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Abstract

Plentiful adversarial attack researches have revealed the
fragility of deep neural networks (DNNs), where the imper-
ceptible perturbations can cause drastic changes in the out-
put. Among the diverse types of attack methods, gradient-
based attacks are powerful and easy to implement, arousing
wide concern for the security problem of DNNs. Howev-
er, under the black-box setting, the existing gradient-based
attacks have much trouble in breaking through DNN mod-
els with defense technologies, especially those adversari-
ally trained models. To make adversarial examples more
transferable, in this paper, we explore the fluctuation phe-
nomenon on the plus-minus sign of the adversarial pertur-
bations’ pixels during the generation of adversarial exam-
ples, and propose an ingenious Gradient Relevance Attack
(GRA). Specifically, two gradient relevance frameworks are
presented to better utilize the information in the neighbor-
hood of the input, which can correct the update direction
adaptively. Then we adjust the update step at each iteration
with a decay indicator to counter the fluctuation. Exper-
iment results on a subset of the ILSVRC 2012 validation
set forcefully verify the effectiveness of GRA. Furthermore,
the attack success rates of 68.7% and 64.8% on Tencen-
t Cloud and Baidu AI Cloud further indicate that GRA can
craft adversarial examples with the ability to transfer across
both datasets and model architectures. Code is released at
https://github.com/RYC-98/GRA.

1. Introduction

Deep neural networks (DNNs) have made numerous

achievements [13, 14, 10, 3, 32, 6, 35]. However, especially

in the computer vision field, recent researches on the mod-

el robustness verify that DNNs are extremely susceptible to

human-imperceptible malicious perturbations [1, 11, 31, 4],

attracting many researchers to dive into the generation of

adversarial examples [7, 5, 22, 20]. Furthermore, crafting
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Figure 1. Attention maps [28] of a clean image and its adversarial

example crafted by GRA on Inc-v3. The target model is Res-152.

adversarial examples with strong transferability can expose

security defects and explore the inner mechanism of current

DNNs [11, 23, 33], and it has become a vital task in com-

puter vision.

From the perspective of the attackers’ knowledge, there

are two types of attack settings, i.e., black-box setting and

white-box setting. In the white-box setting, all informa-

tion about the target model can be acquired by the attacker-

s, and many previous attack methods can already hoax the

source model with a nearly 100% attack success rate under

this setting [16]. Conversely, in the black-box setting, on-

ly the model output is available, which will often degrade

the attacking performance on target models, especially for

models with defense mechanisms [26, 15, 12, 21, 24]. To

deal with this issue, diverse gradient-based attack meth-

ods [18, 7, 9, 36, 39], input augmentation transformation-

s [8, 38, 37], and ensemble strategy [19] are presented in

recent years. Among them, variance tuning (VT) [36] is

one of the most promising attack methods, which introduces

neighborhood information of the input at the last iteration to

stabilize the current update direction. Unfortunately, it ig-

nores the gradient relevance between the input and its neigh-
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borhood, failing to make full use of the neighborhood infor-

mation.

In this research, we propose a new gradient-based at-

tack named Gradient Relevance Attack (GRA). An exam-

ple is provided to show the misdirection capacity of GRA

in Figure 1. Concretely, inspired by the framework of dot-

product attention [2, 34], we first devise two gradient rel-

evance frameworks to dig out neighborhood information.

We view the current gradient as the query vector [34] and

the gradients calculated from the neighborhood as the key

vectors [34], then establish relevance between them through

cosine similarity. With the inner relevance information, the

update direction is determined by a group of samples’ gra-

dients adaptively.

(b) 1K Adversarial perturbations’ average sign change proportion 

 (a) 1K Adversarial examples’ average pixel change proportion 
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Figure 2. The illustration for two kinds of pixel change tenden-

cy: (a) Adversarial examples’ pixel value changes; (b) Adversarial

perturbations’ sign changes. Note that adversarial examples are

crafted on Inc-v3.

