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Abstract

In this paper, we develop rotation-equivariant neural
networks for 4D panoptic segmentation. 4D panoptic seg-
mentation is a benchmark task for autonomous driving that
requires recognizing semantic classes and object instances
on the road based on LiDAR scans, as well as assigning
temporally consistent IDs to instances across time. We ob-
serve that the driving scenario is symmetric to rotations on
the ground plane. Therefore, rotation-equivariance could
provide better generalization and more robust feature learn-
ing. Specifically, we review the object instance cluster-
ing strategies and restate the centerness-based approach
and the offset-based approach as the prediction of invari-
ant scalar fields and equivariant vector fields. Other sub-
tasks are also unified from this perspective, and different
invariant and equivariant layers are designed to facilitate
their predictions. Through evaluation on the standard 4D
panoptic segmentation benchmark of SemanticKITTI, we
show that our equivariant models achieve higher accu-
racy with lower computational costs compared to their non-
equivariant counterparts. Moreover, our method sets the
new state-of-the-art performance and achieves 1st place on
the SemanticKITTI 4D Panoptic Segmentation leaderboard.

1. Introduction

Perception with LiDAR point clouds is an important part
of building real-world autonomous systems, for example,
self-driving cars [38, 32, 50, 36]. As the computer vision
community gradually builds more capable neural networks,
the tasks also become more complex. 4D panoptic segmen-
tation [1] is an emerging task that combines several previ-
ously independent tasks: semantic segmentation, instance
segmentation, and object tracking, in a unified framework,
given sequential LiDAR scans. As the output provides
abundant useful information for understanding the dynamic
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Figure 1. Predicting centerness or offset is a critical step in esti-
mating object centers as part of the overall panoptic segmentation.
A centerness heatmap can be viewed as an invariant field, while
the offset can be viewed as an equivariant vector field. In our pro-
posed approach, we devise different, corresponding methods to
predict invariant and equivariant fields, respectively.

driving environment, solving this task has significant prac-
tical value.

While there are a few existing methods to solve 4D
panoptic segmentation [1, 24], they ignore the rich, inher-
ent symmetries present in this task. For example, for the
point cloud of an object instance, its center is invariant to
rotations, and the offset vector from any point on the object
to the center is attached to and thus rotates along with the
body frame. See Fig. 1 for a visual illustration.

As such, in this paper, we propose to develop equivariant
neural networks to solve 4D panoptic segmentation. Equiv-
ariant networks [11] are deep learning models that are guar-
anteed to render outputs that respect the symmetries in data.
For the 4D panoptic segmentation task, rotational equivari-
ance can help the model perform consistently and general-
ize over rotations in the input data.

While equivariance is a nice property, equivariant mod-
els can be complex and incur high computational costs [52,
49, 45]. As a result, most existing equivariant models are
only applied to small-scale problems, such as molecular
analysis and single-object perception [17]. Recent works
have looked into more efficient equivariant networks [52]
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and applications in larger problems [49], but significant per-
formance improvement without extra computational cost
has not been achieved in large-scale equivariant perception
solutions.

In this work, SO(2)-equivariance is incorporated in the
4D segmentation model. We find that the equivariance
brings consistent improvements in several performance
metrics and that formulating the output as equivariant vector
fields helps maximize the benefits of equivariant models, as
compared to restricting to invariant scalar fields (see Fig. 1).
Furthermore, our equivariant networks can improve the seg-
mentation performance while reducing computational costs
at the same time. With our proposed design, we outperform
the non-equivariant models and, notably, achieve the top-1
ranking position in the SemanticKITTI benchmark.

Our main contributions in this paper are as follows:

• We develop the first rotation-equivariant model for 4D
panoptic segmentation, bringing improvements in both
performance and efficiency.

• We investigate different strategies and designs to con-
struct the equivariant architecture. Specifically, we dis-
cover the advantage of formulating prediction targets
as equivariant vector fields, as compared to only in-
variant fields.

• Evaluated on the SemanticKITTI benchmark, our
equivariant models significantly outperform existing
methods, validating the value of equivariance in this
large-scale perception task.

• Our code is open-sourced at https:
//eq-4d-panoptic.github.io/.

