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Abstract

Attention-based arbitrary style transfer studies have
shown promising performance in synthesizing vivid lo-
cal style details. They typically use the all-to-all atten-
tion mechanism—each position of content features is fully
matched to all positions of style features. However, all-to-
all attention tends to generate distorted style patterns and
has quadratic complexity, limiting the effectiveness and ef-
ficiency of arbitrary style transfer. In this paper, we pro-
pose a novel all-to-key attention mechanism—each posi-
tion of content features is matched to stable key positions
of style features—that is more in line with the characteris-
tics of style transfer. Specifically, it integrates two newly
proposed attention forms: distributed and progressive at-
tention. Distributed attention assigns attention to key style
representations that depict the style distribution of local
regions; Progressive attention pays attention from coarse-
grained regions to fine-grained key positions. The resultant
module, dubbed StyA2K, shows extraordinary performance
in preserving the semantic structure and rendering consis-
tent style patterns. Qualitative and quantitative compar-
isons with state-of-the-art methods demonstrate the supe-
rior performance of our approach. Codes and models are
available on https://github.com/LearningHx/StyA2K.

1. Introduction
Arbitrary style transfer (AST) is an important computer

vision task. It aims to render a natural image (i.e., content
image) with the artistic style of an arbitrary painting (i.e.,
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†Corresponding author: Nannan Wang.
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Figure 1. Image/Video style transfer results of AdaAttN [27] (sec-
ond column) and our StyA2K (third column). The videos in the
first row can be found in the supplementary material.

style image), enabling the generated image to imitate any
artistic style. There have been notable improvements in fea-
ture transformation modules [13, 33, 12, 30, 49, 7, 27, 17,
50], novel architectures [24, 32, 1, 42, 6], and practical ob-
jectives [19, 5, 51]. The core of AST is the matching of con-
tent features and style features in the feed-forward proce-
dure. Holistic feature distribution matching [13, 24, 17, 50]
and locality-aware feature matching [33, 12, 30, 49, 27] are
two categories of existing approaches.

The attention-based method is the research focus of the
locality-aware feature matching category for its capability
to capture long-range dependencies. Typically, it estab-
lishes a dense correspondence between point-wise tokens
of the content and style features via an all-to-all attention
mechanism [52]. The transferred feature of each local posi-
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tion is computed as the weighted sum of the local style fea-
tures of all positions, where the weights are computed by
applying a softmax function to the normalized dot prod-
ucts’ results. Despite its encouraging results, the attention-
based AST method suffers from two main predicaments.
The first one is the introduction of distorted style patterns
and unstable matching effects. As shown in Fig. 1, the im-
age stylization result of AdaAttN is seriously affected by
eye patterns, which significantly affects visual perception.
Besides, the video stylization result of AdaAttN has an ap-
parent flickering phenomenon, which also affects the visual
quality. The second one is the high computational complex-
ity. Handling image features with high spatial resolution
and multiple layers with all-to-all attention requires signifi-
cant computational consumption.

We argue that the inherent limitations of the all-to-all at-
tention mechanism cause the above problems. (1) All-to-
all attention has no error tolerance and is sensitive to posi-
tion variation. It tends to concentrate on the most similar
value since softmax shows strong exclusiveness in atten-
tion score due to exponential computation. A distorted style
pattern appears when the most similar key is semantically
distinct from the query. For example, the reason for the ap-
pearance of irrational eye patterns in AdaAttN’s results is
that the all-to-all attention almost exclusively concentrates
on the eye patterns in the style image for the positions with
edge-like patterns in the content image. Its sensitivity is em-
bodied in that slight changes in query at different positions
will lead to complete semantic changes in matched keys.
For instance, the object motion and the light change in the
video cause severe flickering phenomena between consecu-
tive stylized frames that are frame-by-frame independently
generated by AdaAttN. (2) All-to-all attention has quadratic
computational complexity since it establishes a fully con-
nected correspondence between queries and keys. Its com-
putational complexity scales quadratically to image size.