Besides, we calculate the mean pixel changes of the ad-

versarial examples compared with their clean images on

a subset (1k) of ILSVRC 2012 validation set [27]. Five

popular gradient-based attacks (MI-FGSM [7], NI-FGSM

[18], VTMI-FGSM, VTNI-FGSM [36] and Admix [37])

are taken into consideration. The result indicates the mean

pixel changes are all between 10 and 11 under the maxi-

mum constraint ε = 16 and the maximum iteration number

T = 10. Current methods typically add adversarial per-

turbations with the magnitude of ε/T on the input at each

iteration to craft adversarial examples. We conclude two

reasons may result in this fact. One is that many pixels’ val-

ues remain unchanged after certain iterations, and we name

it the early stop. While the other is caused by the frequent

plus-minus sign changes on the pixels of adversarial per-

turbations (we simply call it the adversarial perturbations’

sign changes in the following context without ambiguity).

To figure out the real reason, we study the adversarial ex-

amples’ pixel changes and adversarial perturbations’ sign

changes between two adjacent iterations. Admix and MI-

FGSM are selected as examples, their results are displayed

in Figure 2. Figure 2 (a) shows that more than 95% pixels

keep changing from the beginning to the end, therefore, the

first early stop is impossible. Figure 2 (b) certifies the fre-

quent fluctuation of the sign (see Figure 3), because more

than half of the adversarial perturbations’ signs are chang-

ing even at the end of the generation. In fact, the fluctuation

phenomenon in adversarial perturbations’ sign is not always

bad, because it can help us find the optimum. Whereas the

step size is fixed during the generation of adversarial ex-

amples, and it keeps us from getting closer to the optimum

when facing frequent fluctuation. Consequently, we further

integrate a decay indicator to adjust the step size and counter

the fluctuation. Combining MI-FGSM with the gradient rel-

evance framework and decay indicator, we propose the gra-

dient relevance attack (GRA).

1.6 -1.6 1.6

20.0 21.6 20.0 21.6... ...

Figure 3. The illustration for adversarial perturbations’ sign

changes. The xadv
t and δt are input and adversarial perturbations

at the t-th iteration severally.

Experiment results persuasively verify that GRA has bet-

ter performance than other advanced attacks, and becomes

the state-of-the-art gradient-based attack method. For ex-

ample, the average attack success rate of our method can

reach 83.0% on models with defense technologies [33, 26,

15, 12, 21, 24], and it achieves at least 12.3.% improvement

over other advanced attack methods.

Our main contributions are summarized as follows:

• We explore the fluctuation on adversarial perturbation-

s’ plus-minus sign during the generation of adversarial

examples, and devise a decay indicator of the step size

to counter the fluctuation.

• We present two kinds of gradient relevance frame-

works, which can make full use of the neighbor infor-

mation by establishing the gradient relevance between

the input and its neighborhood at each iteration.

• We propose an ingenious Gradient Relevance At-

tack (GRA) combing with current input augmentation

transformations, which can boost the transferability of

adversarial examples largely.
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• Comprehensive experiments on normal classification

classifiers, defended classifiers and practical online

classifiers verify that GRA is superior to the latest

state-of-the-art gradient-based attacks.

2. Related Work
2.1. Gradient-based Attack Method

The gradient-based attack is a mighty kind of attack

method, which adds perturbation to the clean image along

the gradient’s sign to confuse the classifier. Goodfellow et
al. [11] present the fast gradient sign method (FGSM) to

generate the adversarial example and find the linear prop-

erty of networks. However, FGSM obtains the adversarial

examples with only one iteration, which is underfitting. To

solve this issue, Kurakin et al. [16] construct the iterative

version of FGSM called I-FGSM by increasing the number

of iterations. Momentum iterative fast gradient sign method

(MI-FGSM) [7] follows the idea of gradient descent with

momentum [25] to reduce the volatility in the update di-

rection. Nesterov Iterative Fast Gradient Sign Method (NI-

FGSM) [18] improves MI-FGSM by taking an extra step at

each iteration. Variance Tuning (VT) [36] utilizes the gra-

dient information obtained at the last iteration to correct the

current gradient and it can be integrated into MI-FGSM and

NI-FGSM.

2.2. Input Augmentation Transformation

Diverse input (DI) [38] enhances input images through

a combination of two transformations, i.e., random padding

and resizing with a constant probability, and then it send-

s the processed images to craft adversarial examples.

