet-1K [8] classification and obtains a 45.2
mloU on ADE20K segmentation with UperNet [37], signifi-
cantly outperforming all previous works that have developed
small-scale vision transformers using MAE (e.g., MAE-lite,
TinyMIM and G2SD distillation).

In all, our contributions can be summarized in three folds:

* We thoroughly study the integration of sparse train-
ing as a pruning technique into the MAE framework.

Specifically, we design three different strategies to train
sparse networks under MAE and analyze their limita-
tions.

* Based on the findings from above, we propose a novel
sparse training framework, SparseMAE for Masked
Autoencoders to improve the acquisition of both the
task-agnostic and task-specific knowledge during the
pretraining and finetuning stages.

* We present extensive experiments to validate the effec-
tiveness of our proposed method and achieve state-of-
the-art performance with small-scale vision transform-
ers on ImageNet classification and various downstream
tasks.

2. Related works
2.1. Masked Image Modeling

Unsupervised pretraining on large-scale images with
Masked Image Modeling (MIM) has shown superior per-
formance on various computer vision tasks. BEiT [2] ex-
plores Masked Image Modeling on vision transformers by
reconstructing the vision dictionary [30]. MAE [15] further
proposes an asymmetric encoder and decoder for scaling up
MIM to huge models. Besides, it demonstrates a simple pixel
reconstruction loss can learn good visual representations.
Due to the simplicity and computational efficiency, MAE is
raising to a popular generative pretraining paradigm [40, 39].
As MAE reconstructs low-level signals with an isotropic vi-
sion transformer architecture, researchers improve MAE by
exploring high-level signals architectures [1, 35, 12], which
are more effective than reconstructing low-level signals.

However, those methods demonstrate the large capacity
model is essential for good representation learning through
the MIM pretext tasks. MAE-lite [34] explores Masked
Autoencoders to improve the performance of tiny-scale vi-
sion transformer models, and introduces knowledge distil-
lation into the pretraining phase. Different from MAE-lite,
TinyMIM [31] proposes sequential relation knowledge dis-
tillation to improve the performance of small-scale vision
transformer models, which utilize the full set of patch to-
kens and distill the knowledge from a pretrained ViT-Large
model. TinyMIM [31] needs the large pretrained vision trans-
former and the use of sequential models is time-consuming
for practical applications. These methods attempt to uti-
lize the task-agnostic knowledge from large models through
knowledge distillation. Different from their approaches, we
explore sparse training as a pruning technique in order to
scale down ViTs from large-scale to small-scale under the
Masked Autoencoders framework.

16177



G (G,D)
l_'_l ‘_Y_,
Pretraining Finetuning

(a) General pretraining and finetuning

G* (G5, D%
l_'_l l_'_l
Sparse Sparse
pretraining finetuning

(c) Sparse pretraining and sparse finetuning

G (G,D%)
‘_Y_, ‘_Y_‘
Pretraining Sparse
finetuning

(b) General pretraining and
sparse finetuning

SparseMAE
pretraining

SparseMAE
finetuning

(d) SparseMAE pretraining and finetuning

Figure 2: An illustration of four types pretraining and finetuning frameworks. (a) Dense pretraining and finetuning the
large full model as done in MAE [15]. G and D are general task-agnostic vision knowledge and task-specific downstream
knowledge learnt from pretraining and finetuning respectively. (b) Learning G during dense pretraining with the large full
model and acquiring downstream task-specific knowledge D? for the sparse sub-network during sparse finetuning. (c¢) Learning
task-agnostic knowledge G* and task-agnostic knowledge D with sparse sub-network during sparse pretraining and finetuning.
For finetuning, the sparse mask can be kept as fixed or dynamic. (d) Our SparseMAE training framework learns both G and
G* during pretraining and subsequently learns better D? during finetuning.

2.2. Pruning and Sparse Training

Pruning and sparse training are critical methods for re-
ducing the inference costs of deep neural networks [18].
Post-pruning methods [13, 26] typically involve training a
dense full network first, followed by one or several rounds of
train-prune-retrain rounds. Post-pruning methods are time-
consuming due to the iterative manner [11]. Different from
post-training methods, sparse training methods [29, 36] aim
to adaptively obtain a sparse sub-network while optimizing
both model weights and sparse connections from random
initialization.