How to maintain the advantage of the attention mech-
anism (enhancing local semantics) and mitigate the disad-
vantages of all-to-all attention (no error tolerance, unstable,
time-consuming)? Our solution is a novel all-to-key atten-
tion (A2K) mechanism that matches each query with stable
“key” keys. A2k comprises two inventions. (1) It learns
distributed keys that depict the style distribution of all local
regions of the style features; thus, each query of the con-
tent features is matched with these stable and representa-
tive keys. (2) It gradually concentrates its attention from
coarse-grained regions to fine-grained keys; thus, queries
within a local region are matched to the same stable keys
within a local region. The former, dubbed as distributed at-
tention (DA), improves matching error tolerance since the
most similar key matched is a regional style representation
rather than an isolated position. The latter, dubbed as pro-
gressive attention (PA), mitigates the problem of “cannot
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Figure 2. Illustration of all-to-key attention (A2K). A2K matches
stable “key” keys for each query, integrating two novel attention
forms: distributed attention and progressive attention.
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Distributed Attention All-to-all Attention
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Figure 3. Comparison between all-to-all attention and our pro-
posed all-to-key attention (A2K). All-to-all attention matches all
keys for each query, whereas A2K comprises distributed attention
(DA) and progressive attention (PA). DA matches the learned dis-
tributed keys depicting the style distribution of all local regions.
PA gradually concentrates the attention from coarse-grained re-
gions of the style features to fine-grained keys.

see the woods for the trees” existing in all-to-all attention
and ensures semantic correctness from a more macro per-
spective. In addition, the keys of DA and PA are stable, so
A2K can reduce the sensitivity of position variation and ren-
der consistent style patterns. Furthermore, we implement
DA and PA in a blocked, sparse fashion, saving consider-
able computational costs. Finally, an effective and efficient
arbitrary style transfer model based on all-to-key attention
(StyA2K) arrives. Fig. 2 and Fig. 3 illustrate the A2K con-
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cept and its distinction from all-to-all attention. We sum-
marize the main contributions of this paper as the following
points:

• We point out the inherent limitations of all-to-all atten-
tion and present a novel all-to-key attention mechanism
for effective and efficient arbitrary style transfer.

• We propose distributed attention to improve matching er-
ror tolerance and progressive attention to ensure seman-
tic correctness, both of which enjoy the stable matching
property and save significant computational consumption.

• We conduct extensive experiments to demonstrate the su-
periority of our approach over state-of-the-art methods in
preserving semantic structures and rendering consistent
style patterns.

2. Related Work
2.1. Arbitrary Style Transfer

Neural style transfer has become a hot-spot topic and has
attracted wide attention since the pioneering work of Gatys
et al. [10]. Follow-up studies [16, 20, 21, 35, 3, 25, 23, 9,
11, 36, 41] are devoted to improving the capabilities of neu-
ral style transfer algorithms in terms of visual quality, com-
putational efficiency, style diversity, structural consistency,
and factor controllability. Arbitrary style transfer [4, 13, 24,
33, 12, 22, 30, 44, 49, 19, 15, 7, 17, 27, 1, 42, 5, 6, 50, 51]
has received increasing attention recently, depending on its
advantage of using a single feed-forward neural model to
transfer the style of an arbitrary image. Existing AST meth-
ods can be divided into two main categories: holistic fea-
ture distribution matching method and locality-aware fea-
ture matching method.

The holistic feature distribution matching method adjusts
the holistic content feature distribution to match the style
feature distribution. Based on the Gaussian prior assump-
tion, AdaIN [13] and WCT [24] match feature distributions
with first- or second-order statistics. The method introduced
in [22] makes the transformation matrix learnable. In order
to break through the theoretical and practical limitations of
first-order and second-order statistics, high-order statistics
are introduced in [17] and [50] to perform more exact distri-
bution matching. EFDM [50] matches the empirical cumu-
lative distribution functions of image features via exact his-
togram matching to improve the computational efficiency
of high-order statistics.