Translation-Invariance (TI) [8] calculates the average gradi-

ent on the translated input images at each iteration, and its

author proves that the process above can be approximately

calculated with a special kernel matrix directly convolving

the gradients of the input. Scale-Invariant (SI) [18] puts

forward the scale-invariant property of the deep neural net-

work, and then gets the average gradient over scaled im-

ages to introduce extra foreign gradient information when

producing adversarial examples. Admix [37] mixes the in-

put image with other images randomly selected in the same

batch to augment the input, and then updates with gradients

calculated on the mixed image.

2.3. Adversarial Defense

Similar to the effect of vaccines, adversarial training

[11, 23, 33] notably improves the robustness of models by

extending the training dataset with crafted adversarial ex-

amples. Whereas adversarial training is hard to extend to

the complex models [17]. Except for adversarial training,

there are other defense methods that are simple to imple-

ment. Guo et al. [12] apply diverse non-differentiable

transformations (e.g., JPEG compression) to the input im-

ages and increase the prediction accuracy when faced with

adversarial examples. Naseer et al. [24] eliminate the mali-

cious perturbations with a prearranged neural representation

purifier (NRP) which is an automatically derived supervi-

sion. ComDefend [15] defends the adversarial examples by

feeding them into an end-to-end image compression model

which can partly alleviate the malicious perturbations on the

image. Feature distillation (FD) [21] purifies the adversar-

ial input perturbations by redesigning the image compres-

sion framework, which is a novel low-cost strategy. Pixel

deflection (PD) [26] can allay the malicious perturbations

effectively with pixel corruption and redistribution.

3. Approach
3.1. Preliminary

Our task is to find an adversarial example xadv =
xclean + δ that can hoax the target classifier Fθ with pa-

rameter θ and satisfy the given constraint:

Fθ(x
clean) �= Fθ(x

adv), s.t.‖δ‖∞ < ε, (1)

where xclean is the clean image, δ is the malicious perturba-

tion, and ε is the maximum magnitude of malicious pertur-

bation under the infinite norm [7, 8, 18, 38, 36, 37]. When

all information about Fθ is transparent, the process above

can be considered as an optimization problem to search an

adversarial example xadv as:

argmax
xadv

L(xadv, ytrue), (2)

where L is the loss function and ytrue is the true label of

xclean. Whereas, in most cases, we can only acquire the

outputs of Fθ in the black-box setting. Therefore, it is typ-

ical to attack the target Fθ with adversarial examples gen-

erated on another source model Fψ with parameter ψ, and

the ability to successfully deceive another model is called

adversarial transferability.

3.2. Gradient Relevance Framework

Variance tuning [36] modifies the current gradient with

gradient variance computed in the neighborhood at the last

iteration, which can promote the adversarial transferability

to a new level. But we argue that the gradient variance at

the last iteration can’t reflect the variation trend of the loss

function exactly at the current iteration. We hence correct

the current gradient with neighbor information at the current

iteration in a new way.

Let xadvt represent the input at the t-th iteration, xit =
xadvt + γit denote the sampled image nearby xadvt , where

i = 1, 2, ...,m, and m is the sample quantity. Here γit is the

i-th random noise satisfying γit ∼ U
[
−(β · ε)d, (β · ε)d

]
,
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where β · ε is the upper bound of the random noise’s mag-

nitude, β is the upper bound factor, U [, ] is the uniform dis-

tribution and d is the dimension.

Our purpose is to seek the inner relevance between the

current gradient Gt(x) calculated on xadvt :

Gt(x) = ∇xadv
t
L(xadvt , ytrue), (3)

and the gradient Gi
t(x) calculated on xit:

Gi
t(x) = ∇xi

t
L(xit, y

true). (4)

Inspired by the framework of dot-product attention [34],

we treat the current gradient Gt(x) calculated on xadvt as

a query vector and the gradients Gi
t(x) calculated near-

by xadvt as the key vector, then establish a relevance a-

mong them with cosine similarity and output the individ-

ually weighted gradient WGi
t

by:{
sit =

Gt(x)·Gi
t(x)

‖Gt(x)‖2·‖Gi
t(x)‖2

,

WGi
t
=sit ·Gt + (1− sit) ·Gi

t.
(5)

