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Abstract

3D vision-language grounding (3D-VL) is an emerging
field that aims to connect the 3D physical world with natural
language, which is crucial for achieving embodied intelli-
gence. Current 3D-VL models rely heavily on sophisticated
modules, auxiliary losses, and optimization tricks, which
calls for a simple and unified model. In this paper, we pro-
pose 3D-VisTA, a pre-trained Transformer for 3D Vision
and Text Alignment that can be easily adapted to various
downstream tasks. 3D-VisTA simply utilizes self-attention
layers for both single-modal modeling and multi-modal fu-
sion without any sophisticated task-specific design. To fur-
ther enhance its performance on 3D-VL tasks, we construct
ScanScribe, the first large-scale 3D scene-text pairs dataset
for 3D-VL pre-training. ScanScribe contains 2,995 RGB-
D scans for 1,185 unique indoor scenes originating from
ScanNet and 3R-Scan datasets, along with paired 278K
scene descriptions generated from existing 3D-VL tasks, tem-
plates, and GPT-3. 3D-VisTA is pre-trained on ScanScribe
via masked language/object modeling and scene-text match-
ing. It achieves state-of-the-art results on various 3D-VL
tasks, ranging from visual grounding and dense captioning
to question answering and situated reasoning. Moreover,
3D-VisTA demonstrates superior data efficiency, obtaining
strong performance even with limited annotations during
downstream task fine-tuning.

1. Introduction

Aligning the 3D physical world with natural language is a
crucial step towards embodied artificial intelligence [18, 26,
37], where intelligent agents can understand and further exe-
cute human instructions in the real world [5, 29]. Recently,
3D vision-language (3D-VL) tasks have attracted growing
interest [19], including 3D visual grounding [8, 1], dense
captioning [11], grammar learning [23], question answer-
ing [3, 56], and situated reasoning [36].

However, most of the models developed for 3D-VL only
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Figure 1: Overall framework of our 3D-VisTA pipeline. We col-
lect diverse prompts, scene graphs, 3D scans, and objects to con-
struct ScanScribe dataset. Through self-supervised pre-training,
3D-VisTA supports various downstream tasks including 3D visual
grounding, dense captioning, question answering, and situated rea-
soning.

focus on one or two of these 3D-VL tasks and employ task-
specific designs [7, 3, 36, 35, 10]. For instance, 3D-SPS [35]
and BUTD-DETR [27] progressively discover the target ob-
ject by attending VL features and detecting objects in each
layer. 3DVG [55], MVT [24], and ViL3DRel [10] improve
3D visual grounding by explicitly infusing spatial relation
information into the model design. 3DJCG [7] jointly learns
3D dense captioning and visual grounding via a shared 3D
object proposal module [16] with two separate task-specific
heads [7]. Additionally, training these models often requires
manually specified auxiliary losses (e.g., 3D object detec-
tion/classification and text classification [35, 24, 7, 3, 36]) or
optimization tricks (e.g., knowledge distillation [4, 53] ). The
lack of a simple and unified approach creates a significant
gap in developing a general-purpose 3D-VL model.

To fill such gap, we introduce 3D-VisTA, a Transformer-
based model for 3D Vision and Text Alignment that can be
easily adapted to various downstream tasks. Unlike previ-
ous models that design sophisticated task-specific modules,
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we simply utilize a vanilla self-attention transformer [46]
for both single-modal modeling and multi-modal fusion in
the 3D-VisTA. As a general approach to further enhance
3D spatial comprehension [10, 55, 7], we explicitly encode
the pairwise spatial relations between objects into the self-
attention weights for 3D object modeling.

Inspired by the success of large-scale pre-training in
NLP [15, 41, 42, 6, 52, 31], CV [22, 17, 21, 25, 38], and
2D-VL [30, 2, 34, 40], we propose to pre-train 3D-VisTA
on 3D scene-text data, aiming for better performances on
3D-VL tasks. To this end, we construct ScanScribe, the
first large-scale 3D scene-text pairs dataset for 3D-VL pre-
training. We first collect RGB-D scans of indoor scenes from
ScanNet [12] and 3R-Scan [48] datasets. We also randomly
replace some objects in the scene with objects from the Ob-
javerse 3D object database [13] based on their categories,
in order to increase object diversity. To obtain the text, we
transform the text from existing datasets based on ScanNet
into scene descriptions, including the question-answer pairs
from ScanQA [3] and the referring expressions from Scan-
Refer [8] and ReferIt3D [1]. We further leverage the scene
graph annotations [51] of scans from 3R-Scan, and adopt
both templates and GPT-3 [6] to generate scene descriptions
from their scene graphs. In total, ScanScribe contains 278K
3D scene-text pairs for 2,995 RGB-D scans of 1,185 indoor
scenes, with 56.1K unique object instances.