2. Related work
2.1. LiDAR 3D and 4D Panoptic segmentation

3D Panoptic segmentation The task of panoptic segmen-
tation is first proposed in the image domain [23] and later
extended to LiDAR point clouds with the release of a large-
scale outdoor LiDAR point cloud dataset with panoptic la-
bels, SemanticKITTI [3]. Similar to the semantic segmenta-
tion [8, 4, 21, 5, 6] and panoptic segmentation techniques in
the image domain [31, 48, 7], their 3D counterparts can be
classified into proposal-based and proposal-free methods.
Proposal-based methods [3, 37] require a detection module
to locate the objects first and then predict the instance mask
for each bounding box and conduct semantic segmentation
on the background pixels. This strategy needs to deal with
potential conflicts among the segmentations. On the other
hand, proposal-free methods conduct semantic segmenta-
tion first and then cluster the points belonging to different
instances. The clustering strategy impacts overall efficiency

and performance. Offset prediction and centerness predic-
tion are two major approaches for this. Offset prediction
[19, 47] means that each point predicts the offset vector to
the instance center, and the clustering is conducted on the
predicted centers. Centerness prediction [1] is to regress a
heatmap of the closeness to the instance center at any spa-
tial location. Then the local maximums on the heatmap are
used to cluster the points nearby. These two strategies can
also be combined [51, 26]. Other clustering methods also
exist. For example, [18] proposes an end-to-end clustering
layer. [33] uses a graph network to cluster over-segmented
points into instances.

4D Panoptic segmentation The 4D task is to provide
temporally consistent object IDs on top of 3D panoptic seg-
mentation. MOPT [22] is an early attempt to provide track-
ing ID for panoptic outputs. 4D-PLS [1] proposes evalua-
tion metrics and a strong baseline method for this task. It ac-
cumulates point clouds in sequential timestamps to a com-
mon frame, applies segmentation on the aggregated point
clouds, and clusters the instances using the centerness pre-
diction. 4D-DS-Net [20] and 4D-StOP [24] follow this
pipeline but use offset prediction to cluster the instances.
CA-Net [28] uses an off-the-shelf 3D panoptic segmenta-
tion network and learns the temporal instances association
through contrastive learning.

2.2. Equivariant Learning

Equivariant neural networks The equivariance to trans-
lations enables CNNs to generalize over translations of im-
age content with much fewer parameters compared with
fully connected networks. Equivariant networks extend the
symmetries to rotations, reflections, permutations, etc. G-
CNN [11] enables equivariance to 90-degree rotations of
images. Steerable CNNs extend the symmetry to contin-
uous rotations [42]. The input is also extended from 2D
images to spherical [12, 15] and 3D data [41]. To deal
with infinite groups (e.g., continuous rotations), general-
ized Fourier transforms and irreducible representations are
adopted to formulate convolutions in the frequency domain
[44, 40]. Equivariant graph networks [35] and transformers
[17] are also proposed as non-convolutional equivariant lay-
ers. Equivariant models have applications in various areas
such as physics, chemistry, and bioimaging [40, 17], where
symmetries play an important role. They also attract re-
search interest in robotic applications. For example, equiv-
ariant networks with SO(3)- and SE(3)-equivariance are de-
veloped to process 3D data such as point clouds [14, 10],
meshes [13], and voxels [41]. However, due to the added
complexity, most equivariant networks for 3D perception
are restricted to relatively simple tasks with small-scale in-
puts, such as object-wise classification, registration, part
segmentation, and reconstruction [34, 53, 9]. In the fol-
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lowing, we will review recent progress in extending equiv-
ariance to large-scale outdoor 3D perception tasks.

Equivariant networks in LiDAR perception LiDAR
perception demands two main considerations in equivariant
models. Firstly, outdoor scene perception typically needs a
sophisticated network design, and incorporating equivariant
layers that are compatible with conventional network layers
can build on existing successful designs. Secondly, due to
the large sizes of LiDAR point clouds, it’s essential to cre-
ate expressive equivariant models that fit within the memory
constraints of standard GPUs.

Existing work mainly follows two strategies. With the
first strategy, inputs are projected to rotation invariant fea-
tures using local reference frames [27, 46]. In this way, the
changes are mainly at the first layer of the network, causing
limited memory overhead. The main drawback is that the
invariant feature could cause information loss and limit per-
formance. The second strategy adopts group convolution,
by augmenting the domain of feature maps to include rota-
tions [49, 45]. While achieving improved performance with
the help of equivariance, they consume twice [45] or four
times [49] of memory as their non-equivariant counterparts
due to the augmented dimension of the feature maps and
convolutions. With the two strategies, equivariant networks
have been applied in 3D object detection [49, 45, 46] and
semantic segmentation [27].