Sparse training is a class of methods stemming from the
Sparse Evolutionary Training (SET) algorithm [29]. It starts
from a randomly sparsified network and subsequently prunes
and grows connections during training. These methods can
be applied end-to-end within the network training stage and
have achieved promising results on various vision bench-
marks with more efficient models by adaptively changing
the model topology connections during training.

Sparse training methods have shown promising results in
various computer vision benchmarks, achieving state-of-the-

art performance on different types of sparsity granularities
such as unstructured sparsity [4, 23, 27], N:M fine-grained
structured sparsity [42, 32, 10, 41], and block sparsity [7].
However, to our knowledge, the studies of pruning tech-
niques for Vision Transformers [4, 20] only focus on the
fully-supervised settings. There still lacks a unified method
to prune large-scale Vision Transformers under the unsuper-
vised Masked Autoencoders framework.

3. Methods

In this section, we first revisit the sparse training tech-
nique and Masked Autoencoders (MAE) in Sec. 3.1. Then
we emphasize the challenges of integrating existing sparse
training methods into MAE in Sec. 3.2. Lastly, we introduce
our proposed method to effectively obtain a powerful small-
scale sub-network from a large-scale model using sparse
training in Sec. 3.3

3.1. Preliminaries

Revisiting Sparse Training. The pioneering work of Lot-
tery Ticket Hypothesis (LTH) [11] demonstrates the dense
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networks contain sparse matching subnetworks capable of
training in isolation to full accuracy. Its findings inspire
searching for strong sub-networks within a larger full net-
work. Sparse training starts from randomly initializing the
network weights W and associating them with a sparse mask
M, which is a binary tensor with 0 indexing the sparsified en-
tries and 1 indicating the retained ones. M is optimized end-
to-end and is usually obtained by mggnitude pruning [14].
We denote the sparse sub-network as W = W © M. Sparse-
to-sparse training regime optimizes the sparse weights W
and the corresponding binary mask M, which can be updated
at each iteration or periodically. Variants of sparse training,
such as unstructured sparsity and fine-grained structured
sparsity [23, 25, 43, 9] achieve state-of-the-art performance
on various convolutional networks with improved efficiency.
Masked Autoencoders. Masked Autoencoders are a family
of self-supervised methods for pretraining Vision Transform-
ers (ViT). They involve reconstructing masked RGB patches
from visible tokens x;s with an encoder f and a decoder g.
Mathematically, we have

LMAE(W) = E(||90(f(l'v1g,w)) - xmaskH2)- (1)

Here, an encoder f maps inputs x,; to latent features
zvis = f(2vis), and a decoder gy parameterized by 6 pre-
dicts the masked token x . in the RGB pixel space from
the latent feature z,;,. Encoder weights W and decoder
weights 6 are jointly trained. After pretraining, the decoder
is discarded and the encoder is finetuned on task-specific
downstream datasets. During finetuning, the model acquires
downstream specific knowledge D, which is built on general
task-agnostic knowledge G learnt in pretraining, as shown
in Fig. 2 (a).

3.2. Challenges of Sparse Training for MAE

Despite the effectiveness of MAE for large-scale vision
transformers, it encounters great difficulties when applied
to smaller models (see Fig. 1). The inadequate model ca-
pacity prevents small models from learning meaning task-
agnostic knowledge and consequently transfers to inferior
performance in downstream tasks. To enable the potential of
large models’ capability for smaller ones to learn powerful
representations under MAE framework, we can modify Eq. 1
to combine it with sparse training as follows:

Lspurse (W, M) = E(|lgo (f (2315, W © M)) = mask|*),  (2)

where f represents the large full encoder with parameters W.
The encoder binary mask M produces a sparse sub-network
by magnitude pruning during pretraining, while the decoder
is kept dense as it is not used for downstream finetuning.
Following the notation in Sec. 3.1, we use G to represent

the general knowledge of the sparse sub-network learnt in
pretraining, and we denote D? the specific knowledge of the
finetuned sparse sub-network for downstream tasks. Consid-
ering both the pretraining and finetuning phases, we outline
three intuitive strategies to integrate sparse training into the
MAE framework:

* 1 Dense pretraining then sparse finetuning as shown
in Fig. 2 (b). Although this strategy allows the sparse
finetuning phase to optimize from the large full model’s
task-agnostic knowledge G, the sub-network does not
benefit from the pretraining task and lacks its knowl-
edge G*°. This may hinder the model to acquire better
downstream knowledge D?