We pre-train 3D-VisTA on the proposed ScanScribe
dataset. Our pre-training tasks include masked language
modeling, masked object modeling, and scene-text matching.
Notably, similar objectives are widely adopted in 2D-VL yet
rarely explored in the 3D-VL domain. The proposed pre-
training procedure effectively learns the alignment between
3D point clouds and texts, which eliminates the need for
auxiliary losses and optimization tricks in downstream task
fine-tuning. On six challenging 3D-VL tasks, ranging from
visual grounding (i.e., ScanRefer [8], Nr3D/Sr3D [1]) and
dense captioning (i.e., Scan2Cap [11]) to question answer-
ing (i.e., ScanQA [3]) and situated reasoning (i.e., SQA3D
[36]), fine-tuned 3D-VisTA raises the SOTA results on Scan-
Refer by 8.1% (acc@0.5), on Sr3D by 3.6%, on Scan2Cap
by 10.1%(C@0.25), on ScanQA by 3.5%/2.1% (EM@1),
and on SQA3D by 1.9%. Moreover, 3D-VisTA demonstrates
superior data efficiency, obtaining strong results with only
30% of the annotations for these downstream tasks.

Our main contributions can be summarized as follows:
• We propose 3D-VisTA, a simple and unified Transformer

for aligning 3D vision and text. The proposed Transformer
simply utilizes the self-attention mechanism, without any
complex task-specific design.

• We construct ScanScribe, a large-scale 3D-VL pre-training
dataset that contains 278K 3D scene-text pairs for 2,995
RGB-D scans of 1,185 unique indoor scenes.

• We introduce a self-supervised pre-training scheme for 3D-

VL, with masked language/object modeling and scene-text
matching. It effectively learns the 3D point cloud and text
alignment and further simplifies and improves downstream
task fine-tuning.

• We fine-tune 3D-VisTA and achieve state-of-the-art per-
formances on various 3D-VL tasks, ranging from visual
grounding and dense captioning to question answering and
situated reasoning. 3D-VisTA also demonstrates superior
data efficiency, obtaining strong results even with limited
annotations.

2. Related Work
3D Vision-language Learning. Recently, there has been
growing interest in 3D vision-language (3D-VL) learning.
Unlike traditional scene understanding, 3D-VL tasks con-
nect the physical world to natural language, which is crucial
for achieving embodied intelligence [18]. In this emerging
area, Chen et al. [8] and Achlioptas et al. [1] concurrently
introduce ScanRefer and ReferIt3D datasets for benchmark-
ing natural language grounding to 3D object properties and
relations. Besides 3D visual grounding, Azuma et al. [3]
develop a 3D question-answering dataset named ScanQA
that requires a model to answer a question about objects
and their relations given a 3D scene. More recently, Ma et
al. [36] propose a situated reasoning task called SQA3D for
embodied scene understanding in 3D scenes.

Several models have been proposed for these bench-
marks [8, 1, 35, 27, 55, 24, 10, 20, 43]. Notably, 3D-SPS [35]
and BUTD-DETR [27] progressively discover the target ob-
ject by leveraging cross attention mechanism and language
guidance. 3DVG [55], MVT [24], and ViL3DRel [10] tackle
3D visual grounding by explicitly infusing spatial relation
information into their models. Although these works have
achieved impressive results in bridging 3D vision and lan-
guage, they still rely heavily on task-specific knowledge in
model design [55, 24, 10] and sophisticated optimization
techniques [10, 27, 35]. In contrast, the proposed 3D-VisTA
unifies visual grounding, question-answering, and situated
reasoning through a simple Transformer-based architecture.
Training 3D-VisTA is also straightforward, without requiring
any auxiliary losses or sophisticated optimization techniques.
Refer to Table 1 for a detailed comparison between 3D-
VisTA and other 3D-VL models w.r.t. task, auxiliary Loss,
and architecture.
Large-scale Pre-training. In recent years, large-scale pre-
training has become a cornerstone of natural language
processing (NLP), computer vision (CV), and 2D vision-
and-language (2D-VL) domains. The introduction of the
transformer-based architecture [47], especially BERT [15]
and GPT [41, 42, 6], has led to significant improvements in
various NLP tasks. The success of these models has led to
the development of more advanced pre-training techniques
such as XLNet [52] and RoBERTa [31]. These models have
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Table 1: The comparison between 3D-VisTA and other models w.r.t. tasks, auxiliary losses,
and task-specific architectures.“VG” stands for visual grounding, “QA” for question an-
swering, “SR” for situation reasoning, “DC” for dense captioning. “DET” stands for object
detection loss, “KD” for knowledge distillation loss, “O-CLS” for object classification
loss, and “T-CLS” for text classification loss. “CA” stands for cross attention, “2D” for 2D
features, “MV” for multi-view features, and “LC” for language-conditioned modules.

