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Abstract

Fully- and semi-supervised semantic segmentation of
biomedical images have been advanced with the devel-
opment of deep neural networks (DNNs). So far, how-
ever, DNN models are usually designed to support one of
these two learning schemes, unified models that support
both fully- and semi-supervised segmentation remain lim-
ited. Furthermore, few fully-supervised models focus on
the intrinsic low frequency (LF) and high frequency (HF)
information of images to improve performance. Pertur-
bations in consistency-based semi-supervised models are
often artificially designed. They may introduce negative
learning bias that are not beneficial for training. In this
study, we propose a wavelet-based LF and HF fusion model
XNet, which supports both fully- and semi-supervised se-
mantic segmentation and outperforms state-of-the-art mod-
els in both fields. It emphasizes extracting LF and HF in-
formation for consistency training to alleviate the learning
bias caused by artificial perturbations. Extensive experi-
ments on two 2D and two 3D datasets demonstrate the ef-
fectiveness of our model. Code is available at https:
//github.com/Yanfeng-Zhou/XNet.

1. Introduction

Semantic segmentation is a fundamental task in biomed-
ical image analysis, where the goal is to assign a class la-
bel to each pixel. Methods for semantic segmentation of
biomedical images based on convolutional neural networks
(CNNs) have achieved remarkable success [42, 47, 23, 8].
Some studies extend these methods to 3D and achieve
promising results on volumetric segmentation [35, 10, 62,
37]. Recently, the combination of transformers and CNNs

*Corresponding author.

has become popular [5, 54, 53, 20, 54]. Transformers can
capture long-range dependencies [50, 13, 30] to compensate
for the limited receptive fields of CNNs.

However, most of the existing methods focus on model
architecture to better extract features [67, 38, 65]. Few
methods explore the intrinsic LF and HF information of im-
ages that may be useful for segmentation [58, 49].

For semantic segmentation of biomedical images, super-
vised methods require large-scale labeled images, which are
costly and time-consuming to produce. To alleviate this
problem, researchers propose semi-supervised methods that
learn with a small number of labeled images and a substan-
tial number of unlabeled images [48, 51, 59]. The com-
mon solutions include adversarial training [36, 46], pseudo-
labeling [16, 60, 56] and consistency regularization [6, 12].
Consistency regularization is currently the best performing
method [32, 34], it perturbs input images, intermediate fea-
tures or output predictions, allowing models to learn consis-
tency from the perturbation [26, 39, 34].

However, current perturbation strategies are artificially
designed, such as rotation [26], noise addition [39], distance
mapping [32] and dropout [39], etc. They may introduce
negative learning bias, such as segmenting noisy images is
equivalent to learning an extra denoising task.

Furthermore, fully- and semi-supervised semantic seg-
mentation are regarded as two different research fields. Uni-
fied models that simultaneously achieves state-of-the-art re-
main limited.

To solve the above problems, we propose a wavelet-
based LF and HF fusion model XNet. XNet can simulta-
neously realize fully-supervised learning based on LF and
HF information fusion, and semi-supervised learning based
on LF and HF outputs consistency. To be specific, we use
wavelet transform to generate LF and HF images and feed
them into XNet. XNet fuses their LF and HF information
and then generates dual-branch segmentation predictions.
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For supervised learning, segmentation predictions absorb
the complete LF and HF information of raw images. For
semi-supervised learning, dual-output pays different atten-
tion to LF and HF information leading to consistency differ-
ences. These differences are used for training on unlabeled
images.

Motivation. For semantic segmentation problem, the
HF information generally represents image details, while
the LF information are often abstract semantics (the LF and
HF images in Figure 2 intuitively show their differences).
The strategy of extracting and fusing different frequency
information can help model better focus on LF seman-
tics and HF details to improve performance. Furthermore,
our model uses wavelet transform to generate LF and HF
images for consistency difference-based semi-supervised
learning. These consistency differences stem from the dif-
ferent focus on LF and HF information, which alleviates the
learning bias caused by artificial design.

Our contributions are summarized as follows:
• We propose a low and high frequency fusion

model XNet, which achieves state-of-the-art in both
fully- and semi-supervised semantic segmentation of
biomedical images simultaneously.

• XNet uses wavelet transform to generate LF and HF
images for consistency learning, which can alleviate
the learning bias caused by artificial perturbations.

• Extensive benchmarking on two 2D and two 3D pub-
lic biomedical datasets confirms the effectiveness of
XNet.