3. Equivariance for 4D Panoptic Segmentation

In this section, we provide preliminaries on equivariance
and formulate the dense prediction task from the perspective
of equivariant learning. We discuss how to learn equivariant
features and fit equivariant prediction target fields, which
leads to the design choices in our proposed architecture.

3.1. Preliminaries on Equivariance

Feature maps as fields A feature map f0 is a field, as-
signing a value to each point in some space. In the context
of point cloud perception, we have f0 : R3 → V , where V
is some vector space. This map can represent the geometry
of the point cloud, i.e., f0(x) = 1 for every point x in the
point cloud and f0(x) = 0 otherwise. It can also represent
point properties or arbitrary learned point features. For ex-
ample, the feature map f0 : x 7→ SC(x), where SC(x) is
the semantic class label of the point x, represents the se-
mantic segmentation of a point cloud. We denote the space
of all such feature maps as F0.

Invariant and equivariant fields For the group of trans-
formations G, we use the rotation group SO(3) for the for-
mulation, for which SO(2) is also valid.

A rotation R ∈ SO(3) can be applied to a point and to
a feature map. A rotated feature map [Rf0] is simply the
feature map of the rotated point cloud. A point at x goes
to Rx after the rotation, thus f0(x) and [Rf0](Rx) are the
features of the same point before and after rotating the point
cloud. The relation between them depends on the property
of V . For instance, if V = SC, then we know

[Rf0](Rx) = f0(x), ∀R ∈ SO(3), (1)

i.e., the rotation does not change the semantic class.
As another example, if V represents the surface normal

vector, then we have

[Rf0](Rx) = Rf0(x), ∀R ∈ SO(3), (2)

where on the right-hand side, R is applied to f0(x) ∈ R3,
meaning that the normal vector of a given point rotates
along with the point cloud.

In both cases, the feature map of a rotated point cloud,
[Rf0], can be generated from f0, the feature map of the
original point cloud. This property is called equivariance.
In the case of Eq. (1), we call f0 an invariant scalar field.
In the case of Eq. (2), we call f0 an equivariant vector field.

Learning equivariant features A dense prediction task
on a point cloud is to reproduce a target field (e.g., x 7→
SC(x)) using a feature map realized by a neural network.
Naturally, it would be helpful to equip the network with the
same invariant and/or equivariant properties as the target
field. However, a general feature map learned by a net-
work is typically neither invariant nor equivariant to rota-
tions. To fix this, we can augment the space of feature maps
to F = {f : R3 × SO(3) → V }, defined by

f(x,R) := [R−1f0](R
−1x) (3)

for some f0 ∈ F0, i.e., the augmented feature map at rota-
tion R equals the original feature map rotated by R−1. In
this way, we have, ∀R,R′ ∈ SO(3),

[Rf ](Rx,R′)=[R′−1
Rf0](R

′−1
Rx)=f(x,R−1R′), (4)

which means that the augmented feature map of a rotated
point cloud, [Rf ], can be generated by the augmented fea-
ture map of the original point cloud f , indicating that f is
equivariant. Equivariant feature maps satisfying Eq. (3) can
be constructed using group convolutions [11, 10, 52].

3.2. Fitting Equivariant Targets

Now we can use the learned equivariant feature map f
to fit the target field fgt ∈ F0, which is invariant or equiv-
ariant. Suppose that we can fit fgt using f , then [Rf ], the
feature map of a rotated point cloud, should automatically
fit [Rfgt] which is the target field of the rotated point cloud.
In other words, equivariance enables the generalization over
rotations. Next, we introduce two strategies to achieve this.
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Rotational coordinate selection Assuming that we can
fit the target field of a point cloud without rotation:
f(x, I) = fgt(x), where I is identity rotation. We want to
show that the fitting generalizes to the rotated point clouds.

If fgt is an invariant scalar field, from Eq. (4), we have

[Rf ](Rx,R) = f(x, I) = fgt(x) = [Rfgt](Rx), (5)

meaning that the feature map [Rf ] at the rotational coordi-
nate R, [Rf ](·, R), fits the target [Rfgt] for the rotated point
cloud.