¢ 2&3 Sparse pretraining using Eq. (2) then sparse fine-
tuning (see Fig. 2 (¢)). During finetuning, the sparsity
mask can be kept as fixed or dynamic (dynamic mask
is the third strategy). This strategy relies on the archi-
tecture and task-agnostic knowledge GG° obtained by
the sub-network during the pretraining phase, while it
ignores the potential benefits brought by incorporating
the knowledge G of the large full model.

In summary, it is challenging to tailor a sparse training
mechanism for MAE framework to sufficiently learn task-
agnostic and task-specific knowledge for a small model. In
the following section, we introduce our approach to solve this
dilemma by fully utilizing the task-agnostic knowledge G of
the large full model and adaptively optimizing sub-network’s
topology connections for various downstream tasks for better
task-specific knowledge.

3.3. Sparse Masked Autoencoders

To tackle the limitations of the sparse training strategies
introduced above, we propose a novel method for pruning
ViT models under the MAE framework (see Fig. 2 (d)).

Firstly, to ensure a good general task-agnostic knowledge
G to be learnt via pretraining, we utilize the dense full model
to reconstruct the RGB pixels following Eq. 1, which learns
more discriminative representations thanks to its larger ca-
pacity. Simultaneously, a sparse sub-network within the full
dense network is trained using the same visible tokens as
the inputs and regresses the same targets as the large full
model. The sparseMAE loss function is therefore extended
from Eq. 1 and Eq. 2 as follows:

L = Lspuse(W) +  aLmae(W),

3)

sub-network full network

where W represents the dense parameters of the large full
model, W = W ®M is the masked sparse parameters of the
sub-network, and « is the scaling hyperparameter balancing
the reconstruction losses for the dense full model and the
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Figure 3: Illustration of Sparse Masked Autoencoders. In the forward pass, both the large full model (red solid lines) and the
sparse sub-network (red dashed lines) reconstruct the masked patches from the same visible tokens. In the backward pass, the
masked weights (green solid lines) and the sparse weights (green dashed lines) are updated separately using the gradients from

the corresponding losses.

sparse sub-network. In our experiments, we set & = 1.0 by
default.

As shown in Eq. 3, the gradients for the sparse weights
W shall be updated following both the reconstruction losses
of the sub-network and the full network, which may lead
to gradient imbalance between the masked and unmasked
weights [38]. Therefore, in each training iteration we split
the weights W of the full model into sparse sub-network
weights W and unmasked weights W = W ® (1 — M) and
optimize them separately:

Wi =W;—1

(g(Wf, O] Mf,) © Mt),

“4)

Wi =W, —n(g(Wy) © (1 —My)), @)

where (W, © M,) = w are gradients of the

sparse sub-network, g(W;) = M%LV\(,YV” are the gradients
of the full models, 7 is the learning rate and ¢ indexes the
training iteration. The binary mask M is obtained by on-the-
fly magnitude pruning. Here, we only show gradient descent
for simplicity and omit other parts (e.g., weight decay). In
this way, the large full model can utilize all the model param-
eters in the forward pass to produce discriminative outputs,
while in the backward pass, the sparse sub-network stays
unaffected by the gradients from the large full model. During

the pretraining phase, the task-agnostic knowledge G* of
the sparse sub-network can dynamically select the important
sparse connections in the context of the task-agnostic knowl-
edge G of the full dense model, which helps to identify the
important sparse topology and is retained for downstream
finetuning.

After pretraining, the full dense model with a sparse sub-
network is transferred and finetuned on different downstream
tasks (e.g., classification, detection, segmentation, etc.). For
the finetuning stage, the deep representations from the sparse
sub-network are used for the downstream tasks, while its
topology connections are optimized end-to-end given the
specific downstream objectives. We refrain from fine-tuning
dense full models, as the fine-tuning process for both dense
and sparse models is costly. Hence, the learning of the task-
specific knowledge D?® for downstream tasks can benefit
from inheriting a pretrained sparse sub-network with knowl-
edge G°, and adaptively selecting the more suitable sparse
architecture built on the general knowledge G of the full
model.