2. Related Work
Fully-Supervised Semantic Segmentation of Biomed-

ical Images. With the rise of deep learning, CNNs have
been widely used in semantic segmentation [57, 22, 15,
61], such as FCN [31], DeepLab v3+ [8], etc. For
biomedical images, efficient encoder-decoder architecture
achieves superior performance [63, 23], such as UNet [42],
UNet++ [67], UNet 3+ [21], etc. Furthermore, researchers
extend this architecture to 3D to meet the needs for volumet-
ric segmentation. [35] proposes a 3D fully CNN VNet. [10]
extends UNet to 3D. ConResNet [62] is proposed inter slice
context residual learning. Recently, incorporating trans-
former with encoder-decoder architecture has impressive
results [54, 66], such as SwinUNet [5], TransBTS [53], UN-
ETR [20], etc. These models capture both long-range de-
pendencies and local features to improve performance.

Semi-Supervised Semantic Segmentation of Biomed-
ical Images. To alleviate the lack of labeled images, semi-
supervised semantic segmentation of biomedical images
has become a key approach [29, 24, 27]. Currently the
dominant strategies include adversarial training [36, 46],
pseudo-labeling [16, 60, 56], and consistency regulariza-
tion [6, 12]. Adversarial training use generative adversar-

ial networks [19] to continuously improve the performance
of both generator that generates segmentation predictions
and discriminator that judges the authenticity of predic-
tions. Pseudo-labeling utilizes high confidence predictions
to improve model performance. Consistency regularization-
based methods have better performance [32, 33, 34]. They
utilize unlabeled images by enforcing consistency between
different predictions. DTC [32] proposes a dual-task
consistency network that predicts segmentation maps and
geometry-aware level set representations. TCSMv2 [26]
utilizes transformation consistency to allow the network to
generate consistent predictions for differently perturbed in-
puts. [34] proposes an uncertainty rectified pyramid consis-
tency (URPC) strategy.

Wavelet-Based DNNs for Semantic Segmentation.
Based on powerful frequency and spatial representation ca-
pabilities, wavelet transform has been incorporated with
DNNs and some methods have been explored in seman-
tic segmentation [58, 49, 64, 44, 18, 28]. The com-
mon strategies include using wavelet transform as pre-
or post-processing [49, 58] and replacing some layers of
CNNs (such as up- and down-sampling) with wavelet trans-
form [18, 64]. However, most of them are only suit-
able for specific segmentation objects, which limits their
generalization and application. [1] proposes a symmet-
ric CNN enhanced by wavelet transform (Aerial LaneNet)
for lane-marking semantic segmentation in aerial imagery.
CWNN [14] uses wavelet constrained pooling layers to
replace the conventional pooling for synthetic aperture
radar image segmentation. WaveSNet [25] uses wavelet
transform to extract image details during down-sampling
and uses inverse transform to recover details during up-
sampling. In contrast, we use wavelet transform to generate
LF and HF images as dual-branch input to extract LF and
HF features. We compare our model with previous wavelet-
based models in Section 4.4 and show superior performance
of our model.

3. Method
In this section, we give an overview of the proposed

model XNet in Section 3.1. Then we analyze the role of
wavelet transform and propose a method for generating LF
and HF images in Section 3.2. We further introduce LF and
HF fusion module in Section 3.3. Finally, we analyze the
feasibility of XNet on fully- and semi-supervised learning
in Section 3.4.

3.1. Overview

Figure 1 shows an overview of the proposed model XNet
which consists of four modules, including LF encoder, HF
encoder, LF and HF fusion module and dual-branch de-
coder. LF and HF encoders could extract semantic features
and detailed features from LF and HF images, respectively.
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Figure 1. Overview of proposed model XNet. Blue and orange represent LF and HF encoder, respectively. Green represents fusion module.
Mixed colors represent dual-branch decoder. XNet learns from unlabeled images by minimizing Lunsup and learns from labeled images
by minimizing LL

sup, LH
sup and Lunsup.

Fusion module fuses them to generate fusion features with
both LF semantics and HF details. Dual-branch decoder
uses fusion features to output segmentation predictions.