If fgt is an equivariant vector field, we have

[Rf ](Rx,R)=f(x, I)=fgt(x)=R−1[Rfgt](Rx), (6)

which means that we need to apply a rotational matrix
multiplication on features in [Rf ](·, R) to fit [Rfgt], i.e.,
[Rfgt](Rx) = R[Rf ](Rx,R),∀x ∈ R3.

The analysis above shows that the fitting of f ∈ F to
fgt ∈ F0 generalizes over rotations, if the rotational coor-
dinate (i.e., the second argument in f ) is the same as the
actual rotation of the point cloud. However, the actual ro-
tation R is usually unknown during inference; thus needs
to be learned. In practice, this is formulated as a rotation
classification task to select the best rotational channel in a
feature map f . We will discuss how we instantiate this in
the architecture in Sec. 4.3.

Invariant pooling layer When the target field fgt is in-
variant, there is another fitting strategy. For equivariant fea-
ture map f that satisfies Eq. (3), we can build a rotation-
invariant layer by marginalizing over the second argument
of f , i.e.,

finv(x) =
∏
R

f(x,R), (7)

where
∏

denotes any summarizing operator symmetric to
all its arguments, e.g., sum, average, and max.

If we can fit finv(x) = fgt(x), then based on Eq. (4), we
have

[Rfinv](Rx) =
∏
R′

[Rf ](Rx,R′) =
∏
R′

f(x,R−1R′)

= finv(x) = fgt(x) = [Rfgt](Rx),

(8)

which indicates that generalization over rotations holds. In
Sec. 4.3, we discuss different options of implementing the
invariant layer in the network.

3.3. Equivariant Instance Segmentation

For instance segmentation, the prediction targets can be
modeled as invariant or equivariant fields. As discussed in
Sec. 2.1, centerness regression and offset regression are two
predominately used approaches to estimate the object cen-
ters. Specifically, we can see that centerness is an invariant

scalar field and offset is an equivariant vector field. Accord-
ingly, we propose different prediction layers in Sec. 4.3, re-
sulting in different performances shown in Sec. 5.2.

4. Proposed Network Architecture
4.1. Network Overview

Discretized SO(2)-equivariance The model’s group
equivariance should match the data’s actual transforma-
tions. An overly large group may lead to high computa-
tional costs with minimal performance improvement. For
the outdoor driving scenario, the SO(2) group is chosen to
represent planar rotations around the gravity axis.

We discretize SO(2) into a finite group and create a
group CNN that is equivariant to the discretized rotations
rather than the continuous ones. It allows us to leverage
simpler structures akin to conventional deep learning mod-
els, allowing integration with existing state-of-the-art net-
works. Despite discretization, the network is expected to
interpolate the equivariance gaps through training with ro-
tational data augmentation.

Specifically, SO(2) is discretized into cyclic groups Cn,
where n indicates the number of discretized rotations, such
as C3 for 120-degree rotations. These are referred to as the
rotation anchors.

Network structure We utilize the point-convolution style
equivariant network E2PN [52] as our backbone, which is
an equivariant version of KPConv [39]. We describe nec-
essary adaptations to E2PN in Sec. 4.2, which allow us to
build equivariant models on top of SOTA 4D panoptic seg-
mentation network 4D-PLS [1] and 4D-StOP [24], both of
which are based on KPConv. We refer to our equivariant
models as Eq-4D-PLS and Eq-4D-StOP, respectively.

On a high level, both models first stack the point clouds
from several sequential time instances within a common ref-
erence frame so that the temporal association becomes part
of the instance segmentation. Each network consists of an
encoder, a decoder, and prediction heads. The encoders and
decoders are very similar for the two models, while the main
differences lie in their prediction heads, which formulate
the targets as invariant scalar fields and equivariant vector
fields, respectively, as discussed in Sec. 4.3. An overview
of our network structure is shown in Fig. 2.

4.2. Equivariant Encoder and Decoder

Equivariant encoder The encoder of the 4D panoptic
segmentation networks can be made equivariant by simply
swapping the KPConv [39] layers with E2PN [52] convo-
lution layers. However, E2PN is originally designed for
SO(3) equivariance, and uses quotient representations and
efficient feature gathering to improve the efficiency. Using
it for SO(2) equivariance requires two adaptations.
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Figure 2. Overview of the network structure. All prediction targets can be classified as equivariant (e.g., offsets to object centers) and
invariant (e.g., semantic classes). The gray color represents rotation-invariant features, which is used for invariant predictions. The green,
yellow, and blue colors represent features at different rotational coordinates depicted by the small frames. Equivariant predictions use
features from the rotational coordinate selection. Whether a rotation is selected is illustrated using the light and dark shades of colors.