Finally, we obtain the global weighted gradient WGt by

WGt=
1

m

m∑
i=1

WGi
t
. (6)

The individual gradient relevance framework is shown in

Figure 4 (a). It can be found that this framework is derived

from the dot-product attention [34], and we need to calcu-

late the similarity between Gt and each Gi
t
m times at each

iteration. To be more efficient, we put forward another av-

erage gradient relevance framework in Figure 4 (b). Instead

of calculating similarity with all the nearby gradients, we

directly establish the relevance with their average gradien-

t, which only needs to calculate the similarity once at each

iteration. The average gradient Gt(x) is defined as:

Gt(x) =
1

m

m∑
i=1

Gi
t(x) =

1

m

m∑
i=1

∇xi
t
L(xit, y

true), (7)

and the average gradient relevance framework can be writ-

ten as: {
st =

Gt(x)·Gt(x)

‖Gt(x)‖2·‖Gt(x)‖
2

,

WGt = st ·Gt + (1− st) ·Gt.
(8)

It’s worth noting that both the two relevance framework-

s above can be integrated with MI-FGSM [7]. Taking the

average gradient relevance framework as an example, af-

ter obtaining the global weighted gradient WGt by Eq.(8),

the momentum accumulation gt+1 in MI-FGSM can be ex-

pressed as:

gt+1 = μ · gt + WGt

‖WGt‖1
, (9)

where μ is the decay factor of the momentum accumulation.

The idea of the average gradient framework is simple and

the average gradient Gt(x) contains the update information

near the input which can be regarded as an auxiliary cor-

rection term. When the current gradient Gt is similar to

Gt(x), we allocate a large weight to Gt and a small weight

to Gt(x), because Gt doesn’t need much correction in this

case. If they differ widely, we prefer to give Gt(x) a large

weight, namely trusting it more, because it is calculated on

m samples near the input rather than a single input. Be-

sides, it needs to point out that both two frameworks are on

the basis of neighbor information at the current iteration in-

stead of the last iteration. This is also a major difference

between our methods and previous variance tuning.

Cosine Similarity

Multiplication

Cosine Similarity

Multiplication

(a) (b)

Figure 4. Illustration for two gradient relevance frameworks: (a)

Individual gradient relevance framework; (b) Average gradient rel-

evance framework.

3.3. Decay Indicator

The fluctuation phenomenon of adversarial perturba-

tion’s sign and the fixed step size will make the adversar-

ial example oscillate around the optimum. We hence de-

sign a decay indicator Mt+1 to decrease the step size when

encountering frequent fluctuation on the adversarial pertur-

bation’s sign. On account of the fact that the adversarial

perturbation’s sign is dependent on the momentum accu-

mulation’s sign [7, 36, 37], we define the decay indicator

Mt+1 by

Mt+1 =Mt � (Me
t+1 + η ·Md

t+1), (10)

where η ∈ (0, 1) is the attenuation factor and the elements

of M0 are all set to 1/η. Me
t+1 and Md

t+1 denote the un-

changed and changed position of the adversarial perturba-

tion severally in two adjacent iterations, their elements are

defined as:

Me
t+1,j =

{
1, if sign(gjt ) = sign(gjt+1),
0, otherwise,

(11)
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where Me
t+1,j is the j-th element on the Me

t+1 and gjt+1 is

the j-th element on the gt+1.

Md
t+1,k =

{
1, if sign(gkt ) �= sign(gkt+1),
0, otherwise,

(12)

where Md
t+1,k is the k-th element on the Md

t+1 and gkt+1 is

the k-th element on the gt+1. Eq.(10) means if there is no

(a) (b) 

Fluctuation with 
fixed step size 

Fluctuation with  
decayed step size 

Optimum  Optimum  

Figure 5. Two situations when encountering the fluctuation on ad-

versarial perturbation’s sign: (a) Without decay indicator; (b) With

decay indicator

fluctuation, we just keep the fixed step size. However, if a

pixel’s sign fluctuates repeatedly, it indicates the value of

this pixel on the adversarial example is probably near the

optimum. We thereby decrease the step size with η at each

oscillation to let it be closer to the optimum (see Figure 5).