4. Experiments

In this section, we validate the effectiveness and robust-
ness of our SparseMAE. First, we introduce the implementa-
tion details of our SparseMAE in Sec. 4.1. Then, we present
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our main experimental results in Sec. 4.2, which include
classification results on ImageNet-1K [8] and semantic seg-
mentation results on ADE20K [43]. To demonstrate the
superiority of our proposed method, we compare Sparse-
MAE with other state-of-the-art ViT pruning methods in
Sec. 4.4. In Sec. 4.3, we evaluate the transferring ability of
the models trained with our SparseMAE to object detection,
instance segmentation tasks on MS COCO [24] and robust-
ness evaluation. Finally, we perform ablative experiments
to evaluate the performance of SparseMAE under different
settings in Sec. 4.5.

4.1. Implementation Details

Sparse Training Methods. We conduct experiments with
two different granularities for sparse training, consisting of
unstructured sparsity [14, 21] and hardware-friendly N:M
sparsity [28, 42]. As we focus on studying how to learn
and transfer task-agnostic and task-specific knowledge under
the Masked Autoencoders paradigm with sparse training
methods, we select two simple and effective sparse training
methods, namely DFP [23] for unstructured sparsity and
SR-STE [42] for N:M sparsity. We prune all the linear
layers within the vision transformers and set the relevant
hyperparameters for sparse training the same as [23, 42] by
default.

Models. For all of our main experiments, unless otherwise
stated, we select ViT-Base as our large full model and prune
it for smaller ones. For hardware-friendly N:M sparsity,
we use 2:32 and 4:32 sparse ratios to obtain models with
similar scales to ViT-Tiny (5.8M) and ViT-Small (11.3M),
the main experiments use N:M sparsity for default, which is
applied to all linear layers, including self.qkv, self.proj in the
Attention block, and self.fcl and self.fc2 in the MLP block.
For unstructured sparsity, we extend the above N:M ratios
and prune ViT-Base with 93.5% and 87.0% sparsity. We
name our ViT-Base with 2:32/93.5% sparsity as SparseMAE-
Tiny (SparseMAE-T) and the one with 4:32/87.0% sparsity
as SparseMAE-Small (SparseMAE-S).

Pretraining. Following MAE [15] pretraining scheme, mod-
els start from random initialization, we use ImageNet-1K
(IN-1K) [8] for all pretraining experiments. We pretrain
SparseMAE for 400 epochs using 224 x 224 images as in-
puts. The other settings also follow those used in [15]. For
example, We use random resized cropping and horizontal
flipping for data augmentation, a 75% mask ratio during
pretraining, and a decoder with a single transformer layer
and 512 hidden dimensions. Unlike other methods [34, 19]
for small and tiny-scale vision transformers pretraining, we
do not grid-search the decoder design, possible putting our
method at a disadvantage.

Finetuning. We evaluate our SparseMAE pretrained models
for various downstream tasks, including ImageNet-1K [8]
image classification, MS COCO [24] object detection and

instance segmentation tasks, ADE20K [43] semantic seg-
mentation.

For image classification, we take a ViT-Base model pre-
trained using MAE for 400 epochs as the reference model,
which is implemented using the officially released code-
base [15] and achieves 83.2% top-1 accuracy. We finetune
SparseMAE-Tiny/Small for 200 epochs using the same re-
ceipt described in [15] for a fair comparison with other
works [31, 19] and set the batch size as 1024 and the base
learning rate as 1073,

For semantic segmentation, we follow BEiT [2] to use
UperNet[37] as our segmentation framework. We train the
model with an input resolution of 512 x 512 for 160k itera-
tions. A batch size of 16 is adopted. For object detection and
instance segmentation tasks, we follow ViTDet [22] frame-
work. We train our SparseMAE models with a batch size of
64 for 100 epochs, and the input image resolution is set to
1024 x 1024. Further details on the hyper-parameters can
be found in Appendix.