First, we use the regular representation instead of the
quotient representation in [52]. This is because SO(2) is
abelian, in which case quotient representations cause loss
of information (see appendix for details).

Second, to apply the efficient feature gathering in E2PN,
the spatial position of the convolution kernel needs to be
symmetric to the rotation anchors. It allows the rotation of
kernel points to be implemented as a permutation of their
indices. This implies that different n’s in Cn impose differ-
ent constraints on the number and distribution of the kernel
points. For example, the default KPConv kernel with 15
points is symmetric to 60-degree rotations and thus can be
used to realize C2, C3, and C6 equivariance. However, C4

requires a different kernel (for symmetry to 90-degree rota-
tions), for which the 19-point KPConv kernel works.

Equivariant decoder The original E2PN only provides
an encoder to predict a single output for an input point
cloud. We need to devise an equivariant decoder for the
dense 4D panoptic segmentation. Similar to conventional
non-equivariant networks, our decoder adopts upsampling
layers and 1-by-1 convolution layers. The upsampling lay-
ers simply assign the features of the coarser point cloud to
the finer point cloud via nearest neighbor interpolation. The
1-by-1 convolution processes the feature at each point and
each rotation independently. It is straightforward to prove
the equivariance of such a decoder (see the appendix).

4.3. Equivariant Prediction Heads

Our baseline models 4D-PLS [1] and 4D-StOP [24] have
different prediction heads. Their semantic segmentation
heads are similar, but they employ different clustering ap-

proaches for instance segmentation. Correspondingly, we
propose different equivariant prediction designs for them.

4.3.1 Eq-4D-PLS: Segmentation as Invariant Scalar
Field Prediction

In 4D-PLS [1], instance segmentation is done by clustering
the point embeddings, assuming a Gaussian distribution for
the embeddings of each instance. It also predicts a point-
wise centerness score, measuring the closeness of a point to
its instance center, which is used to initialize the cluster cen-
ters. Both the point embeddings and the centerness scores
can be viewed as invariant scalar fields. Note that while
these targets can appear like a vector, they are actually a
stack of scalars invariant to rotations.

As discussed in Sec. 3.2, there are two strategies to fit in-
variant targets, i.e., rotation coordinate selection and invari-
ant pooling. For invariant pooling layers, max pooling and
average pooling over the rotational dimension are two obvi-
ous choices. For the rotational coordinate selection strategy,
a key challenge is that the ground truth for the rotational
coordinate R is unavailable or even undefined (as there is
no canonical orientation for a LiDAR scan). In addition,
existing dataset, e.g., SemanticKITTI, does not provide ob-
ject bounding box annotations. Hence the object orienta-
tions are also unknown. We use an unsupervised strategy
to address this issue. Instead of picking the best rotational
dimension, we perform a weighted sum of all rotational di-
mensions, which is differentiable and allows the model to
learn the weight for different rotations. This is equivalent to
the group attentive pooling layer in EPN [10].

In summary, we study three designs, i.e., max pooling,
average pooling, and group attentive pooling, for the pre-
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diction of the invariant targets, including semantic classes,
point embeddings, embedding variances, and centerness
scores.

4.3.2 Eq-4D-StOP: Segmentation as Equivariant and
Invariant Field Prediction

4D-StOP [24] uses an offset-based clustering method for in-
stance segmentation. The network predicts an offset vector
to the instance center for each input point, creating an equiv-
ariant vector field. The predicted center locations are clus-
tered into instances, and features from points in the same
instance are combined to predict instance properties.

As discussed in Sec. 3.2, we fit equivariant vector fields
through rotational coordinate selection. While we do not
have ground-truth rotations, the vector field of offsets natu-
rally defines orientations. Denote an offset vector at point x
as v(x) = xctr − x ∈ V = R3, where xctr is the center of
the instance that x belongs to. We can define its rotation in
SO(2) as θ(v) = atan2(vY , vX), where X,Y are axes in
the horizontal plane and Z is the vertical axis. θ can be as-
signed to a discretized rotation coordinate (anchor) Rgt

i by
nearest neighbor. In this way, each point has a rotation label
based on its relative position to the instance center, which is
well-defined and equivariant to the point cloud rotations.