Training process is also shown in Figure 1. By wavelet
transform of the raw images, we acquire the corresponding
LF and HF images and then input them into LF and HF en-
coders to generate LF and HF features, respectively. These
features are fused in fusion module and then fed into de-
coder to generate segmentation predictions of LF and HF
branch, respectively. For supervised training, model is opti-
mized by minimizing supervised loss and dual-output con-
sistency loss on labeled images. For semi-supervised train-
ing, model is optimized by minimizing supervised loss on
labeled images and dual-output consistency loss on unla-
beled images. Thus, no matter fully- or semi-supervised
training, the total loss function Ltotal is defined as:

Ltotal = Lsup + λLunsup, (1)

where Lsup is supervised loss, Lunsup is unsupervised loss,
i.e., dual-output consistency loss, λ is a weight to control
the balance between Lsup and Lunsup. To be specific, the
supervised loss Lsup consists of LF supervised loss LL

sup(·)
and HF supervised loss LH

sup(·). Lsup is defined as:

Lsup = LL
sup(p

L
i , yi) + LH

sup(p
H
i , yi), (2)

where pLi and pHi represent LF and HF segmentation predic-
tions of the i-th image, respectively. yi represents ground
truth of the i-th image. The unsupervised loss Lunsup

is achieved by cross pseudo supervision (CPS) loss [9]:

Use One branch prediction as pseudo-label to supervise the
other branch, and vice versa. Lunsup is defined as:

Lunsup = LL
unsup(p

L
i , p̂

H
i ) + LH

unsup(p
H
i , p̂Li ), (3)

where LL
unsup(·) and LH

unsup(·) represent LF and HF un-
supervised loss, respectively. p̂Li and p̂Hi represent LF and
HF pseudo-label generated by pLi and pHi , respectively (we
adopt a simple strategy for pseudo-label generation: label
the pixel as the class with the highest confidence predic-
tion.).

In this study, LL
sup(·), LH

sup(·), LL
unsup(·) and LH

unsup(·)
all use dice loss [35]. We choose the branch that performed
better in training stage as the final outputs during inference.

3.2. Wavelet Transform

2D (3D) images are essentially 2D (3D) discrete non-
stationary signals, containing different frequency ranges
and spatial locations information. Wavelet transform can
effectively preserve these information while decomposing
them.

To be specific, take 2D images as an example. We use
wavelet transform to decompose raw images into LF, hori-
zontal HF, vertical HF and diagonal HF components (LL,
HL, LH and HH). They respectively save LF and differ-
ent HF information of raw images. We represent LF images
L with LF components and represent HF images H as the
sum of HF components in different directions. L and H are
defined as:

L = LL, (4)
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H = HL+ LH +HH. (5)

L and H are shown in Figure 2. We can see H emphasize
details, while L focus on semantics.

Figure 2. Taking CREMI [17] as an example, visualize LF and
HF results. (a) Raw image. (b) Wavelet transform results. (c) LF
image. (d) HF image.

Why use wavelet transform? Compared to other meth-
ods (such as Fourier transform), wavelet transform is an ef-
ficient way to generate L and H . Using L as input, XNet
can focus more on LF semantics, because L has less noise
and details. In contrast, H has more noise but clearer ob-
ject boundaries, which can help model focus more on HF
details. Furthermore, using L and H for semi-supervised
training, the consistency difference comes from intrinsic
LF and HF information of images, which can alleviate the
learning bias caused by artificial perturbations.

3.3. LF and HF Fusion Module

The architecture of LF and HF fusion module is shown
in Figure 3. Using LF and HF features as inputs, fusion
module uses 3×3 convolutions to acquire same size, up-
sampling or down-sampling features and concatenates their
channels. Then the channel-concatenated features are input
to 1×1 transition convolutions to generate LF and HF fusion
features.

Why use fusion module? The fusion module can
fuse LF and HF features into complete features. With-
out fusion, each branch would lack semantics or details,
which are detrimental to segmentation. We demonstrate the
separation-fusion X-shaped network architecture is the key
to improve performance in ablation studies of Section 4.5.

3.4. Feasibility of Fully- and Semi-Supervision

For biomedical images, we assume that the raw image
I consists of LF features FL, HF features FH , LF additive
noise NL and HF additive noise NH . Therefore, I is defined
as:

I = FL + FH +NL +NH . (6)
We make the assumption because related studies have

shown that noise in biomedical images is generally addi-
tive [3, 2, 43, 41]. For semantic segmentation problem, ac-
curate segmentation requires LF semantics (such as shape,
color, etc.) and HF details (such as edges, textures, etc.).

Wavelet transform W can decouple image I to generate
LF image L and HF image H:

Figure 3. Architecture of LF and HF fusion module. Same Size
Conv represents the output and input features have same size.
Down-Sampling Conv reduce the size of output features by half.
Up-Sampling Conv doubles the size of output features. Transition
Conv uses channel-concatenated features as input and outputs fu-
sion features.