By comparison, the locality-aware feature matching
method emphasizes the consistency of local semantics when
matching content and style features. StyleSwap [4] re-
places content features patch-by-patch with the style fea-
tures, where the closest-matching style patches are calcu-
lated based on the normalized cross-correlation. The deep
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Figure 4. Framework of StyA2K.

feature reshuffle module introduced in [12] reshuffles the
style features according to the content features via a con-
strained normalized cross-correlation. Avatar-Net [33] dec-
orates the content features with aligned style features ob-
tained through a relaxed normalized cross-correlation. MST
[49] employs clustering to divide style features into multi-
modal style representations, which are matched with local
content features via graph-based style matching. With the
rise of self-attention [38], many studies [30, 44, 7, 27] ap-
ply it to AST. SANet [30] directly adopts attention-based
feature matching for AST. AdaAttN [27] adopts attention
scores to adaptively perform attentive normalization on
the content features by calculating the per-point attention-
weighted mean and variance of style features. However,
these methods neglect the limitations of all-to-all attention
and inevitably produce compromised results.

2.2. Attention Mechanism

Since being proposed, the attention mechanism has been
widely used in the field of natural language processing
(NLP) [38, 43] and computer vision [40, 8]. With the
development of the Transformer [29, 37, 52, 45, 52, 39,
46, 28], extensive variants of attention mechanisms are in-
troduced to improve its capability and computational effi-
ciency. Discovering the scalability and availability of atten-
tion mechanism in computing dense matching, many stud-
ies [47, 14, 30, 27] adapt self-attention to match features
with distinct distributions. Due to the distinctions in con-
tent and style, directly applying all-to-all attention to their
matching causes many problems. This work fully considers
content-style matching characteristics and explores a novel
attention mechanism more suitable for AST tasks.

3. Method

3.1. Overall Architecture

An overview of our framework is presented in Fig. 4.
Given a content image Ic and a style image Is, a pre-trained
VGG-19 [34] network with fixed parameters is utilized as
an encoder Enc to extract their multi-scale features. Ex-
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Figure 5. Distributed attention (DA) and progressive attention (PA) are implemented in a blocked, sparse fashion. DA aggregates regional
style information to obtain representative keys K̂l in the first step and then calculates point-wise attention score along the first (global) axis
of Ql and K̂l in the second step. PA calculates patch-wise similarity index along the first axis of Ql and Kl in the first step to reshuffle Kl

to K̃l and then calculates the point-wise attention score on the second (regional) axis of Ql and K̃l in the second step.

tracted features at each layer l can be denoted as:

F l
c = Enc(Ic), F

l
s = Enc(Is), (1)

where l ∈ ReLU{3 1, 4 1, 5 1}, F l
∗ ∈ RCl×Hl×Wl and ∗

can be c or s representing content and style respectively.
The key ingredient of this framework is the A2K module.

It integrates two effective and efficient attention forms (dis-
tributed attention and progressive attention as illustrated in
Fig. 5) to establish meaningful sparse correspondence be-
tween the content feature F l

c and the style feature F l
s and

thus faithfully synthesize the transferred features F l
cs:

F l
cs = M l

A2K(F l
c , F

l
s), (2)

where M l
A2K denotes the A2K module and l indicates that

M l
A2K operates on each layer of the multi-scale features.
Finally we can invert the multi-scale transferred features

{F l
cs} to the stylized image Ics through a decoder Dec:

Ics = Dec({F l
cs}). (3)

The decoder implemented in this work follows the setting
of [27], which mirrors the encoder and takes the multi-scale
transferred features as input.