4.2. Main Results

Classification and Semantic Segmentation. Tab. 1
shows the evaluation of our SparseMAE model against
self-supervised methods for ViT-Tiny/Small on ImageNet-
1K image classification and ADE20K semantic segmen-
tation. For ImageNet-1K classification, SparseMAE
achieves 80.5% top-1 accuracy. To our knowledge, this
is currently the best result achieved by tiny-scale trans-
former models. Furthermore, SparseMAE outperforms
TinyMIM [31]/G2SD [19]/MAE-lite [34] with +4.7/4.2/4.0
accuracy gains on tiny-scale transformers. For semantic seg-
mentation, SparseMAE achieves an mloU of 45.2, outper-
forming G2SD/MAE-lite/TinyMIM by +3.8/1.3/1.2 mIoUs.
Similar improvements can be observed for the small-scale
transformers. SparseMAE achieves a 83.2% ImageNet-1K
classification accuracy and a 48.4% mloU on ADE20K se-
mantic segmentation, surpassing TinyMIM [31]/G2SD [19]
by +0.2/1.2 and +0.0/2.2 on the two tasks respectively. The
significant improvements over previous results show the
superiority of our method in obtaining performant small
models under MAE framework.

Speedups. Unstructured sparsity and N:M structured spar-
sity is efficient for commercial CPUs and FPGAs respec-
tively. For our SparseMAE with unstructured sparsity, we
tested the throughput (img/s) on an Intel RXeon(R) 6238R
CPU using the deepsparse engine with a batch size of 64. For
our SparseMAE with N:M sparsity, we tested the through-
put on Xilinx XCVUI13P with a batch size of 16. Our
SparseMAE-S with N:M and unstructured sparsity achieved
throughput gains of +71% and +9% over ViT-small with
similar amount of parameters on FPGAs and CPUs. There-
fore, our approach demonstrate high feasibility in actual
scenarios.
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Table 1: Finetuning results on ImageNet-1K and ADE20K. All our models are pre-trained only on ImageNet-1K. Extra
pretrained teacher means the compared method cannot trained from scratch. { the model adopts the MAE pretrained model

before perform the sparse pretraining.

Method

Params Pretraining Encoder Extra Pretrained/ Classification Segmentation

™M) epochs ratio Teacher Top-1 Acc (%) mloU (%)
DeiT [33] 5.8 300 - Label 72.2 38.0
Tiny-scale
MAE [15] 5.8 1600 25% X 71.6 37.6
MoCo [6] 5.8 300 100% EMA 73.3 39.3
TinyMIM [31] 5.8 300 100% TinyMIM-S 75.8 44.0
G2SD [19] 5.8 300 100% ViT-B 76.3 414
MAE-lite [34] 5.8 400 25% ViT-B 76.5 43.9
SparseMAE (ours) 5.8 400 25% X 80.5 45.2
DeiT [33] 22 300 - Label 79.9
Small-scale
MAE [15] 22 1600 25% X 80.6 42.8
MoCo [6] 22 300 100% EMA 81.4 43.9
DINO [3] 22 300 100% EMA 81.5 45.3
CAE [5] 22 300 100% DALL-E 82.0 -
TinyMIM [31] 22 300 100% TinyMIM-ViT-B 83.0 48.4
G2SD [19] 22 300 25% ViT-B 82.0 46.2
SparseMAE (ours) 11.3 300 25% ViT-B? 83.2 48.4
SparseMAE (ours)  11.3 400 25% X 82.1 46.7

4.3. Evaluation on Other Downstream Tasks

Object Detection and Instance Segmentation. We finetune
the SparseMAE pretrained models on MS COCO with ViT-
Det [22]. As shown in Tab. 2, we report APPPOx for object
detection and AP™** for instance segmentation. We com-
pare SparseMAE-Tiny with MAE-Tiny and its improved
variants using distillation methods, such as MAE-lite [34]
and G2SD [19]. The results in Tab. 2 show that our Sparse-
MAE obtains more than 3.1 AP"°% and 2.4 AP™* gains
compared to MAE-lite and G2SD, validating the transfer-
ability of the learnt representations in our models.
Robustness Evaluation. In Tab. 3, we evaluate the robust-
ness of our models on different variants of ImageNet vali-
dation sets. We use the same models finetuned on original
ImageNet (Tab. 1) and only run inference on the different
validation sets, such as Imagenet-R [17], ImageNet-A [17]
and ImageNet-C [16]), without any specialized fine-tuning.
Tab. 3 shows that our method has better generalization ca-
pability than distillation-based methods, such as G2SD [19]
and TinyMIM [31]).