Method Task Auxiliary loss Architecture
DET KD O-CLS T-CLS CA 2D MV LC

MVT [24] VG ✓ ✓ ✓ ✓
3D JCG [7] VG, DC ✓ ✓ ✓ ✓ ✓

ViL3DRel [10] VG ✓ ✓ ✓ ✓ ✓
ScanQA [3] QA ✓ ✓ ✓ ✓
SQA3D [36] SR ✓ ✓

3D-VisTA (ours) VG,QA,SR,DC × × × × × × × ×

Table 2: The comparison between ScanScribe
and other 3D-VL datasets. “VG” stands for
Visual Grounding, “QA” for Question Answer-
ing, “SR” for Situated Reasoning, and “PT”
for Pre-training. “Vocab.” denotes the text vo-
cabulary size.

Dataset Task Size Vocab.

Nr3D [1] VG 30.0K 2,986
Sr3D [1] VG 90.5K 158

ScanRefer [8] VG 36.7K 4,197
ScanQA [3] QA 26.5K 3,357
SQA3D [36] SR 33.4K 4,535

ScanScribe PT 278.0K 8,197

achieved state-of-the-art performance on a wide range of
NLP tasks, including text classification, question answering,
and language generation. The most successful pre-training
approach in CV is the ImageNet [14] pre-training, which has
been used as a starting point for a wide range of downstream
tasks such as object detection and image segmentation. Re-
cently, the introduction of transformer-based models such as
ViT [17] and Swin Transformer [32] has led to significant
improvements in various CV tasks. The field of 2D-VL has
also seen significant advancements due to pre-training tech-
niques. In particular, the introduction of the ViLBERT [34]
and LXMERT [45] models has led to state-of-the-art perfor-
mance on tasks such as visual question answering and image
captioning. More recently, the development of CLIP [40],
ALIGN [50], and Flamingo [2] has shown that large-scale
pre-training on image-text pairs leads to better cross-modal
understanding and the emerge of in-context learning in a
zero-shot or few-shot manner.

Although large-scale pre-training has become a crucial
technique in NLP, CV, and 2D-VL, it has rarely been ex-
plored in 3D-VL. [7, 9] explore multi-task learning of visual
grounding and dense captioning, and then further fine-tune
their models on each task. The exploration of 3D-VL pre-
training may be hindered by the lack of a large-scale pre-
training dataset. Therefore, we construct ScanScribe, the
first large-scale 3D scene-text pairs dataset for 3D-VL pre-
training. As shown in Table 2, ScanScribe is much larger
than existing 3D-VL datasets and also has more diverse text.
Pre-training 3D-VisTA on ScanScribe has led to significant
improvements on 3D-VL tasks, so we believe ScanScribe
can fuel the exploration of 3D-VL pre-training in the future.

3. 3D-VisTA

In this section, we introduce 3D-VisTA, a simple and
unified Transformer for aligning 3D scenes and text. As
illustrated by Fig. 2, 3D-VisTA takes a pair of scene point
cloud and sentence as input. It first encodes the sentence via
a text encoding module and processes the point cloud via a
scene encoding module. Then the text and 3D object tokens

are fused by a multi-modal fusion module to capture the
correspondence between 3D objects and text. 3D-VisTA is
pre-trained using self-supervised learning and can be easily
fine-tuned to various downstream tasks. Next, we describe
each module in detail.

3.1. Text Encoding

We adopt a four-layer Transformer to encode the sentence
S into a sequence of text tokens {wcls, w1, w2, · · ·, wM},
where wcls is a special classification token ([CLS]) and
M is the sentence length. This text encoding module is
initialized by the first four layers of a pre-trained BERT [15].

3.2. Scene Encoding

Given the point cloud of a 3D scene, we first use segmen-
tation masks to break down the scene into a bag of objects.
The segmentation masks can be either obtained from ground
truth or instance segmentation models [16, 28, 44]. For each
object, we sample 1024 points and normalize their coordi-
nates into a unit ball. Then the object point cloud is fed into
PointNet++ [39] to obtain its point features and semantic
class. We compose the point features fi, the semantic class
embedding ci, and the location li (i.e., 3D position, length,
width, height) as the representation of the object token i:

oi = fi +Wcci +Wlli, i = 1, 2, ..., N, (1)

where Wc and Wl are additional projection matrices to map
ci and li into the same dimension as fi.