Given the rotation label, we train the network to predict
it as a classification task. Given the feature map at each
rotational coordinate, a rotation score is predicted:

sx(Ri) = ϕ(f(x,Ri)), ∀Ri ∈ SO(2)′, (9)

where x ∈ R3, SO(2)′ is the set of rotation anchors, i.e.,
SO(2)′ ∼= Cn, i = 1, ..., n, and ϕ is a scoring function.
We concatenate sx(Ri)’s as Sx = [sx(R1), ..., sx(Rn)] and
apply a cross-entropy loss function on Sx with label Rgt

i .
The semantic segmentation, object size, and radius re-

gression in 4D-StOP are invariant fields. However, note
that a key difference from the prediction in Eq-4D-PLS
(c.f. Sec. 4.3.1) is that we now have the rotation labels.
As such, the rotational coordinate selection strategy can be
applied to predicting the invariant targets. Therefore, for
Eq-4D-StOP, we study four options for the invariant target
prediction, including max pooling, average pooling, group
attentive pooling, and rotational coordinate selection.

5. Experiments
5.1. Experimental setup

Dataset: We conduct our experiments primarily on the
SemanticKITTI dataset [2]. The SemanticKITTI dataset es-
tablishes a benchmark for LiDAR panoptic segmentation
[3]. It consists of 22 sequences from the KITTI dataset.
10 sequences are used for training, 1 for validation, and 11
for testing. In total, there are 43,552 frames. The dataset

Method LSTQ Sassoc Scls IOUSt IOUTh

RangeNet++[29]+PP+MOT 43.8 36.3 52.8 60.5 42.2
KPConv[39]+PP+MOT 46.3 37.6 57.0 64.2 54.1
RangeNet++[29]+PP+SFP 43.4 35.7 52.8 60.5 42.2
KPConv[39]+PP+SFP 46.0 37.1 57.0 64.2 54.1
4D-DS-Net[20] 68.0 71.3 64.8 64.5 65.3
4D-PLS[1] 62.7 65.1 60.5 65.4 61.3
4D-StOP[24] 67.0 74.4 60.3 65.3 60.9

Eq-4D-PLS (ours) 65.0 67.7 62.3 66.4 64.6
Eq-4D-StOP (ours) 70.1 77.6 63.4 66.4 67.1

Table 1. SemanticKITTI validation set result. PP: PointPillars
[25]. MOT: tracking-by-detection by [43]. SFP: tracking-by-
detection with scene flow [30]. The best is highlighted in bold.

includes 28 annotated semantic classes, which are reorga-
nized into 19 classes for the panoptic segmentation task.
Among the 19 classes, 8 are classified as things, while the
remaining 11 are categorized as stuff. Each point in the
dataset is assigned a semantic label, and for points belong-
ing to things, a temporally consistent instance ID.

Metrics: The core metric for 4D panoptic segmenta-
tion is LSTQ =

√
Scls × Sassoc, which is the geometric

mean of the semantic segmentation metric Scls and the in-
stance segmentation and tracking metric Sassoc. Scls =
1
C

∑C
c=1 IoU(c) is the segmentation IoU averaged over all

semantic classes. The average IoU for points belonging to
things and stuff are denoted IoUTh and IoUSt, respec-
tively. Sassoc measures the spatial and temporal accuracy
of segmenting object instances. See [1] for more details.

Architecture: For our Eq-4D-PLS and Eq-4D-StOP
models, we keep the architectures unchanged from their 4D-
PLS [1] and 4D-StOP [24] baselines except for the added
rotational coordinate selection and invariant pooling lay-
ers necessary for equivariant and invariant field predictions.
The input size, the batch size, and the learning rate also fol-
low the baselines, respectively.

As the efficiency (especially the memory consumption)
is a pain point for equivariant learning in large-scale LiDAR
perception tasks, we specify the number of channels (net-
work width) c and the rotation anchor size n in our analysis.
The size of an equivariant feature map f is |f | = mcn for
a point cloud with m points. Non-equivariant networks can
be viewed as n = 1. We use the width of the first layer to
denote the network width c, since the width of the following
layers scales with the first layer proportionally. As feature
maps play a major role in memory consumption, c×n gives
a rough idea of the memory cost of a model.