L,H = W (I),

L = FL +NL,

H = FH +NH .

(7)

LF and HF encoders EL, EH extract FL and FH from L
and H , respectively:

FL = EL(L),

FH = EH(H).
(8)

Fusion module M fuses FL and FH to acquire the com-
plete features FM :

FM = M(FL, FH). (9)

For supervised learning, decoding complete information
can acquire segmentation predictions. For semi-supervised
learning, because each decoding branch pays different at-
tention to LF and HF information, there are differences in
LF semantics and HF details between the predictions of
dual-branch decoder. These differences can be used for
semi-supervised training based on consistency regulariza-
tion.

The segmentation predictions of LF and HF branches are
defined as:

PL, PH = D(FM ), (10)

where PL and PH represent LF and HF segmentation pre-
dictions, D represents dual-branch decoder.
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Method Model GlaS CREMI
JI ↑ DC ↑ 95HD ↓ ASD ↓ JI ↑ DC ↑ 95HD ↓ ASD ↓

Fully-
Supervised
(100%)

UNet [42] 81.54 89.83 8.82 1.72 75.47 86.02 5.62 1.06
UNet++ [67] 81.92 90.06 9.96 1.89 75.89 86.30 4.56 0.85
Att-UNet [38] 81.41 89.75 10.53 1.99 76.87 86.92 3.92 0.74
Aerial LaneNet [1] 70.08 82.41 19.29 3.83 67.04 80.27 6.73 1.31
MWCNN [28] 74.11 85.13 15.40 3.19 67.23 80.40 7.02 1.36
HRNet-W18 [47] 82.68 90.52 9.71 1.90 74.06 85.10 3.77 0.68
Res-UNet [63] 79.23 88.41 10.90 2.17 74.32 85.27 4.79 0.90
WDS [44] - - - - 63.74 77.86 6.42 1.29
U2-Net [40] 76.87 86.92 12.61 2.58 74.23 85.21 4.92 0.89
U2-Net∗ [40] 81.14 89.59 9.93 1.86 71.94 83.68 5.91 1.08
UNet 3+ [21] 79.83 88.78 10.81 2.12 74.92 85.66 4.24 0.78
UNet 3+ w/ DS [21] 80.25 89.04 12.14 2.26 74.23 85.21 4.51 0.87
SwinUnet [5] 73.06 84.43 14.14 3.21 63.37 77.58 7.92 1.53
Yin et al. [58] 74.29 85.25 13.08 2.79 56.07 71.85 5.21 1.22
WaveSNet [25] 78.52 87.97 11.36 2.19 70.67 82.82 5.06 1.01
nnUNet [23] 80.66 89.29 11.07 2.04 73.95 85.02 5.32 1.11
nnUNet‡ [23] 82.34 90.31 8.74 1.69 76.08 86.42 5.08 1.09
XNet 84.77 91.76 7.87 1.55 79.23 88.41 3.66 0.61

Semi-
Supervised
(20%+80%)

MT [48] 76.41 86.62 13.28 2.65 75.58 86.09 5.60 1.10
EM [51] 76.81 86.88 12.28 2.54 73.24 84.55 6.64 1.28
UAMT [59] 76.55 86.72 13.43 2.73 74.04 85.08 5.71 1.10
CCT [39] 77.60 87.39 11.23 2.27 75.74 86.20 6.93 1.31
CPS [9] 80.46 89.17 10.56 2.08 74.87 85.63 6.47 1.25
URPC [34] 76.84 86.91 10.97 2.31 74.70 85.22 4.42 0.89
CT [33] 79.02 88.28 12.02 2.33 73.43 84.68 6.33 1.23
XNet 80.89 89.44 9.86 2.07 76.28 86.54 4.19 0.76

Table 1. Comparison with fully- and semi-supervised state-of-the-art models on GlaS and CREMI test set. Semi-supervised models are
based on UNet. DS indicates deep supervision. * indicates lightweight models. ‡ indicates training for 1000 epochs. - indicates training
failed. Red and bold indicate the best and second best performance.

To sum up, XNet can be used in both fully- and semi-
supervised learning. Figure 4 shows topological flow chart
of segmentation process of XNet.

Figure 4. Topological flow chart of segmentation process.