To further provide a contextual representation of objects,
we capture the object-to-object interactions by infusing ob-
ject tokens into a four-layer Transformer. Motivated by pre-
vious works [55, 24, 10], we explicitly encode the pairwise
spatial relations of objects into the Transformer (Spatial
transformer in Fig. 2). More specifically, we follow [10] to
define the pairwise spatial features for the object pair i, j:

sij = [dij , sin(θh), cos(θh), sin(θv), cos(θv)],

where dij is the Euclidean distance and θh, θv are the hori-
zontal and vertical angles of the line connecting the centers
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Figure 2: The model architecture of our 3D-VisTA, which includes text encoding, scene encoding, and multi-modal fusion modules.
3D-VisTA is pre-trained by self-supervised learning objectives, which include masked language modeling, masked object modeling, and
scene-text matching. Pre-trained 3D-VisTA can be easily adapted to various downstream tasks by adding lightweight task heads without
task-specific design like auxiliary losses and optimization tricks.

of objects i, j. The pairwise spatial features S = [sij ] ∈
RN×N×5 are used to modulate the attention weights of the
self-attention layers in the Transformer:

Attn(Q,K, V, S) = softmax

(
QKT

√
dh

+ log σ(Sw)

)
V,

where w ∈ R5 is used to map the spatial features to the
attention scores and σ is the sigmoid function.

3.3. Multi-modal Fusion

We simply concatenate the text and the 3D object tokens
and send them to a L-layer Transformer (Unified transformer
in Fig. 2) for multi-modal fusion. Learnable type embeddings
are added to the tokens to differentiate text and 3D objects.
We denote the output of the multi-modal fusion module as
{wcls,w1:M , o1:N} for [CLS], text tokens, and 3D object
tokens, respectively.

3.4. Self-supervised Pre-training

To learn the 3D scene and text alignment in a self-
supervised manner, we pre-train 3D-VisTA on 3D scene-text
pairs via the following proxy tasks:
Masked Language Modeling (MLM). We follow the BERT
pre-training [15] to perform MLM: (1) 15% of the text tokens
are randomly chosen; (2) 80% of the time: replace these
tokens with [MASK]; (2) 10% of the time: replace these
tokens with some random text tokens; (3) 10% of the time:
these tokens remain unchanged. The model is trained to
predict the masked text tokens given the remaining text and
3D object tokens:

LMLM = −E(w,o)∼D logPθ

(
wm | w\m,o

)
. (2)

Masked Object Modeling (MOM). Similar to MLM, we
mask out 10% of 3D object tokens. However, we mask a 3D
object token by only replacing its point features and semantic
embedding (i.e., “fi + Wcci” in Eq. (1)) with a learnable
mask embedding but keep its positional information (i.e.,
“Wlli” in Eq. (1)) unchanged. The model is trained to utilize
the position clue of the masked object to predict its semantic
class c given the remaining 3D objects and text:

LMOM = −E(w,o)∼D logPθ

(
c(om) | o\m,w

)
. (3)

Scene-Text Matching (STM). While masked language and
object modeling enable local text-object alignment in a
fine-grained granularity, we also perform scene-text match-
ing to enhance the global fusion of scene and text, which
we find very beneficial for downstream question-answering
tasks. More specifically, we extract the output corresponds to
[CLS] as the global representation of the input scene-text
pair, and feed it into a two-layer MLP to predict if the scene
and the text are matched:

LSTM = −E(w,o)∼D logPθ (y | w,o) . (4)

In practice, 30% of the samples in a training batch are nega-
tive pairs, created by replacing the scene point cloud or text
with a randomly selected sample.
Final loss. Our final pre-training objective is obtained by
simply adding the losses of the proxy tasks above:

Lpre-train = LMLM + LMOM + LSTM (5)

Notably, the proposed pre-training scheme is self-supervised
and task-agnostic, unlike the supervised multi-task learning
used in previous work [7] that requires task supervision.
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Table 3: The composition of ScanScribe. ∗We only use Objaverse
to provide candidate object replacement for the 3D scenes in other
two datasets; thus no scene-text pair is generated.

Source 3D Text Scene-Text
Scan Scene Object Human Template GPT-3 Pairs

ScanNet 1,513 707 36.2K 93.2K 90.5K - 183.7K
3R-Scan 1,482 478 13.6K - 89.6K 4.7K 94.3K
Objaverse∗ - - 6.3K - - - -

ScanScribe 2,995 1,185 56.1K 93.2K 180.1K 4.7K 278.0K

3.5. Downstream Task Finetuning

The pre-trained 3D-VisTA can be easily adapted to var-
ious 3D-VL tasks by adding lightweight task heads. More
specifically, we fine-tune 3D-VisTA on the following tasks:
3D Visual Grounding tasks a model to locate a target object
in a 3D scene from a referring expression. To find the referred
object, we apply a two-layer MLP to each object token oi,
and obtain the probability of the object being referred to.
The model is fine-tuned using the cross-entropy loss.
3D Dense Captioning is introduced by [11] to test a model’s
ability of detecting and describing objects in a 3D scene. Fol-
lowing [30], we take w1:M and predict text tokens autore-
gressively to generate a sentence. The model is fine-tuned
using cross-entropy loss.
3D Question Answering requires a model to answer an
object-related question given a 3D scene. Following [3], we
feed the text tokens w1:M and the object tokens o1:N into
a modular co-attention network (MCAN) [54] to produce
answers. The model is fine-tuned using the QA loss and the
object localization loss.
3D Situated Reasoning is recently proposed by [36] to
benchmark the 3D scene understanding of embodied agents.
To adapt 3D-VisTA to this task, we concatenate the situation
description and the question into a single input sentence. The
answer classification is similar to the 3D question answering
task. The model is fine-tuned using the answer loss.