3.2. All-to-key Attention

Revisit All-to-all Attention in AST. Attention mecha-
nism in AST is derived from self-attention [38] and is com-
monly used as a locality-aware feature matching method.
Formally, given the content feature F l

c and the style feature

F l
s with the size of (H l,W l, Cl) at layer l, Q (query), K

(key) and V (value) are formulated as:

Q = f(N(F l
c)),K = g(N(F l

s)), V = h(F l
c), (4)

where f , g, and h are learnable convolution layers and N(∗)
denotes normalization operation. The attention score AttN
can be calculated as:

AttN = softmax(Q ·KT), (5)

where · denotes the dot product. The attention score AttN ,
with the size of (H × W,H × W ), is the dense similarity
correspondence matrix of all the tokens in F l

c and F l
s. Since

this attention mechanism regards feature vectors of all spa-
tial positions as tokens and establishes full correspondence
(as shown in Fig. 6 (b)), it is called all-to-all attention. Al-
though all-to-all attention has been a key factor in many
methods [30, 44, 27], its defects have not yet been found
and studied. We argue that the all-to-all attention form is
inadequate for AST due to its inherent limitations, as ana-
lyzed in Introduction 1.

Distributed Attention. To alleviate the problem caused
by all-to-all attention, distributed attention first learns dis-
tributed keys that depict the style distribution of all local re-
gions of the style features. Then, each query of the content
features is matched with these representative keys (as shown
in Fig. 6 (e)). Distributed attention can improve match-
ing error tolerance since the matched keys are regional style
representations rather than isolated positions. Even if the
exclusivity of softmax causes the attention to only focus
on the most similar key, the most similar key can also reflect
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Figure 6. Visualization of attention distribution. (a) Stylized re-
sult of AdaAttN. (b) and (c) All-to-all attention distribution before
and after softmax. (d) Stylized result of StyA2K. (e), (f) Dis-
tributed attention distribution before and after softmax. (g), (h)
Progressive attention distribution on the coarse-grained region be-
fore and after argmax. (i) Progressive attention distribution on
the fine-grained position after softmax.
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the style information of a region so that it will not directly
match the isolated style pattern (as shown in Fig. 6 (f)).
In addition, since these keys are fixed to depict several lo-

cal regions, the matching effect of DA has high stability for
queries in different positions. Technically, we implement
distributed attention in a blocked, sparse fashion, as shown
in Fig. 5. The content feature F l

c and the style feature F l
s

with the size of (H l,W l, Cl) at each layer l are spatially
blocked into tensors that stand for Ql and Kl respectively:

Ql = Bl(N l(F l
c)),K

l = Bl(N l(F l
s)), (6)

where N l(∗) denotes instance normalization and Bl(∗) de-
notes 1 × 1 Conv-Blocking operation. The shape of Ql

and Kl is (bl × bl, Hl

bl
× W l

bl
, Cl), representing bl × bl non-

overlapping blocks each with the size of (H
l

bl
, W l

bl
). There-

fore, each block contains n = Hl

bl
× W l

bl
points. We denote

the points in each block as ki. The first step of distributed
attention is regional style aggregation, as shown in Fig. 7.
We calculate the mean of all points in each block as the ini-
tial style representation:

km =
1

n

n∑
i=1

ki. (7)

Then, we dynamically aggregate all points in a block based
on the similarities to the mean point. Assuming the similar-
ity between the n points and the mean point is s ∈ Rn, the
aggregated regional style representation is given by:

k =
1

n
(km +

n∑
i=1

sig(αsi + β)ki), (8)

where α and β are learnable scalars to scale and shift the
similarity and sig is a sigmoid function to re-scale the sim-
ilarity to (0, 1). After aggregation, we obtain bl × bl new
keys, denoted as K̂l. Note that we also adopt the same ag-
gregation method for B(F l

s) to get new values, expressed
as B̂(F l

s). In the second step, distributed attention Dl cal-
culates point-wise attention on the first axis of Ql and K̂l:

Dl
attn = Dl(Ql, K̂l). (9)

The attention score matrix Dl
attn, with the size of (H

l

bl
×

W l

bl
, bl × bl, bl × bl), stores the similarity correspondence

of point-wise tokens across bl × bl blocks and indexed in
range Hl

bl
× W l

bl
. Note that attention along a specific axis of

Ql and Kl can be realized straightforwardly by einsum op-
eration, which most deep learning frameworks have imple-
mented. In addition, inspired by the multi-head attention in
transformer [38], we use multiple heads to split the tensors
along channel dimensions and project the divided tensors
into different spaces for attention calculation.

Progressive Attention. All-to-all attention focuses di-
rectly on a specific position. PA progressively concentrates
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its attention from the coarse-grained region to the fine-
grained position (as shown in Fig. 6 (g) (h) (i)). Paying at-
tention to the coarse-grained (as shown in Fig. 6 (g)) in the
first step contributes to matching style patterns on a larger
scale; thus, the attention after argmax (as shown in Fig.
6 (h)) can concentrate on a coarse style pattern with more
similar semantics. Fine-grained positions can be further lo-
cated via point-wise attention within this coarse-grained re-
gion, as shown in Fig. 6. In addition, since queries within
a local region are matched to the same keys within a local
region, their transferred features also have regional stabil-
ity. The technical implementation of PA is shown in Fig. 5.
Ql and Kl are obtained similarly as distributed attention but
using a different 1 × 1 Conv. The first step of progressive
attention is implemented as patch-wise attention along the
first axis, which takes a block region as a token instead of
a specific position. Fig. 8 provides a detailed illustration of
this step. Specifically, we use argmax to match only the
most similar coarse-grained region, and therefore, the out-
put of this step is the index matrix that stores sparse indices
of patch-wise tokens across bl × bl blocks:

P l
idx = argmax(P l

1(Q
l,Kl)), (10)

where P l
1 denotes the first step of PA. With P l

idx, we
can reshuffle the tokens of Kl and B(F l

s) to semantically
matching the spatial arrangement of the tokens of Ql:

K̃l = reshuffle(Kl, P l
idx),

B̃(F l
s) = reshuffle(B(F l

s), P
l
idx),

(11)

where reshuffle(∗, ∗) denotes the reshuffle operation.
The second step of progressive attention P l

2 is implemented
as regional attention, where tokens attend to their neighbors
within non-overlapped blocks. Attention score in this step
is calculated along the second axis of Ql and K̃l:

P l
attn = P l

2(Q
l, K̃l). (12)

The attention score matrix P l
attn, with the size of (bl ×

bl, Hl

bl
× W l

bl
, Hl

bl
× W l

bl
), stores the sparse similarity corre-

spondence of point-wise tokens within blocks with the size
of Hl

bl
× W l

bl
indexed in the range bl × bl. Both steps of

progressive attention can be implemented with einsum.
Feature Transformation. With the output attention

score, the feature transformation can be performed by:

F l
cs D = U(Dl

attn · B̂(F l
s)),

F l
cs P = U(P l

attn · B̃(F l
s)),

(13)

where U(∗) denotes the Unblocking-Conv operation, · rep-
resents the dot product between a specific axis of two ten-
sors which can be implemented with einsum. The trans-
ferred feature at each layer l can be eventually obtained by:

F l
cs = F l

cs D + F l
cs P + F l

c , (14)

where F l
cs D, F l

cs P , and F l
c are the output of the distributed

attention path, the output of the progressive attention path,
and the content feature, respectively.

Complexity Analysis. The computational complexity of
A2K is:

Ω = ΩD1 +ΩD2 +ΩP1 +ΩP2

= [5 + (b)2 + (b)2 +
H

b

W

b
]HWC,

(15)

which saves O(
√
HW ) computational consumption with

respect to image size HW when b2 ≈ H
b

W
b .