4. Experiments

4.1. Datasets

To evaluate our model, we conduct experiments on two
2D datasets (GlaS [45] and CREMI [17]) and two 3D
datasets (LA [55] and LiTS [4]).
GlaS. This is a gland segmentation dataset, including 165
Hematoxylin and Eosin (H&E) stained images of benign
and malignant tissue. The image size is 775×522. The
number of training and test images are 85 (37 benign, 48

malignant) and 80 (37 benign, 43 malignant), respectively.
CREMI. This is a electron microscopy dataset for neuronal
membrane segmentation. It consists of three images stacks
for three different types of neurons. Each stack consists of
125 slices of size 1250×1250. We use the first two stacks
for training and the third stack for testing. Due to large
image size is not convenient for training, we use a sliding
window to crop the raw images to 256×256. Finally, we get
3575 images for training and 3075 images for testing.
LA. This is a left atrial segmentation dataset from 2018
Atrial Segmentation Challenge. It consists of 100 3D MRI
images, with a resolution of 0.625×0.625×0.625mm. Fol-
lowing [59, 32], we use 80 images for training and 20 im-
ages for testing.
LiTS. This is a liver and tumor segmentation dataset from
2017 Liver Tumor Segmentation Challenge. It consists of
131 3D CT images. Following [52], we use 100 images for
training and 31 images for testing.
Why choose them? These datasets contain four modalities:
light microscopy, electron microscopy, MRI and CT. They
also contain 2D and 3D images, respectively. Evaluating
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Method Model LA LiTS
JI ↑ DC ↑ 95HD ↓ ASD ↓ JI ↑ DC ↑ 95HD ↓ ASD ↓

Fully-
Supervised
(100%)

VNet [35] 73.94 85.02 10.63 3.04 70.13 78.07 42.17 11.38
UNet 3D [10] 82.67 90.51 6.13 1.80 78.63 86.21 23.00 8.32
Res-UNet 3D 85.13 91.97 4.96 1.48 52.88 61.18 61.67 21.34
ESPNet 3D [37] 66.14 79.62 25.13 5.06 - - - -
DMFNet [7] 80.43 89.16 8.96 2.26 76.77 84.44 22.73 8.51
ConResNet [62] 85.60 92.24 4.27 1.39 77.22 84.45 20.65 7.56
CoTr [54] 81.42 89.76 7.83 2.06 75.16 83.03 27.30 8.00
TransBTS [53] 78.97 88.25 9.71 2.57 76.22 83.92 27.74 7.51
UNETR [20] 79.66 88.68 9.04 2.44 71.22 78.75 37.42 10.11
nnUNet [23] 83.14 90.79 6.33 1.90 78.23 85.52 42.78 11.35
nnUNet‡ [23] 84.43 91.56 5.51 1.52 78.71 86.02 27.26 7.78
XNet 3D 86.58 92.81 3.89 1.30 80.92 87.95 18.50 5.74

Semi-
Supervised
(20%+80%)

MT [48] 78.58 88.01 7.06 2.12 72.60 80.38 27.46 10.25
EM [51] 77.91 87.58 7.78 2.28 - - - -
UAMT [59] 78.85 88.17 6.88 2.09 74.78 82.48 26.98 10.59
CCT† [39] 82.04 90.13 6.79 1.90 73.92 81.56 25.03 11.28
CCT∗ [39] 77.91 87.58 7.63 2.35 70.81 78.91 27.90 10.44
DTC [32] 76.68 86.80 10.30 2.76 74.53 82.50 35.94 12.35
DTC∗ [32] 76.10 86.43 9.71 2.68 68.11 76.15 50.05 13.23
CPS† [9] 82.78 90.58 6.24 1.79 71.63 79.26 28.94 9.45
CPS∗ [9] 79.06 88.31 7.26 2.16 69.34 77.21 40.85 11.99
URPC [34] 79.98 88.88 7.57 2.12 - - - -
CT† [33] 81.59 89.86 6.10 1.91 71.57 78.95 47.09 13.48
CT∗ [33] 78.86 88.18 9.06 2.45 68.96 76.69 58.68 15.29
XNet 3D 83.54 91.03 6.00 1.76 75.74 83.27 36.88 9.26

Table 2. Comparison with fully- and semi-supervised state-of-the-art models on LA and LiTS test set. Due to GPU memory limitations,
some semi-supervised models using smaller architectures, † and * indicate models are based on lightweight 3D UNet (half of channels)
and VNet, respectively. ‡ indicates training for 1000 epochs. - indicates training failed. Red and bold indicate the best and second best
performance.

model performance on multiple modalities and different di-
mensions is more representative and convincing.

4.2. Evaluation

We use Jaccard index (JI), Dice coefficient (DC), 95th
percentile Hausdorff distance (95HD), and average surface
distance (ASD) as performance metrics to evaluate segmen-
tation results. JI and DC emphasize pixel-wise accuracy,
while 95HD and ASD emphasize boundary accuracy. These
metrics are widely used for benchmarking performance of
biomedical image segmentation.