In general, we find adapting 3D-VisTA to these down-
stream tasks much simpler than previous methods [8, 24,
10, 3, 36], as 3D-VisTA is simply fine-tuned using the task
loss only, without the need for any auxiliary losses (e.g.,
sentence/object classification loss [8, 3]) or optimization
tricks (e.g., multi-view aggregation [24] and knowledge dis-
tillation [10]). This makes 3D-VisTA a more unified and
general-purpose 3D-VL model.

4. ScanScribe
In recent years, large-scale pre-training has been widely

used to improve the performance on downstream tasks in
CV [49], NLP [15], and 2D-VL [30, 45]. However, large-
scale pre-training has barely been touched in the 3D-VL
domain, possibly due to the lack of pre-training datasets for
3D-VL. To facilitate the exploration of 3D-VL pre-training,
we build a large-scale 3D scene-text pairs dataset, named

ScanScribe. As illustrated in Table 3, the construction of 3D
scene-text pairs in ScanScribe comprises two parts:
3D scenes. We collect RGB-D scans of indoor scenes from
ScanNet [12] and 3R-Scan [48]. To increase the diversity
of 3D objects in these scenes, 10% of the object instances
in each scene are randomly replaced by objects from the
Objaverse 3D object database[13] based on their categories.
For each ScanNet and 3R-Scan object category, we download
about 40 object instances from Objaverse as candidate object
replacements. As a result, we collect 2,995 RGB-D scans of
1,185 indoor scenes, with 56.1K unique object instances.
Text. For the scans from ScanNet, we transform the
text from existing datasets based on ScanNet into scene
descriptions, including the question-answer pairs from
ScanQA [3] and the referring expressions from Scan-
Refer [8] and ReferIt3D [1]. For the scans from 3R-
Scan, we adopt both templates and GPT-3 [6] to generate
scene descriptions based on their scene graph annotations
[51]. Specifically, for each object, we first extract all
the ⟨object, relation, neighbor⟩ triplets from the
scene graph. We then use the template “This is a object,
a neighbor is relation to object” to generate the
descriptions. Note that we only choose objects with fewer
than 7 neighbors in a template-based generation. We further
explore using GPT-3 to generate the descriptions with the
following prompt “object is relation to neighbor
...(repeat until all the neighbors have been used). Where is
object? or Summarize the scene.” Ultimately, 278K scene
descriptions are generated for the collected 3D scenes.

5. Experiments

5.1. Experimental Settings

Implementation Details. The pre-training runs for 30
epochs with a batch size of 128. We use the AdamW [33] op-
timizer with β1 = 0.9, β2 = 0.98. The learning rate is set to
1e−4, with a warmup of 3,000 steps, and cosine decay. Dur-
ing pre-training, we use ground-truth segmentation masks to
generate object-level point clouds.During fine-tuning, we use
ground-truth masks or Mask3d [44], which depends on the
task setting. On the ScanRefer dataset, we also incorporate
PointGroup [28] for comparison with previous approaches.
In ablation studies, we use ground-truth masks in all tasks for
simplicity. Both pre-training and fine-tuning are conducted
on a single NVIDIA A100 80GB GPU.
3D Visual Grounding. We evaluate our model on three
datasets for this task: ScanRefer [8], Nr3D, and Sr3D [1].
For Nr3D/Sr3D, we follow ReferIt3D [1] to use ground-truth
object masks and report the results as the grounding accu-
racy, i.e., whether the model correctly selects the referred
object among ground-truth object proposals. For ScanRefer,
we follow [8] to use detector-generated object proposals and
report the results as Acc@k(k ∈ {0.25, 0.5}), i.e., the frac-
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Table 4: Grounding accuracy (%) on Nr3D and Sr3D with ground-truth object proposals. ∆ denotes the performance difference between
3D-VisTA and 3D-VisTA (scratch). 3D-VisTA achieves competitive results with SOTA on Nr3D and outperforms SOTA on Sr3D.