3.3. Loss Function

The loss function for training the model consists of two
terms. One of them is the style loss Lgs followed by [13],
which penalizes the Euclidean distances of mean µ and
standard deviation σ between stylized image and style im-
age in VGG feature space to ensure global stylization effect:

Lgs =

4∑
l=1

||µ(El
nc(Ics))− µ(F l

s)||2

+

4∑
l=1

||σ(El
nc(Ics))− σ(F l

s)||2,

(16)

where El
nc(∗) denotes feature extracted from the lth layer

of the pre-trained VGG encoder. The second term is an
attention-based feature matching loss that penalizes the Eu-
clidean distance between the transferred features of the
A2K module and the features of the stylized image:

LA2K∗ =

5∑
l=2

||El
nc(Ics)−M l

A2K∗(F l
c , F

l
s)||2, (17)

where M l
A2K∗ denotes a non-parametric version that re-

moves the learnable 1 × 1 Conv because the supervision
signal should be deterministic. The full loss is:

L = λ1Lgs + λ2LA2K∗ . (18)

We empirically set λ1 and λ2 as 10 and 1.25. See supple-
mentary material for a detailed analysis.

4. Experiments
4.1. Implementing Details

We use images from MS-COCO [26] as content and im-
ages from WikiArt [31] as style to train our model. The
head number is set to 8. The batch size is set to 8, and the
training lasts for five epochs (400K iterations) on a single
NVIDIA GeForce RTX 3090 GPU. Adam [18] with mo-
mentum parameters β1 = 0.9 and β2 = 0.999 is used for
optimization. The learning rate is set to 2e-4 for the first two
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Figure 9. Visual comparisons among different AST methods. Zoom in for a better view.

epochs and linearly decayed to 0 for the rest three epochs.
Images are randomly cropped to 256 × 256 during train-
ing and loaded with 512 × 512 during inference. To ensure
bl × bl ≈ Hl

bl
× W l

bl
, the block size b is set to 16, 8, 8, and 4

for ReLU2 1, 3 1, 4 1 and 5 1 layers, respectively.

4.2. Comparison with Prior Arts

To validate the effectiveness of the proposed method,
we compare it with six previous state-of-the-art AST meth-
ods: StyTr2 [6], AdaAttN [27], SANet [30], MST [49],
Avatar-Net [33], and AdaIN [13]. Among them, SANet
and AdaAttN are typically all-to-all attention-based meth-
ods. We obtain the results of the comparison methods by
running their official code with their default configurations.

Qualitative Comparisons. We show the visual compar-
isons between our model and other AST methods in Fig.
6. AdaIN adjusts the holistic feature distribution and has
no local content awareness; therefore, its results can only
roughly transfer the holistic style. Avatar-Net utilizes a re-
laxed normalized cross-correlation to fulfill locality-aware
feature matching so that its results partially maintain se-
mantic consistency. The results are significantly distorted,

though, because Avatar-Net only matches the most similar
style pattern. MST clusters the complex style distribution
into sub-style components and manipulates the features by
graph-based patch matching. Despite its promising results,
distorted structures still exist. Additionally, it heavily re-
lies on the effect of clustering. SANet adopts an attention
mechanism to match style features for local content fea-
tures attentively. AdaAttN combines attention mechanism
and adaptive instance normalization to integrate the advan-
tage of locality-aware and holistic feature matching. Their
results show fine local style details. However, due to the
limitation of all-to-all attention, their results contain many
unreasonable, inconsistent style patterns (2nd, 3rd, and 5th
row). StyTr2 adapts transformer architecture to AST and
achieves cutting-edge performance. Their results still have
unreasonable textures (2nd, 4td, and 6th row). Our pro-
posed StyA2K outperforms other methods in maintaining
semantic structures and generating consistent style patterns.