4.4. Comparison with State-of-the-art ViT Pruning

To the best of our knowledge, our proposed SparseMAE
is the first to study network pruning technique under the

Table 2: Object detection and instance segmentation results
on the MS COCO dataset.

Method Backbone Det Seg

Size (M) APvox APmask
Tiny-scale models
DeiT [33] 5.8 40.7  36.5
MAE [15] 5.8 38.9 351
MoCo v3 [6] 5.8 40.0 36.0
DINO [3] 5.8 40.2  36.1
MAE-lite [34] 5.8 4277 382
G2SD [19] 5.8 44.0 39.6

SparseMAE (ours) 5.8 471 420

Masked Autoencoders paradigm. To validate the effective-
ness of SparseMAE, we compare it against recent state-
of-the-art fully-supervised pruning methods for ViTs. We
choose SVIiTE [4] and oViT [20] as our compared mod-
els, which exploit end-to-end sparse training for ViTs and
achieve state-of-the-art results in the fully-supervised set-
ting. SViT [4] adopts a dynamic sparse training method to
prune the dense model using random initialization. How-
ever, this approach requires training the sparse model for

16182



Table 3: Robustness evaluation on ImageNet variants (top-
1 accuracy, except for ImageNet-C which evaluates mean
corruption error). We test the small-scale and tiny-scale
models from Tab. 1 on different ImageNet validation sets,
without any fine-tuning.

Method Model Size IN-A1 IN-RfT IN-C |
DeiT [33] 8.0 327 540
MAE [15] 7.0 36.5 552
TinyMIM [31] Tiny-scale 11.0 39.8  50.1
G2SD [19] 129 39.0 -
SparseMAE (ours) 18.2 459 47.2
DeiT [33] 183 423 414
MAE [15] 20.1 456 40.6
TinyMIM [31] Small-scale 27.5 48.8 35.8
G2SD [19] 294  46.8 -
SparseMAE (ours) 293 49.2 35.2

Table 4: Comparison with state-of-the-art supervised Vision
Transformer pruning methods on ImageNet-1K.

Model Method Params (M) Top-1 Acc (%)
SVIiTE [4] 43.3 81.5
oViT [20] 43.3 81.6
SVIiTE [4] 34.6 81.3
ViT-Base oViT [20] 34.6 81.5
oViT [20] 21.6 81.1
oViT [20] 17.3 80.8
oViT [20] 8.7 79.7
. SparseMAE-T (ours) 5.8 80.5
ViT-Base SparseMAE-S (ours) 11.3 83.2

600 epochs. oViT [20] (post-training pruning) prunes the
model initialized from a trained dense model (300 epochs),
which requires 300 epochs of finetuning. For our Sparse-
MAE, we only need 400 epochs for pretraining and 200
epochs for fine-tuning. The pretraining of SparseMAE is 3 x
faster than full-token supervised training. Consequently, our
SparseMAE approach reduces the training time from 968
GPU hours to 581 GPU hours compared to SOTA SViT and
oViT.

Tab. 4 demonstrates that SparseMAE can outperform
state-of-the-art fully-supervised pruning counterparts sig-
nificantly for small and tiny-scale transformers. Our
SparseMAE-T has a 0.8% performance gain and a 35.0%
computation complexity reduction compared to oViT [20]
for tiny-scale transformers. With our SparseMAE-S, we
achieve a 83.2% ImageNet classification accuracy, outper-
forming supervised pruning techniques by large margins.
These results suggest that our method successfully extends
the superiority of MAE for representation learning with large-
scale vision transformers to small and tiny-scale models.

Table 5: Different sparse pretraining or finetuning strategies
with tiny-scale models on ImageNet-1K and ADE20K. “S”
means sparse pretraining, “D” means dense pretraining, and
“D+S” means sparse pretraining together with a dense full
model pretraining. I: the model is finetuned with the fixed
sparse masks from pretraining. Corr. Strategy.: correspond-
ing sparse training strategies explained in Sec. 4.5.1.