Method
Nr3D Sr3D

Overall Easy Hard
View
Dep

View
Indep

Overall Easy Hard
View
Dep

View
Indep

3DVG-Trans [55] 40.8 48.5 34.8 34.8 43.7 51.4 54.2 44.9 44.6 51.7
TransRefer3D [20] 48.0 56.7 39.6 42.5 50.7 57.4 60.5 50.2 49.9 57.7
LAR [4] 48.9 58.4 42.3 47.4 52.1 59.4 63.0 51.2 50.0 59.1
SAT [53] 56.5 64.9 48.4 54.4 57.6 57.9 61.2 50.0 49.2 58.3
3D-SPS [35] 51.5 58.1 45.1 48.0 53.2 62.6 56.2 65.4 49.2 63.2
MVT [24] 59.5 67.4 52.7 59.1 60.3 64.5 66.9 58.8 58.4 64.7
ViL3DRel [10] 64.4 70.2 57.4 62.0 64.5 72.8 74.9 67.9 63.8 73.2

3D-VisTA (scratch) 57.5 65.9 49.4 53.7 59.4 69.6 72.1 63.6 57.9 70.1
3D-VisTA 64.2 72.1 56.7 61.5 65.1 76.4 78.8 71.3 58.9 77.3
∆ 6.7 ↑ 6.2 ↑ 7.3 ↑ 7.8 ↑ 5.7 ↑ 6.8 ↑ 6.7 ↑ 7.7 ↑ 1.0 ↑ 7.2 ↑

Table 5: Grounding accuracy (%) on ScanRefer with detected object proposals. “Det.” represents the 3D object detection module used in the
model. “VN” stands for VoteNet [16], “PG” for PointGroup [28], and M3D for Mask3D [44], while “Opt.” denotes jointly optimizing the
object detector on ScanRefer. Mask3D significantly improves the grounding accuracy by providing more accurate object proposals.

Method Det.
Unique Multiple Overall

acc@0.25 acc@0.5 acc@0.25 acc@0.5 acc@0.25 acc@0.5

3DVG-Trans [55] Opt. 81.9 60.6 39.3 28.4 47.6 34.7
3D-SPS [35] Opt. 84.1 66.7 40.3 29.8 48.8 37.0
3DJCG [7] Opt. 83.5 64.3 41.4 30.8 49.6 37.3

SAT [53] VN 73.2 50.8 37.6 25.2 44.5 30.1
MVT [24] PG 77.7 66.5 31.9 25.3 40.8 33.3
ViL3DRel [10] PG 81.6 68.6 40.3 30.7 47.9 37.7

3D-VisTA (scratch) PG 76.0 66.9 33.3 27.0 41.2 34.4
3D-VisTA PG 77.0 67.9 37.9 30.4 45.2 37.3
3D-VisTA (scratch) M3D 77.4 70.9 38.7 34.8 45.9 41.5
3D-VisTA M3D 81.6 75.1 43.7 39.1 50.6 45.8
∆ M3D 4.2 ↑ 4.2 ↑ 5.0 ↑ 4.3 ↑ 4.7 ↑ 4.3 ↑

Table 6: Captioning results on Scan2Cap dataset. “C” stands for
“CIDEr”, “B-4” for “BLEU-4”, “M” for “METEOR”, and “R” for
“ROUGE”, respectively. “@0.25” and “@0.5” represent the overlap
ratios between the predicted boxes and ground truth boxes.

Method @0.25 @0.5
C B-4 M R C B-4 M R

Scan2Cap [11] 53.7 34.3 26.1 55.0 35.2 22.4 21.4 43.5
3DJCG [7] 60.9 39.7 27.5 59.0 47.7 31.5 24.3 51.8

3D-VisTA (scratch) 66.8 36.6 28.0 58.4 61.6 34.1 26.8 55.0
3D-VisTA 71.0 36.5 28.4 57.6 66.9 34.0 27.1 54.3
∆ 4.2 ↑ 0.1 ↓ 0.4 ↑ 0.8 ↓ 5.3 ↑ 0.1 ↓ 0.3 ↑ 0.7 ↓

tion of referring queries whose predicted box overlaps the
ground truth with IoU > k.
3D Dense Captioning We evaluate our model on the
Scan2cap dataset [11] and report the text similarity metrics
under different box overlap ratios.
3D Question Answering. We evaluate our model on the
ScanQA dataset [3] and use exact matches (EM@1 and
EM@10) as the evaluation metric. We also report several
sentence evaluation metrics, including BLEU-4, ROUGE,
METEOR, and CIDEr. Both test sets (w/ or w/o objects) of

ScanQA are used in our evaluation.
3D Situated Reasoning We evaluate our model on the
SQA3D dataset [36] and report the answer accuracy under
different types of questions as the evaluation metric.

5.2. Downstream Task Results

In this section, we discuss the experimental results of
the downstream tasks and compare the proposed 3D-VisTA
model with the state-of-the-art (SOTA) methods. Results are
presented in Tables 4 to 8 and Fig. 3 and the main observa-
tions from these results are as follows:

1. Even trained from scratch, 3D-VisTA achieves compet-
itive performances with SOTA methods. Specifically,
3D-VisTA (scratch) obtains an overall accuracy of 57.5%
and 69.6% on Nr3D and Sr3D, which outperforms most
previous models; it gets an EM@1 accuracy of 25.2% on
ScanQA, which is 1.7% higher than SOTA. Of note, 3D-
VisTA is trained on these datasets simply using the task
losses, without any auxiliary losses or optimization tricks,
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Table 7: Answer accuracy on ScanQA using object proposals from Mask3D. Each entry denotes “test w/ object” / “test w/o object”.