5.2. Quantitative Results

The evaluation results of our equivariant models on the
SemanticKITTI validation set are shown in Tab. 1. Com-
pared with 4D-PLS, our equivariant model improves by 2.3
points on LSTQ. Our Eq-4D-StOP model outperforms its
non-equivariant baseline by 3.1 LSTQ points. The Eq-4D-
StOP model achieves state-of-the-art performance among
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Method LSTQ Sassoc Scls IoUSt IoUTh

RangeNet++[29]+PP+MOT 35.5 24.1 52.4 64.5 35.8
KPConv[39]+PP+MOT 38.0 25.9 55.9 66.9 47.7
RangeNet++[29]+PP+SFP 34.9 23.3 52.4 64.5 35.8
KPConv[39]+PP+SFP 38.5 26.6 55.9 66.9 47.7
4D-PLS[1] 56.9 56.4 57.4 66.9 51.6
4D-DS-Net[20] 62.3 65.8 58.9 65.6 49.8
CA-Net[28] 63.1 65.7 60.6 66.9 52.0
4D-StOP[24] 63.9 69.5 58.8 67.7 53.8

Eq-4D-StOP (ours) 67.8 72.3 63.5 70.4 61.9
Table 2. SemanticKITTI test set result.

published methods. From these experiments, we have the
following observations:

• The improvements on IoUSt are similar for both Eq-
4D-StOP and Eq-4D-PLS compared with their non-
equivariant baselines.

• The improvements on IoUTh and Sassoc are larger
than on IoUSt.

• Eq-4D-StOP gains larger improvements on IoUTh

and Sassoc than Eq-4D-PLS does over their non-
equivariant baselines.

The observations indicate the following. First, the introduc-
tion of equivariance brings improvements to both models
across all metrics consistently. Second, objects (the things
classes) enjoy more benefits from the equivariant models
compared with the background (the stuff classes). We hy-
pothesize that this is because objects present more rotational
symmetry as compared to background classes. Third, the
fact that more significant improvements are observed in Eq-
4D-StOP shows the benefit of formulating the equivariant
vector field regression problem induced from the offset-
based clustering strategy. Improved clustering directly ben-
efits the instance segmentation, i.e., Sassoc, and it also im-
proves the semantic segmentation of objects (IoUTh), since
4D-StOP unifies the semantic class prediction of all points
belonging to a single instance by majority voting.

The evaluation results on the SemanticKITTI test set are
shown in Tab. 2. Eq-4D-StOP achieves 3.9 points improve-
ment in LSTQ over the non-equivariant model and ranks
1st in the leaderboard at the time of submission. We only
test our best model on the test set, thus the result of Eq-4D-
PLS is not available.

We use max-pooling in Eq-4D-PLS and average pool-
ing in Eq-4D-StOP as the invariant pooling layer. The
ablation study is in Sec. 5.3. The Eq-4D-PLS model is
with c = 128, n = 6, and the Eq-4D-StOP model is with
c = 128, n = 4. These parameters are selected based on the
network scaling analysis in Sec. 5.5.

5.3. Ablation Study

Invariant pooling and RCS In Tab. 3, we show the seg-
mentation performance with different invariant pooling lay-

Target
type

Layer
type

LSTQ

Eq-4D-StOP Eq-4D-PLS

Invariant

Max 68.2 63.7
Average 69.2 61.4
Attentive 68.5 63.1

RCS 68.4 n/a

Equivariant RCS 69.2 n/a
Average 61.6 n/a

Table 3. Ablation study on the invariant pooling layers and ro-
tational coordinate selection (RCS). All comparisons use c =
128, n = 3. Some options are n/a for Eq-4D-PLS (see Sec. 4.3.1).

Method LSTQ Sassoc Scls IOUSt IOUTh

4D-StOP 60.5 62.5 58.6 74.4 54.9
Eq-4D-StOP (ours) 67.3 73.7 61.5 76.4 58.7

Table 4. 4D panoptic segmentation on nuScenes. The models are
trained on the training split and evaluated on the validation split.

Anchor size n 1 2 3 4 6

Performance (LSTQ) 67.1 67.3 69.3 69.8 69.0
Inference speed (fps) 0.73 1.06 1.14 1.27 1.39

Table 5. Running speed analysis of Eq-4D-StOP, given constant
feature map size c×n = 256. Note that n = 1 corresponds to the
non-equivariant baseline.

ers and the effect of rotational coordinate selection (RCS).
In terms of the invariant pooling layers, average pooling is
optimal in Eq-4D-StOP, while max pooling is best in Eq-
4D-PLS. Eq-4D-PLS favors max pooling, possibly because
the point embeddings averaged over all rotational directions
may be less discriminative, hindering instance clustering. In
contrast, Eq-4D-StOP benefits from average pooling gather-
ing information from all orientations, as the pooled features
are used for object property prediction instead of cluster-
ing. For the equivariant field (offset) prediction, we com-
pare the rotational coordinate selection with average pool-
ing that wrongly treats the offsets as rotation-invariant tar-
gets. The performance drastically decreases when RCS is
replaced with average pooling, showing that it is of vital
importance to respect the equivariant nature of the targets.