4.3. Implementation Details

We implement our model using PyTorch. Training and
inference of all models are performed on four NVIDIA
GeForce RTX3090. We use SGD with momentum to train
models, the momentum is set at 0.9 and the weight decay
is set at 0.00005. The number of epochs is set at 200. The
learning rate decays by 0.5 every 50 epochs. The weight
λ for unsupervised loss function increases linearly with

epoch, λ = λmax ∗ epoch
max epoch .

For 2D datasets, we use flip, rotation, transposition for
data augmentation and input images are resized to 128×128
during training and inference. For GlaS, the initial learning
rate is set at 0.5, λmax is set at 5, batch size is set at 2. For
CREMI, the initial learning rate is set at 0.5, λmax is set at
1, batch size is set at 16.

For 3D datasets, we use flip, bias field, noise and blur
for data augmentation, the initial learning rate is set at 0.1,
batch size is set at 1. For inference, we use a sliding win-
dow strategy with overlap ratio of 0.5 and the max con-
nected component in predictions as the final segmentation
results. For LA, following [59, 32], we apply the same pre-
processing methods, patch size is set at 96×96×80, λmax

is set at 5. For LiTS, following [52], we use the soft tissue
CT window range of [-100, 250] HU and crop the images
centering at liver regions, patch size is set at 112×112×32,
λmax is set at 0.5.

For semi-supervised segmentation, we report the per-
formance of all models trained with 20% labeled images
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and 80% unlabeled images, which is the common semi-
supervised experimental partition.

4.4. Comparison with State-of-the-art Models

We compare XNet extensively with previous models
both on fully- and semi-supervised semantic segmentation.
Due to other state-of-the-art models have different experi-
mental setup, we reimplement them for a fair comparison.
2D Fully-Supervision. We compare XNet with supervised
state-of-the-arts, including UNet [42], UNet++ [67], Att-
UNet [38], HRNet-W18 [47], Res-UNet [63], U2-Net [40],
UNet 3+ [21], SwinUnet [5] and nnUNet [23]. We also
compare our model with previous wavelet-based models,
including Aerial LaneNet [1], MWCNN [28], WDS [44],
Yin et al. [58], WaveSNet [25].

In Table 1, we can see XNet achieves competitive per-
formance on GlaS and CREMI. For GlaS, XNet improves
the optimal results by 2.09% in JI, 1.24% in DC, 0.87 pix-
els in 95HD and 0.14 pixels in ASD. For CREMI, XNet
improves the optimal results by 2.36% in JI, 1.49% in DC,
0.11 pixels in 95HD and 0.07 pixels in ASD. Table 1 also
shows that XNet has better generalizability than previous
wavelet-based models (Aerial LaneNet [1], MWCNN [28],
WaveSNet [25], etc.).
2D Semi-Supervision. We compare XNet with semi-
supervised state-of-the-arts, including MT [48], EM [51],
UAMT [59], CCT [39], CPS [9], URPC [34], CT [33].

Table 1 illustrates the comparison results. For GlaS,
XNet outperforms all the other models, particularly outper-
forms the suboptimal result by 0.43% in JI, 0.27% in DC,
0.7 pixels in 95HD and 0.01 pixels in ASD. For CREMI,
XNet achieves improvement by 0.54% in JI, 0.34% in DC,
0.23 pixels in 95HD and 0.13 pixels in ASD than the sub-
optimal result.
3D Fully-Supervision. We compare 3D XNet with super-
vised state-of-the-arts, including VNet [35], 3D UNet [10],
3D Res-UNet, 3D ESPNet [37], DMFNet [7], ConRes-
Net [62], CoTr [54], TransBTS [53], UNETR [20] and
nnUNet [23].

From Table 2, we can see XNet outperforms previous
state-of-the-art models by a large margin. To be specific,
XNet improves the optimal results by 0.98% in JI, 0.57% in
DC, 0.38 voxels in 95HD and 0.09 voxels in ASD for LA,
2.21% in JI, 1.74% in DC, 2.15 voxels in 95HD and 1.77
voxels in ASD for LiTS, respectively.
3D Semi-Supervision. We use 3D architectures to ex-
tend 2D semi-supervised models to 3D, including MT [48],
EM [51], UAMT [59], CCT [39], CPS [9], URPC [34],
CT [33]. We also show DTC [32] performance. The 3D
semi-supervised results are shown in Table 2. As previous
experiments, XNet also shows superior performance.