Then the update process of each iteration can be expressed

as:

xadvt+1 = Clip{xadvt + α ·Mt+1 � sign(gt+1)}, (13)

where Clip means limiting each pixel on the image within

a given constraint and α is the fixed step size.

Combining MI-FGSM with the average gradient rele-

vance framework and decay indicator, we have the final for-

m of the Gradient Relevance Attack (GRA) in Algorithm

1. Note that when combining MI-FGSM and decay indi-

cator with individual gradient relevance framework, we use

I-GRA especially to distinguish two kinds of frameworks.

Comparisons of GRA and I-GRA are reported in Table 1.

4. Experiments
4.1. Experiment Setup

Dataset. We follow the tradition of using 1,000 clean

images from ILSVRC 2012 validation set [27] to verify the

availability of GRA, the same as previous works [18, 36,

37]. These clean images can be classified with almost 100%

accuracy by the models involved in this paper.

Models. Four classical source models are select-

ed to craft adversarial examples, containing Inception-

v3 (Inc-v3) [30], Inception-v4 (Inc-v4), Inception-Resnet-

v2 (IncRes-v2) [29] and Resnet-v2-101 (Res-101) [13].

Target models consist of the source models above and

Algorithm 1 Gradient Relevance Attack

Input: A source model Fψ with loss function L, a clean im-

age xclean and its corresponding true label ytrue. The max-

imum magnitude of adversarial perturbation ε, the iteration

number T and the decay factor of momentum accumulation

μ, attenuation factor η, the upper bound factor β and the

sample quantity m.

Output: The adversarial image xadvT .

1: Initialize α = ε/T, g0 = 0, v0 = 0, xadv0 = x and set

all elements of M0 to 1/η
2: for t = 0 → T − 1 do
3: Calculate the current gradient Gt(x) by Eq.(3) and

the average gradient Gt(x) by Eq.(7)

4: Calculate the cosine similarity st and the global

weighted gradient WGt by Eq.(8)

5: Update momentum accumulation gt+1 with WGt

gt+1 = μ · gt + WGt

‖WGt‖1
6: Update decay indicator Mt+1 by Eq.(10)

7: Update xadvt+1 with Mt+1 and the sign of gt+1

xadvt+1 = Clip{xadvt + α ·Mt+1 � sign(gt+1)}

8: end for

adversarially trained models [33] such as adv-Inception-

v3 (Inc-v3adv), ens3-adv-Inception-v3 (Inc-v3ens3), ens4-

Inception-v3 (Inc-v3ens4) and ens-adv-Inception-ResNet-

v2 (IncRes-v2ens). Additionally, five defense methods in-

cluding PD [26], NRP [24], JPEG [12], ComDefend [15]

and FD [21] are also taken into consideration. Note that,

only PD is combined with Resnet-v2-50 [13], and the rest

four defense methods are combined with Inc-v3ens3. Fi-

nally, we also conduct the proposed attack on two practical

online models to show the threat in the real world.

Baseline Methods. Three of the latest gradient-based at-

tacks VTMI-FGSM, VTNI-FGSM [36] and Admix [37] are

taken into consideration in our experiments, which have ex-

hibited higher attack success rates compared with previous

attacks such as MI-FGSM [7] and NI-FGSM [18]. Addi-

tionally, we also involve the combined transformation (CT)

[36] to verify the compatibility, where CT is the combina-

tion of DI [38], TI [8] and SI [18]. In the following context,

we simply write VTMI-FGSM and VTMI-FGSM as VTMI

and VTNI without ambiguity.

Parameter Setting. The attack setting is identical with

previous works [7, 36, 37] where the iteration number T is

set to 10, the upper bound on the perturbation magnitude ε
is set to 16 and step size α is set to 1.6. We set the decay

factor μ to 1.0 for MI, the transformation probability p to

0.5 for DI, the kernel size to 7×7 for TI, and the number of
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Average