5.4. Generalization on the nuScenes dataset

We extend experiments to the nuScenes [16] dataset. The
hyperparameters follow the experiments on SemanticKITTI
to show the generalizability of our proposed method. As
shown in Tab. 4, our model (with c = 128, n = 4) largely
outperforms the baseline (with c = 512), further validating
the value of our equivariant approach.

5.5. Network Scaling and Computational Cost

We experiment on different network widths c and an-
chor sizes n to investigate the effect of network sizes on the
model performance and efficiency. The LSTQ is evaluated
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Figure 3. Effect of anchor size n on performance and memory us-
age in training, given constant network width c. Note that n = 1
corresponds to the non-equivariant baselines.

Figure 4. Effect of anchor size n on performance and memory us-
age in training, given a constant size of feature maps c× n.

Figure 5. Comparison between equivariant and non-equivariant
models at different network sizes.

on the SemanticKITTI validation set.
In Fig. 3, with c = 128, we test various anchor sizes

n. A larger n more closely approximates continuous SO(2)
equivariance but also proportionally expands feature maps
and memory usage. The performance of both Eq-4D-PLS
and Eq-4D-StOP enhances with increasing n, confirming
the efficacy of equivariance in this task.

To rule out the factor of varying sizes of feature maps,
we keep c × n = 256 with different combinations of c and
n (for n = 3, we use c = 85 as an approximation). As

shown in Fig. 4, Eq-4D-StOP significantly outperforms the
non-equivariant version (n = 1) when n >= 3. The mem-
ory consumption even decreases when we increase n. There
are two reasons. First, the size of the weight matrix in con-
volution layers gets smaller. Denote the number of kernel
points as k, for a convolution layer with input and output
width c, the size of the weight matrix is knc2. Given con-
stant c × n, this number decreases with larger n. Second,
the feature maps after the invariant pooling layer are smaller
(of size m × c). The small bump-up of memory usage at
n = 4 is due to the larger convolution kernel (k = 19 v.s.
k = 15 as discussed in Sec. 4.2), but it is still lower than the
memory usage of the non-equivariant baseline. With con-
stant feature map size c × n, there is a trade-off between
the number of rotation anchors n and the feature channels
per rotation anchor, which explains the slight performance
decline at n = 6. A similar trend can also be observed in
Eq-4D-PLS, but with a smaller performance margin.

We also report the running time of our models in Tab. 5.
The equivariant models run faster with higher accuracy.

We further investigate whether the advantage of equivari-
ant models only occurs at a specific network size. In Fig. 5,
we scale the feature map size of the networks. We use n = 4
for equivariant models in this comparison. The equivariant
models outperform the non-equivariant models at all net-
work sizes. The memory consumption increases faster for
the non-equivariant models, because the sizes of convolu-
tion kernel weight matrices grow quadratically with the net-
work width c, while equivariant models have a smaller c
given the same feature map size.

In summary, we found that the equivariant models have
better performance than their non-equivariant counterparts
with lower computational costs at different network sizes.

6. Conclusion
In this paper, we use equivariant learning to tackle a

complicated large-scale perception problem, the 4D panop-
tic segmentation of sequential point clouds. While equiv-
ariant models were generally perceived as more expensive
and complex than conventional non-equivariant models, we
show that our method can bring performance improvements
and lower computational costs at the same time. We also
show that the advantage of equivariant models can be better
leveraged if we formulate the learning targets as equivariant
vector fields, compared with invariant scalar fields. A limi-
tation of this work is that we did not propose drastically new
designs on the overall structure of the 4D panoptic segmen-
tation network under the equivariant setup, but it also allows
us to conduct apple-to-apple comparisons regarding equiv-
ariance on this task so that our contribution is orthogonal to
the improvements in the specific network design. We hope
our work could inspire wider incorporation of equivariant
networks in practical robotic perception problems.
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