4.5. Ablation Studies

To verify effectiveness of each component, we perform
the following ablation studies on GlaS.

Wavelet JI ↑ DC ↑ 95HD ↓ ASD ↓
Haar 79.70 88.70 9.30 2.05
Dmey 73.95 85.02 14.40 2.96
Coif 1 78.19 87.76 10.78 2.32
Bior 1.5 78.71 88.09 11.35 2.29
Bior 2.4 78.21 87.77 12.24 2.52
Db 2 80.89 89.44 9.86 2.07

Table 3. Comparison of different wavelet bases in semi-supervised
training.

Comparison of Wavelet Bases. Table 3 shows the perfor-
mance of different wavelet bases in semi-supervision, in-
cluding Haar, Dmey, Daubechies 2 (Db 2), Coiflets 1 (Coif
1), Biorthogonal 1.5 (Bior 1.5) and Biorthogonal 2.4 (Bior
2.4). We find that Db 2 wavelet has better pixel-wise ac-
curacy, while Haar wavelet has better boundary accuracy.
Based on the above experiments, we apply Db 2 as wavelet
basis to related experiments in Table 1 and Table 2.

# LF Fusion # HF Fusion JI ↑ DC ↑ 95HD ↓ ASD ↓
0

(w/o fusion)
0

(w/o fusion) 66.78 80.08 19.19 4.26

1 1 75.44 86.00 13.09 2.72
1 2 77.08 87.06 12.63 2.62
2 1 76.91 86.95 12.38 2.60
2 2 80.89 89.44 9.86 2.07
2 3 79.14 88.35 10.78 2.20
3 2 78.56 87.99 12.24 2.36
3 3 78.39 87.88 10.87 2.24

Table 4. Comparison of different numbers of LF and HF fusion
features in LF and HF fusion module in semi-supervised training.

Comparison of The Number of Fusion Features. The
comparison results are shown in Table 4. Without fusing
any LF and HF features, the model performance is nega-
tively impacted. Once introducing LF and HF fusion mod-
ule, the XNet performance can be greatly improved. For
example, compared to no fusing, using 1 LF and 1 HF fu-
sion features improves performance by 8.66% in JI. From
Table 4, we can also see the number of LF and HF fusion
features are 2 and 2 to get the best performance. It may be
because too many fusion features generate redundant infor-
mation, which are bad for model training. We finally set the
number of LF and HF fusion features are 2 and 2, respec-
tively, and apply it to related experiments in Table 1 and
Table 2.
Comparison of Dataset Partition. From Table 5, we find
that XNet has good performance in both fully- and semi-
supervised training with different partition. For supervised
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Labeled Unlabeled JI ↑ DC ↑ 95HD ↓ ASD ↓

10% 0% 59.18 74.36 27.90 7.16
90% 75.63 86.13 14.28 2.78

20%

0% 69.84 82.24 17.31 3.87
40% 74.19 85.19 13.58 2.92
60% 77.46 87.30 11.82 2.54
80% 80.89 89.44 9.86 2.07

30% 0% 72.06 83.76 15.39 3.33
70% 81.39 89.74 9.98 2.02

100% 0% 84.77 91.76 7.87 1.55

Table 5. Performance of different dataset partition strategies.

training with 100% labeled images, XNet achieves 84.77%
in JI. Using 10%, 20% and 30% labeled images and the rest
of unlabeled images, semi-supervised training improves the
supervised baseline by 16.45%, 11.05% and 9.33% in JI,
respectively.

Table 5 also shows that with the increase of unlabeled
images, XNet has better performance. Training with 20%
labeled images and 40%, 60% and 80% unlabeled images,
the supervised baseline is improved by 4.35%, 7.62% and
11.05% in JI, respectively.

Model Params MACs JI ↑ DC ↑ 95HD ↓ ASD ↓
UNet+ 264M 109G 82.73 90.55 9.32 1.77
Res-UNet+ 222M 279G 81.05 89.53 9.87 1.99
WaveSNet+ 349M 64G 78.56 87.99 13.27 2.46
XNet 326M 83G 84.77 91.76 7.87 1.55
UNet 35M 16G 81.54 89.83 8.82 1.72
XNet− 82M 21G 83.49 91.00 8.52 1.64
XNet−− 20M 5G 83.71 91.13 8.49 1.69

Table 6. Comparison of model sizes and computational cost in
fully-supervised training. + indicates increasing the number of
convolutions and channels, − using half of channels, −− using a
quarter of channels.