Inc-v3

VTMI [36] 100.0* 71.7 68.1 60.2 32.8 31.2 17.5 54.5

VTNI [36] 100.0* 76.5 74.9 66.0 35.0 32.8 18.8 57.7

Admix [37] 100.0* 82.6 80.9 75.2 39.0 39.2 19.2 62.3

I-GRA (ours) 99.6* 86.1 84.6 78.6 57.9 56.8 38.4 71.7

GRA (ours) 99.9* 87.1 85.5 79.5 58.8 57.4 39.8 72.6

Inc-v4

VTMI [36] 77.9 99.8* 71.2 62.2 38.2 38.7 23.2 58.7

VTNI [36] 83.4 99.9* 76.1 66.9 40.0 37.7 24.5 61.2

Admix [37] 87.8 99.4* 83.2 78.0 55.9 50.4 33.7 69.8

I-GRA (ours) 87.9 98.6* 85.6 79.2 65.2 62.1 50.9 75.6

GRA (ours) 89.8 98.6* 86.5 79.6 66.1 64.8 51.3 76.7

IncRes-v2

VTMI [36] 77.9 72.1 97.9* 67.7 46.4 40.8 34.4 62.5

VTNI [36] 80.8 76.9 98.5* 69.8 47.9 40.3 34.2 64.1

Admix [37] 89.9 87.5 99.1* 81.9 64.2 56.7 50.0 75.6

I-GRA (ours) 86.0 84.2 95.0* 81.1 68.4 64.0 61.9 77.2

GRA (ours) 86.0 83.1 96.3* 81.7 69.0 63.2 62.6 77.4

Res-101

VTMI [36] 75.1 68.9 70.5 99.2* 45.2 41.4 30.1 61.5

VTNI [36] 79.8 74.6 73.2 99.7* 46.1 42.5 32.1 64.0

Admix [37] 85.4 80.8 79.6 99.7* 51.0 45.3 30.9 67.5

I-GRA (ours) 85.8 82.6 82.1 99.2* 71.5 67.7 58.7 78.2

GRA (ours) 87.1 83.0 83.8 99.3* 72.3 68.4 57.8 78.8

Table 1. The attack success rates (%) on seven models by a single attack. The adversarial examples are generated on Inc-v3, Inc-v4,

IncRes-v2, and Res-101 separately. * denotes the success rate of the white-box attack and the result in bold is the best.

scale copies c to 5 for SI. We let sample quantity m be 20

and the sample range factor β be 1.5 for VTMI and VTNI.

For Admix, the number of copies m1 is set to 5, the number

of mixed images m2 is set to 3, and the mixed ratio is set to

0.2. In our method, the sample quantity m is 20, the upper

bound factor of sample range β is 3.5 and the attenuation

factor η is 0.94. Furthermore, attacks combined with an

ensemble attack strategy are conducted on a single NVIDIA

Tesla V100 GPU, while other attacks are conducted on a

single NVIDIA RTX 2080Ti GPU.

4.2. Attack with a Single Method

We craft adversarial examples by VTMI, VTNI, Admix,

I-GRA, and GRA on four source models, and then attack

seven target models. The attack results are illustrated in Ta-

ble 1, where the attack success rate represents the misclas-

sification rate of the target model. It is apparent that GRA

outperforms other attacks on all the normally trained mod-

els except for a small gap on the IncRes-v2 and under the

white-box setting. However, GRA exhibits overwhelming

superiority on adversarially trained models and the average

attack success rates are the highest among the four attack

methods. For example, when the adversarial examples are

generated on Res-101 and the target model is Inc-v3ens4,

GRA can yield an attack success rate of 68.4%, while the

Admix can only achieve a 45.3% attack success rate.

For the comparison between I-GRA and GRA, both of

them surpass the involved attack methods in most cases,

while GRA is slightly better than I-GRA. We deem the rea-

son is that I-GRA introduces much local relevance infor-

mation, i.e., m times cosine similarity computations each

iteration, which degrades the generalization ability of the

adversarial examples. Therefore, in the following experi-

ments (Sec.4.3 and Sec.4.4), we only contain the GRA for

simplicity because it is more threatening than I-GRA.

4.3. Attack with the Combined Transformation

To achieve a higher attack success rate, we need to ex-

amine the compatibility of the proposed GRA with the com-

bined transformation (CT) [36] which is the combination of

DI [38], TI [8] and SI [18]. Note that Admix has already

included the SI, hence the Admix-CT only contains two ex-

tra augmentation transformations, i.e., DI, and TI. As can

be seen from Table 2, GRA-CT also has the highest attack

success rates. Take the adversarial examples crafted on Inc-

v3 for example, GRA-CT yields an average success rate of

90.4%, while the VTNI-CT merely obtains an average suc-

cess rate of 83.7%, which persuasively certifies the good

compatibility of GRA with other transformations.