Method EM@1 EM@10 BLEU-4 ROUGE METEOR CIDEr

Image+MCAN [3] 22.3 / 20.8 53.1 / 51.2 14.3 / 9.7 31.3 / 29.2 12.1 / 11.5 60.4 / 55.6
ScanRefer+MCAN [3] 20.6 / 19.0 52.4 / 49.7 7.5 / 7.8 30.7 / 28.6 12.0 / 11.4 57.4 / 53.4
ScanQA [3] 23.5 / 20.9 56.5 / 54.1 12.0 / 10.8 34.3 / 31.1 13.6 / 12.6 67.3 / 60.2

3D-VisTA (scratch) 25.2 / 20.4 55.2 / 51.5 10.5 / 8.7 35.5 / 29.6 13.8 / 11.6 68.6 / 55.7
3D-VisTA 27.0 / 23.0 57.9 / 53.5 16.0 / 11.9 38.6 / 32.8 15.2 / 12.9 76.6 / 62.6
∆ 1.8 ↑ / 2.6 ↑ 2.7 ↑ / 2.0 ↑ 5.5 ↑ / 3.2 ↑ 3.1 ↑ / 3.2 ↑ 1.4 ↑ / 1.3 ↑ 8.0 ↑ / 6.9 ↑

Table 8: Answer accuracy on SQA3D using object proposals from Mask3D. Pre-
training improves the results of most question types.

Method
Test set

Avg.
What Is How Can Which Other

GPT-3 [36] 39.7 46.0 40.5 45.6 36.1 38.4 41.0
ClipBERT [36] 30.2 60.1 38.7 63.3 42.5 42.7 43.3
SQA3D(w/o s) [36] 28.6 65.0 47.3 66.3 43.9 42.9 45.3
SQA3D [36] 31.6 63.8 46.0 69.5 43.9 45.3 46.6

3D-VisTA (scratch) 32.1 62.9 47.7 60.7 45.9 48.9 46.7
3D-VisTA 34.8 63.3 45.4 69.8 47.2 48.1 48.5
∆ 2.7 ↑ 0.4 ↑ 2.3 ↓ 9.1 ↑ 1.3 ↑ 0.8 ↓ 1.8 ↑

Figure 3: The performance of finetuning 3D-VisTA
using various amounts of training data.

indicating that 3D-VisTA is a very simple yet effective
architecture for 3D-VL tasks.

2. Pre-training on ScanScribe significantly improves the
performance of 3D-VisTA. Overall, the pre-training im-
proves the accuracy on Nr3D/Sr3D by 6.7%/6.8%, the
acc@0.25/0.5 on ScanRefer by 4.7%/4.3%, the EM@1
on ScanQA by 1.8%/2.6%, the C@0.25 on Scan2Cap
by 4.2%, and the average accuracy on SQA3D by 1.8%.
These large improvements consolidate the efficacy of
ScanScribe for the 3D-VL pre-training.

3. The pre-trained 3D-VisTA outperforms SOTA by a
large margin. 3D-VisTA outperforms ViL3DRel [10]
on Sr3D by 3.6% and on ScanRefer by 2.7%/8.1%
(acc@0.25/0.5), beats ScanQA [3] by 3.5%/2.1 (EM@1),
Scan2Cap SOTA by 10.1%/19.2% (C@0.25/0.5),
SQA3D [36] by 1.9% (Avg.). 3D-VisTA sets a new record
for these 3D-VL tasks and may inspire future research on
3D-VL pre-training.

4. Finetuning 3D-VisTA on downstream tasks with lim-
ited annotations achieves strong results. As shown
in Fig. 3, being fine-tuned using 30% and 40% of the
annotations on ScanRefer and ScanQA, the pre-trained
3D-VisTA can achieve better performance than the one
trained from scratch with full data. We hypothesize that
3D-VisTA has successfully captured the alignment be-
tween 3D objects and text via pre-training and is thus
able to readily adapt to downstream tasks of various for-
mats. It also reveals the potential of 3D-VisTA to learn
unseen tasks in a zero-shot or few-shot manner, which

has emerged in NLP [6] and 2D-VL [2] via large-scale
pre-training.