Comparison of Model Size and Computational Cost. To
illustrate that the performance improvement comes from
well-designed components rather than additional parame-
ter increases. We compare the performance of models with
similar size and computational cost in Table 6. To be spe-
cific, we expand UNet, Res-Unet and WaveSNet to a similar
number of parameters (Params) and multiply-accumulate
operations (MACs) as XNet. This has positive effects but
cannot reach XNet performance. Furthermore, we reduce
the number of channels of XNet to a half and a quarter.
These lightweight networks still have superior performance,
indicating that the various designs of XNet are the key to
improving performance.
Effectiveness of Components. To demonstrate the im-
provement of different components, we conduct step-by-
step ablation studies for fully- and semi-supervised segmen-
tation, and the results are shown in Table 7. By using only

Method Raw L H Fusion JI ↑

Fully-
Supervised

✓ 82.03
✓ 80.77

✓ 54.50
✓ ✓ 75.82
✓ ✓ ✓ 84.77

Semi-
Supervised

✓ 78.52
✓ 76.30

✓ 52.56
✓ ✓ 66.78
✓ ✓ ✓ 80.89

Table 7. Ablation on effectiveness of various components, includ-
ing LF images, HF images and fusion module.

raw images as input, we achieve 82.03% and 78.52% JI for
fully- and semi-supervised baseline, respectively. Only us-
ing LF images, fully- and semi-supervised baseline drop
1.26% and 2.22%, respectively. Only using HF images,
the model performance is very poor, dropping by 27.53%
and 25.96%, respectively. By using LF and HF images as
inputs but without fusion, fully- and semi-supervised base-
line drop 6.21% and 11.74%, respectively. Fusing LF and
HF information improves baseline by 2.74% and 2.37%, re-
spectively.

Through the above results, we find that only using LF
and HF images as input cannot achieve positive results. The
fusion of LF and HF features is critical to improving perfor-
mance. In other words, the X-shaped network architecture
that separates and fuses LF and HF features is the most ef-
fective.

Figure 5. Qualitative results on GlaS, CREMI, LA and LiTS. (a)
Raw images. (b) Ground truth. (c) MT. (d) Semi-supervised XNet
(3D XNet). (e) UNet (3D UNet). (f) Fully-supervised XNet (3D
XNet). The orange arrows highlight the difference among of the
results.

4.6. Qualitative Results

Figure 5 shows some qualitative results of different mod-
els, XNet achieves higher accuracy on both fully- and semi-
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supervised segmentation. Furthermore, because of the effi-
cient utilization of HF information, our model achieves bet-
ter performance on edges and details of segmentation ob-
jects.

5. Limitations
Because XNet emphasizes HF information, when images

hardly have HF information, XNet performance is nega-
tively impacted. Figure 6 shows visual differences of HF
images between ISIC-2017 [11] and CREMI. Compared to
CREMI, the image shown from ISIC-2017 contains lim-
ited HF information. Table 8 compares XNet with fully-
and semi-supervised baselines on ISIC-2017, XNet perfor-
mance is lower than baselines.

Method Model ISIC-2017
JI ↑ DC ↑ 95HD ↓ ASD ↓

Fully-
Supervised

UNet [42] 74.49 85.38 9.96 4.03
XNet 73.94 85.02 9.81 4.14

Semi-
Supervised

MT [48] 72.42 84.00 11.55 4.39
XNet 71.17 83.16 11.46 4.73

Table 8. Comparison of XNet and baseline models on ISIC-2017
test set. ISIC-2017 is a skin lesion segmentation dataset of der-
moscopic images. It includes 2000 images for training and 750
images for testing.

Figure 6. Visual comparison of HF images on ISIC-2017 and
CREMI. (a) Raw image of ISIC-2017. (b) Ground truth of ISIC-
2017. (c) HF image of ISIC-2017. (d) Raw image of CREMI. (e)
Ground truth of CREMI. (f) HF image of CREMI.

6. Conclusion
We propose a wavelet-based low and high frequency fu-

sion model XNet, which achieves state-of-the-art perfor-
mance in both fully- and semi-supervised semantic segmen-
tation of biomedical images. Extensive experiments on 2D
and 3D datasets demonstrate the effectiveness of our pro-
posed model. However, a limitation of XNet is that its per-
formance may be negatively impacted when high frequency
information is not available.

We believe that fully- and semi-supervised semantic seg-
mentation models can and should be unified. We hope that
our study may provide some examples and reflections for
their unification.
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