Pretrain Top-1 Acc Seg mloU

Model Method (%) (%) Corr. Strtg.
ViT-Base D 83.2 48.1 -
Unstructured sparsity (93.5% sparse ratio)

SparseMAE-T D 77.8 40.2 #1
SparseMAE-T St 76.7 37.7 #2
SparseMAE-T S 77.6 39.8 #3
SparseMAE-T  D+S 80.4 454 -
2:32 sparsity

SparseMAE-T D 78.4 40.7 #1
SparseMAE-T st 76.3 37.2 #2
SparseMAE-T S 78.7 413 #3

SparseMAE-T  D+S 80.5 45.2 -

4.5. Ablation Studies and Discussion

4.5.1 Comparison of Sparse Training Strategies.

We compare three sparse training strategies for MAE frame-
work introduced in Sec. 3.2 under two sparse granularities.
Namely, we (1) pretrain a large full model using MAE and
finetune it with sparse training, (2) combine sparse training
with MAE pretraining and subsequently finetune the model
on downstream tasks with the fixed sparse mask from pre-
training, or (3) modify (2) to use dynamic sparse mask for
finetuning. The results are shown in Tab. 5. Under unstruc-
tured sparsity, comparing (1) and (2), we see that the classi-
fication performance drops from 77.8% to 76.7%, showing
that the knowledge G* learnt by the sparse sub-network dur-
ing pretraining cannot generalize well to the downstream
tasks compared to the task-agnostic knowledge G learnt by
the large full model. (3) further allows the adaptation of
sparse sub-network architecture during finetuning and par-
tially alleviates the problem by better acquiring downstream
specific knowledge D®. However, its result still lags sig-
nificantly behind our proposed method (77.6% vs. 80.4%),
where the difference is only the absence of a concurrently
pretrained large full model. On the other hand, when compar-
ing (1) with our method, the addition of a pretrained sparse
sub-network can boost the performance by 2.6%. Similar
observations can also be made under N:M sparsity settings
and semantic segmentation results. These empirical results
suggest that both the task-agnostic knowledge G of the large
full model and G* of the sparse sub-network are necessary
for small and tiny-scale vision transformers to effectively
benefit from MAE pretraining.
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Table 6: Comparison between different full models for
SparseMAE on ImageNet-1K and ADE20K.

Params Top-1 Acc Seg mIoU

Model Pattern

(M) (%) (%)
ViT-Small  8:32 5.8 77.4 41.5
ViT-Base = 2:32 5.8 80.5 45.2

4.5.2 Ablation of Full Model Capacity

We conduct an ablation study to investigate the performance
with different capacities of the full model. We use our Sparse-
MAE and set ViT-Small and ViT-Base as the full models,
where ViT-Small only has 25% parameters of ViT-Base. As
shown in Tab. 6, the results show that our SparseMAE in
ViT-Base achieves 3.1% top-1 accuracy advantage over ViT-
Small, indicating that larger capacity of the full model with
SparseMAE can significantly improve its performance by
incorporating better pretraining task-agnostic knowledge.

4.5.3 Impact of Different Pruning Sparsity Ratios

The main experiments of sparse ratio setting is compared to
the ViT-tiny and ViT-small. We provide additional sparse
ratios to verify the performance of SparseMAE on ImageNet-
1K as in Tab. 7.

Table 7: Comparison between different sparse ratios for
SparseMAE on ImageNet-1K.

Sparse Pattern 1:32 2:32 4:32 8:32
Top-1 Acc 76.8 80.5 83.2 83.7

5. Conclusion

In this paper, we introduce SparseMAE, an innovative
method for incorporating sparse training into the Masked
Autoencoders (MAE) framework to create efficient and pow-
erful small and tiny-scale transformers. As the first study in
this area, we first point out the limitations of sparse train-
ing under MAE and design a unified framework to transfer
the task-agnostic and task-specific knowledge of large mod-
els to lightweight sparse sub-networks. SparseMAE trains
the sparse sub-networks by persevering the task-agnostic
knowledge of large full models and then adaptively finds the
optimal specific sub-networks for downstream tasks. The
proposed method outperforms the state-of-the-art small-scale
vision transforms in both unsupervised pretraining and fully-
supervised settings. We hope this work could shed light on
sparse training with the Masked Autoencoders framework in
the vision community.
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