4.4. Attack with Ensemble Strategy

Ensemble strategy can effectively boost the transferabil-

ity of adversarial examples [7, 19]. We apply the ensemble

strategy proposed in [7] to strengthen our GRA and attack

nine defended models in Table 3. Note that we only in-

clude Admix and VTNI as our rivals, because the above

results have shown that they are more challenging than VT-

MI. From Table 3, it is obvious that even with advanced
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Average

Inc-v3

VTMI-CT [36] 99.3* 88.6 86.7 82.9 78.6 76.2 64.7 82.4

VTNI-CT [36] 99.5* 91.2 89.0 85.3 78.6 76.7 65.3 83.7

Admix-CT [37] 99.9* 89.0 87.0 83.1 72.2 71.1 52.4 79.2

GRA-CT (ours) 99.7* 92.7 92.3 91.2 89.0 88.1 79.8 90.4

Inc-v4

VTMI-CT [36] 90.0 98.8* 86.6 81.9 78.3 76.6 68.3 82.9

VTNI-CT [36] 92.1 99.2* 89.2 85.1 80.1 78.3 70.4 84.9

Admix-CT [37] 90.4 99.0* 87.3 82.0 75.3 71.9 61.6 81.1

GRA-CT (ours) 92.5 99.3* 90.1 87.9 86.1 86.0 79.9 88.8

IncRes-v2

VTMI-CT [36] 88.9 87.0 97.0* 85.0 83.4 80.5 79.4 85.9

VTNI-CT [36] 92.9 90.6 99.0* 88.2 85.2 82.5 81.8 88.6

Admix-CT [37] 90.1 87.6 97.7* 85.9 82.0 78.0 76.3 85.4

GRA-CT (ours) 92.1 91.4 97.9* 88.6 87.9 87.1 87.1 90.3

Res-101

VTMI-CT [36] 86.9 84.2 86.4 98.6* 81.0 78.6 71.6 83.9

VTNI-CT [36] 90.7 85.5 87.2 99.1* 82.6 79.7 73.3 85.4

Admix-CT [37] 91.0 87.7 89.2 99.9* 81.1 77.4 70.1 85.2

GRA-CT (ours) 91.4 85.1 89.4 99.5* 89.4 88.9 84.3 89.7

Table 2. The attack success rates (%) on seven models by four gradient-based iterative attacks augmented with CT. The adversarial examples

are generated on Inc-v3, Inc-v4, IncRes-v2, and Res-101 separately. * denotes the success rate of the white-box attack and the result in

bold is the best.

Model Attack Inc-v3adv Inc-v3ens3 Inc-v3ens4 IncRes-v2ens JPEG ComDefend NRP FD PD

Ens

VTNI [36] 70.7 70.3 66.8 52.2 78.3 80.8 16.0 74.6 79.2

Admix [37] 72.5 77.8 73.2 59.1 84.1 83.1 24.1 77.5 84.7

GRA (ours) 88.4 88.4 87.2 82.1 92.3 90.9 29.2 88.1 100.0

Table 3. The attack success rates (%) on nine defended models attacked by adversarial examples crafted on Inc-v3, Inc-v4, IncRes-v2, and

Res-101 synchronously. The result in bold is the best.

defense methods, GRA can still achieve an average attack

success rate of 83.0% and exceeds other attacks by more

than 12.3%, which demonstrates the effectiveness of our at-

tack.

Moreover, we select 150 adversarial examples crafted

with ensemble strategy, and all of their corresponding clean

images can be classified as the same category by two online

models, i.e., Tencent Cloud1 and Baidu AI Cloud2. Then we

evaluate their robustness and report the evaluation results in

Table 4. Obviously, under the ensemble setting, GRA can

exhibit a strong threat to the target models with an average

success rate of 66.8%, which demonstrates an 11.1% and

11.4% improvement over VTNI and Admix, respectively.

All these results reveal the vulnerability of current models

in the real world.