Quantitative Comparisons. Following [6], we compute
the average content loss between the generated results and
input content images and the average style loss between the
generated results and input style images to measure how
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Table 1. Statics of quantitative comparison, user study, and inference time. The best results are in bold and the second best results are
marked with an underline.

Method StyA2K (Ours) StyTr2 [6] AdaAttN [27] SANet [30] MST [49] Avatar-Net [33] AdaIN [13]
Content Loss ↓ 0.55 0.83 1.00 0.96 0.77 1.26 0.91

Style Loss ↓ 1.04 1.20 1.24 0.99 2.65 3.96 1.16
LPIPS ↓ 0.52 0.57 0.59 0.63 0.57 0.64 0.62

Content Pref. (%) ↑ 52.69 9.81 15.56 7.12 8.19 2.25 4.38
Style Pref. (%) ↑ 29.06 14.81 12.38 16.13 11.31 9.13 7.19

Overall Pref. (%) ↑ 36.06 15.81 14.50 11.44 11.63 3.56 7.00
Inference Time (s) ↓ 0.0143 0.1004 0.0269 0.0041 1.3906 0.3348 0.0038

well the input content and style are preserved. The smaller
the value is, the better the input content/style is preserved.
In addition, we adopt the Learned Perceptual Image Patch
Similarity (LPIPS) [48] metric to calculate the quality dif-
ference between the generated and input content images. A
lower score indirectly indicates better quality of generated
images. We randomly selected 15 content and 20 style im-
ages to generate 300 stylized images. Table 1 shows the
corresponding quantitative results. StyA2K shows supe-
rior performance on content loss and LPIPS score, which
indicates its superiority in preserving semantic structures
and rendering consistent style patterns. The style loss of
StyA2K’s results is slightly higher than SANet but lower
than other methods. Therefore, our results can significantly
improve the structure and texture consistency while achiev-
ing comparable style performance.

User Study. We conduct a user study to evaluate hu-
man preference on the results generated by different meth-
ods. We reuse the images in the quantitative comparisons
and randomly sample 20 groups. Each group consists of
a content image, a style image, and seven stylized images
generated by different methods. The order of stylized im-
ages in each group is shuffled. We ask participants to select
their favorite stylized image in each group from three per-
spectives: content preservation, stylization effect, and over-
all preference. We collect 1600 votes for each view from 80
participants. Table 1 shows the statistics of the votes, which
indicate that the results generated by our method are more
appealing than other methods.

Running time Comparison. We report the average
inference time of StyA2K and other AST methods under
512 × 512 resolution in Table 1. StyA2K achieves 70 FPS
at 512×512 resolution, which can run in real time. StyA2K
is faster than AdaAttN. The reason why StyA2K is slower
than SANet is that SANet only performs feature transfor-
mation on two layers of VGG features.

4.3. Ablation Study

We conduct an ablation study to verify the effectiveness
of the key ingredients in our method. Visual and quantita-
tive results are shown in Fig. 10 and Table 2, respectively.

Effect of All-to-key Attention. To demonstrate the su-

periority of our proposed all-to-key attention over all-to-
all attention, we replace the all-to-key attention in our full
model with all-to-all attention and observe the changes in
visual quality and evaluation scores. As shown in Fig.
10, the model using all-to-all attention produces distorted
and inconsistent style patterns in its result. The evaluation
scores of all-to-all attention’s results are all worse than all-
to-key attention, as shown in Table 2. The results suggest
that all-to-key attention alleviates the defects caused by all-
to-all attention and thus achieves superior performance.