5.3. Ablation Studies

In this section, we conduct ablation studies to analyze
the impact of several important hyperparameters, including
Transformer depth, pre-training objectives, and data amount.
Transformer Depth. Since the model size is a key factor
in the pre-training of NLP and 2D-VL, we study the effect
of the transformer depth by varying the number of layers in
the multimodal fusion module. As shown in Table 9a, using
4 layers achieves the best performance and simply adding
more layers does not help. This observation is somewhat
contradictory to the ones from NLP and 2D-VL. It points
out that although ScanScribe is much larger than existing
3D-VL datasets, it is still far from enough to unleash the full
potential of pre-training in the 3D-VL domain.
Pre-training Objectives. Table 9b presents the ablation
study for the pre-training objectives. The MLM objective
alone slightly benefits question answering (QA), but brings
a negative impact on visual grounding (VG). Adding MOM
and STM boosts the performance of both QA and VG, which
highlights the importance of MOM and STM for aligning 3D
vision and text. Overall, using all three objectives together
leads to the best performance for both tasks, with STM and
MOM providing the greatest improvements in accuracy.
Pre-training Data. Table 9c presents the results using vari-
ous configurations of pre-training data. We can see that sim-
ply using the ScanNet data for pre-training, which is from
the same domain as downstream tasks, leads to a significant
improvement in VG and QA. This validates the effectiveness
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There is a chair pushed 
up to the table. It is the 
second from the right.

There is a chair sitting
on the floor. It is to the
right of another chair.

What color is the bed?

brown  blue      blue

What square shaped object
is hanging on the wall?

rectangular  picture  picture

I am opening a window. What
direction should I travel if I want to
use the toilet?
left    right        right

this is a window with blinds. it is above a 
desk.
the tv is mounted on the wall. it is to the 
right of the table.
this is a black tv. it is mounted to the wall.

Visual Grounding Question Answering Situated Reasoning

Dense Captioning

Ground truthTrain from scratch Pre-train

Figure 4: Qualitative results for various tasks. Italic text stand for the inputs, blue boxes or text for the predictions from 3D-VisTA trained
from scratch, red for the predictions from pre-trained 3D-VisTA, and green for the ground truth, respectively. The results show that
pre-training improves the understanding of spatial relations, visual concepts, and situations.

Table 9: Ablation studies of 3D-VisTA w.r.t. Transformer depth, pre-
training objectives, and pre-training data. We report the grounding
accuracy on ScanRefer for Visual Grounding (VG) and the EM@1
accuracy on ScanQA for Question Answering (QA).

(a) Transformer Depth

# layer VG QA

2 55.8 23.7
4 57.4 23.8
6 56.6 22.8
8 56.3 22.7

(b) Pre-training Objectives

MLM MOM STM VG QA
× × × 52.0 20.7
✓ × × 51.5 21.3
✓ ✓ × 57.1 22.5
✓ ✓ ✓ 57.4 23.8

(c) Pre-training Data

ScanNet 3R-Scan Objaverse VG QA

× × × 52.0 20.7
✓ × × 54.6 22.6
✓ ✓ × 56.5 23.5
✓ ✓ ✓ 57.4 23.8

+2.7%

+5.2%

+6.0%

Figure 5: The performance gap between scratch and pre-training
over different sentence lengths (≤ 15,≤ 30, > 30) in ScanRefer.

of pre-training, even in the case of no additional 3D data than
downstream tasks. Adding 3R-Scan and Objaverse increases
the amount and the diversity of 3D data, which further boosts
the accuracy of both VG and QA. Overall, the best perfor-
mance for both tasks is achieved when all three data sources
are used. This points out a promising path for improving
3D-VL tasks — collecting more data for pre-training.

5.4. Qualitative Studies and Additional Results

In this section, we perform additional studies to better
understand how pre-training helps. As shown in Fig. 4, pre-
training improves the spatial understanding of 3D-VisTA for
visual grounding, so it can better align with human prior
viewpoint and reason over spatial relations. This is very
helpful when the model needs to distinguish the target object
from multiple instances of the same class. Pre-training also
helps with a better understanding of visual concepts like
colors and shapes, and situations for question answering
and situated reasoning. Besides, pre-training enhances the
capability of aligning long text with 3D scenes, as evidenced
by the larger improvement over longer queries in Fig. 5.

6. Conclusion
This paper proposes 3D-VisTA, a simple yet effective

architecture for 3D-VL tasks. The model simply uses self-
attention layers and can be easily adapted to various down-
stream tasks, without requiring any auxiliary loss or opti-
mization trick. We also introduce ScanScribe, the first large-
scale 3D scene-text pairs dataset for 3D-VL pre-training. The
pre-trained 3D-VisTA achieves state-of-the-art results on a
variety of 3D-VL tasks with superior data efficiency, paving
the path to future foundation models for 3D-VL tasks.
Future Works. Currently, 3D-VisTA uses an offline 3D
object detection module, which may be a bottleneck for
further improvement. Jointly optimizing the object detection
module in the pre-training phase is an interesting future
direction. Besides, the data amount in ScanScribe is still
insufficient for large-scale 3D-VL pre-training, so scaling
up the pre-training dataset as well as the model size is a
promising direction to further improve the 3D-VL learning.
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