4.5. Ablation Study

To verify the effectiveness of the components in GRA,

we analyze three crucial hyper-parameters including the

sample quantity m, the upper bound factor of sample range

β, and the attenuation factor η.

Sample quantity m decides the amount of information

extracted from the neighborhood of xadvt . As illustrated in

1https://cloud.tencent.com/
2https://cloud.baidu.com/

Model Attack Tencent Cloud Baidu AI Cloud

Ens

VTNI [36] 57.3 54.0

Admix [37] 56.0 54.7

GRA (ours) 68.7 64.8

Table 4. The attack success rates (%) on two online models at-

tacked by adversarial examples crafted with ensemble strategy.

The result in bold is the best.

Figure 6, the attack success rates increase rapidly on nor-

mally trained models with the increase of m, then tend to

be stable after m = 20. Nevertheless, the attack success

rates on adversarially trained models tend to increase even

after m = 50. For a fair comparison, we set m = 20, the

same as previous work [36].

Furthermore, taking into consideration both Table 1 and

Figure 6, we can find that GRA is more effective than VTMI

and VTNI. For example, when the sample quantity m = 5,

GRA can fool Inc-v4 and IncRes-v2ens with attack success

rates of 78.1% and 24.8% respectively. However, VTNI can

only achieve 76.5% and 18.8% with m = 20, which force-

fully demonstrates the superiority of our GRA.

Upper bound factor of the sample range β is a sig-

nificant hyper-parameter, which determines the receptive s-

cope of GRA. As displayed in Table 1 and Figure 7, when
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Figure 6. The attack success rates (%) of GRA with varying sam-

ple quantity and the adversarial examples are crafted on Inc-v3.

Note that β = 3.5 and η = 0.94.

β = 3.5, GRA achieves the highest success rates on seven

target models, which obtains a larger sample range than VT

(β = 1.5) [36]. We argue that the gradient relevance frame-

work gives the attack a broader receptive scope, which en-

ables the crafted adversarial examples to absorb more unfa-

miliar neighbor information without reducing the attacking

performance. And it is exactly the capability of receiving

more unfamiliar neighbor information that makes the ad-

versarial examples crafted by GRA more transferable.
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Figure 7. The attack success rates (%) of GRA with different up-

per bounds of the sample range factor β, where the adversarial

examples are crafted on Inc-v3. Note that m = 20 and η = 0.94.

Attenuation factor η influences the decay speed of the

step size when facing the fluctuation of the adversarial per-

turbation’s sign. To search for a proper decay speed, we

visualize the trend of the attack success rates with different

attenuation factors η in Figure 8. To exhibit a clearer vary-

ing trend, we divide seven target models into two groups,

i.e., normally trained group and adversarially trained group,

then compute their average attack success rates. It can be

observed from Figure 8 that the average attack success rates

are relatively high in both groups when attenuation factor η
is near 0.94, so we let η be 0.94 in the proposed GRA.
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Figure 8. Under GRA, two groups’ average attack success rates

(%) with varying attenuation factor η and the adversarial examples

are crafted on Inc-v3. Note that m = 20 and β = 3.5.

5. Conclusion and Discussion

In this paper, we proposed a novel Gradient Relevance

Attack (GRA) and explored the fluctuation phenomenon on

the plus-minus sign of the adversarial perturbations during

the generation of adversarial examples. Concretely, we de-

vised two gradient relevance frameworks to mine the po-

tential neighbor information around the input. Considering

both the efficiency of calculating cosine similarity and the

attacking performance, we adopted the average gradient rel-

evance framework in GRA. Moreover, we also devised the

decay indicator to decrease the step size when encounter-

ing frequent fluctuation. Abundant experiment results on

the subset of ILSVRC 2012 validation set convincingly ver-

ified the superiority of GRA. Finally, we also demonstrated

the poor robustness of two practical online models with ad-

versarial examples crafted by our method, which revealed

a worrying fact that the models deployed in the real world

were probably unreliable.

In the future, we think further improvements in gradient-

based attacks may concentrate on two aspects. One is de-

veloping effective methods to utilize the extra information.

There are many methods to enhance the input data, but few

methods are put forward to make full use of them. The oth-

er is to devise a more proper way to fine-tune the step size,

which can make the update direction more reasonable.
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