Effect of DA and PA. To validate the respective effec-
tiveness of DA and PA, we set up three variants: 1) full
model without DA, 2) full model without PA, and 3) full
model without the first step of PA. The results of these vari-
ants are shown in 10. The model without DA can match cor-
rect style patterns with high semantic similarity but lack in
rendering spatial consistent style patterns. The model with-
out PA has high style consistency in local regions but pro-
duces patterns with incorrect semantics. When removing
the first step, PA directly performs regional attention within
the same location. In other words, it directly introduces the
content semantics from the reference style. Therefore, its
result is mixed with the spatially copied style patterns, as
shown in 10, and its results obtain the lowest style loss, as
shown in Table 2. However, introducing content semantics
from the reference style image deviates from the setting of
the style transfer task. In addition, almost all the average
content loss and the average LPIPS score increase when re-
moving one of the three components. Therefore, we can
conclude that all three ingredients are critical to the final
effect of the model.

Effect of Multiple Heads. The removal of multiple
heads (i.e., using only one head) leads to slight visual qual-
ity degradation and loss increase, as shown in Fig. 10 and
Table 2. We can conclude that multiple heads help to im-
prove the final performance of the proposed method.

4.4. Multi-style Transfer

Following previous studies [7, 30, 27], StyA2K can
achieve style interpolation between different styles and ac-
complish multi-style transfer that integrates multiple styles
in one output image, as shown in Fig. 11.
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w/o PA w/o Step 1 of PA

w/o Multiple Heads w/o DA

All-to-all Attention

Content

Style

Figure 10. Ablation study on the key ingredients of StyA2K.

Table 2. Ablation study on the key ingredients of the proposed
method. The best results are in bold and the second best results
are marked with an underline.

Model Content Loss ↓ Style Loss ↓ LPIPS ↓
All-to-all Attention 0.73 1.16 0.56

w/o DA 0.59 1.48 0.51
w/o PA 0.58 1.00 0.59

w/o Step 1 of PA 0.65 0.73 0.56
w/o Multiple Heads 0.65 1.05 0.54

Full Model 0.55 1.04 0.52

Content Styles Interpolation Results

Content Styles Multi-style Transfer Result
Figure 11. Results of style interpolation and multi-style transfer.

4.5. Video Style Transfer

Since A2K has excellent stability to position changes
(such as object motion and light changes), we can directly
apply it to video style transfer. We do not add any mecha-
nism based on the video prior, do not conduct any training
on video data, and independently process each frame. Fig.
1 shows a stylized video by our method. See supplementary
material for more results. We also directly apply AdaAttN
(softmax version) to video style transfer. Through com-

Table 3. Optical flow error of AdaAttN and StyA2K. Lower values
indicate better temporal consistency.

Model Style1 Style2 Style3 Style4 Style5 Mean
AdaAttN 3.03 3.46 6.00 3.78 8.45 4.94
StyA2K 2.58 2.56 4.99 3.21 7.23 4.24

parison, we can find that our method has almost no flicker
phenomenon and shows high temporal consistency. We
calculate the optical flow error [2] on five stylized video
clips to quantitatively verify the stability of our method. As
shown in Table 3, StyA2K has a lower optical flow error
than AdaAttN in all five stylized video clips. Note that we
have no intention to propose a SOTA video style transfer
method because it requires introducing other technologies,
such as temporal consistency constraint. We directly apply
StyA2K to video style transfer to verify its stability.

5. Conclusion and Limitation
This paper proposes a novel all-to-key attention mecha-

nism to achieve effective and efficient arbitrary style trans-
fer. It integrates two inventions: distributed attention and
progressive attention. Distributed attention assigns atten-
tion to key style representations. Progressive attention pays
attention from coarse to fine. They jointly promote main-
taining semantic structures and synthesizing spatially con-
sistent style texture. Extensive experiments verify the supe-
riority of our method.

Limitation. In this study, we are committed to solv-
ing the problems caused by all-to-all attention and improv-
ing the semantic structure preservation, style pattern consis-
tency, and stability of style transfer. However, we have not
explored the aspect of improving style expressiveness. Re-
cently, contrastive learning has shown strong performance
in learning style representation [51]. Therefore, we will ex-
plore the feasibility of combining all-to-key attention with
contrastive learning in our future work to improve the style
expression of the method.
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