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Abstract

Vision-Language Pretraining (VLP) has shown impres-
sive results on diverse downstream tasks by offline train-
ing on large-scale datasets. Regarding the growing na-
ture of real-world data, such an offline training paradigm
on ever-expanding data is unsustainable, because models
lack the continual learning ability to accumulate knowl-
edge constantly. However, most continual learning studies
are limited to uni-modal classification and existing multi-
modal datasets cannot simulate continual non-stationary
data stream scenarios. To support the study of Vision-
Language Continual Pretraining (VLCP), we first con-
tribute a comprehensive and unified benchmark dataset
P9D which contains over one million product image-text
pairs from 9 industries. The data from each industry as an
independent task supports continual learning and conforms
to the real-world long-tail nature to simulate pretraining
on web data. We comprehensively study the characteris-
tics and challenges of VLCP, and propose a new algorithm:
Compatible momentum contrast with Topology Preserva-
tion, dubbed CTP. The compatible momentum model ab-
sorbs the knowledge of the current and previous-task mod-
els to flexibly update the modal feature. Moreover, Topology
Preservation transfers the knowledge of embedding across
tasks while preserving the flexibility of feature adjustment.
The experimental results demonstrate our method not only
achieves superior performance compared with other base-
lines but also does not bring an expensive training burden.
Dataset and codes are available at https://github.
com/KevinLight831/CTP.

1. Introduction

Benefiting from the remarkable generalization ability de-
rived from large-scale pretraining, Vision-Language Pre-
training (VLP) [33, 23] has emerged as the prevalent ap-
proach for addressing downstream vision-language tasks.

The recent advancements in artificial intelligence such as
CLIP [33] and ChatGPT [1] have further fueled this trend
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Figure 1: The traditional Class-Incremental Learning (CIL)
is inflexible in the continual learning of visual concepts,
which needs ever-expanding classifier parameters and end-
less human annotation. Moreover, it is difficult for single-
class labeling to cover all visual concepts in an image. e.g.,
CIL only focuses on the foreground class dog and ignores
the background class flower, while Vision-Language Con-
tinual Pretraining (VLCP) can flexibly represent the image
content by text. Compared with CIL, which fixes the label
space and only updates the image encoder, VLCP updates
the image and text encoders simultaneously in the fixed
dimension. Meanwhile, previous-task data also cannot be
used as contrast samples in the continual pretraining.

of using larger models and more data. In the long term,
this computational headlong rush does not seem reason-
able to move toward sustainable solutions and actually
also excludes academic laboratories with limited resources.
Current VLP paradigms all train on prepared data in ad-
vance. Nevertheless, the world is ever-changing. Offline-
trained models can not evolve in a dynamic environment to
continually acquire, integrate and accumulate new knowl-
edge. Moreover, repeated offline pretraining on the ever-
expanding dataset will impose growing and endless training
costs. Only finetuning on new data will also suffer severe
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degradation due to catastrophic forgetting [32]. Hence, in
practical application scenarios, it is significant for VLP to
continually integrate knowledge from the incoming data.

Prior studies on continual learning [20, 55, 42, 53, 51]
focused on supervised class-incremental learning (CIL), as
Figure 1(a), which aims to maintain discriminative features
for known classes and expand new classifiers to learn new
classes. However, this paradigm is inflexible due to the
constant demand for laborious annotation and increasing
classifier parameters. In contrast, VLP allows for learn-
ing open-world visual patterns without explicit “class” con-
cepts, which can capture more comprehensive visual con-
cepts rather than just category-based features. Moreover,
massive web weak-aligned image-text pairs can be used as
training data without extra human annotation, and no extra
parameters are needed for category expansion as the output
dimension is fixed for image and text encoders.

Nevertheless, Vision-Language Continual Pretraining
(VLCP) remains understudied due to the lack of datasets
that satisfy both massive image-text pairs and continual
tasks with discrepant knowledge. Therefore, we contribute
the first VLCP dataset P9D, which contains more than 1
million product image-text pairs and over 3800 categories
from 9 industries. Different task data are split according
to industry (e.g. food and clothing) to support the contin-
ual pretraining. P9D not only is larger than previous CIL
datasets both in terms of both class number and data size.
but also conforms to real-world long-tailed distributions.
As shown in the Figure 1(b), VLCP, as a new paradigm,
also suffers new challenges compared with traditional CIL.
1) Fixed-dimensional embedding: CIL methods typically
address the stability-plasticity dilemma by preserving old
logits [27] or freezing old backbone [31] and finetuning
new classifiers. Without explicit class supervision and in-
creasing embedding dimension, the VLCP can only ad-
just the fixed-dimensional shared embedding to incorporate
both old and new knowledge. 2) Missing contrast sam-
ples: CIL still can use the gradient from negative logits of
old classes [27, 34, 17] even if the old data is unseen. But
the lack of contrast samples from old tasks leads to sub-
optimal shared embedding in VLCP. 3) Multi-modal/task
optimization: Unlike CIL has fixed label space to optimize
image encoder, VLCP involves the complicated joint opti-
mization of image, text, and multi-modal encoders.

Therefore, we propose a simple yet effective method,
Compatible momentum contrast with Topology Preser-
vation (CTP), which maintains a compatible momentum
model that absorbs both new and old knowledge to sepa-
rately adjust uni-modal and multi-modal encoders. More-
over, different from CIL methods that distill visual features
across tasks, topology preservation keeps consistent sample
relationship across tasks. It not only transfers the topol-
ogy knowledge of the old embedding while preserving the

flexibility of feature adjustment. Meanwhile, to systemati-
cally investigate the vision-language continual pretraining,
we extend a series of traditional CIL methods to VLCP and
evaluate them in a unified setting. Interestingly, we find
that the multi-modal fusion feature by masked modeling
pretraining has a strong anti-forgetting ability, and the per-
formance of continual finetuning approximates that of joint
training in multi-modal retrieval. Oppositely, due to the lack
of contrastive samples from different tasks, the cross-modal
alignment ability suffers serious forgetting in continual pre-
training and has a big gap with joint training. Meanwhile,
The experimental results show our method is not only com-
patible with both memory-buffer and memory-free situa-
tions, but also achieve leading performance without incur-
ring expensive training time costs.

Our contributions are as follows:

* We build the first Vision-Language Continual Pretraining
(VLCP) benchmark dataset P9D to support the study of
VLCP. which contains massive image-text pairs and the
continual non-stationary task data.

* We systematically study the characteristics and chal-
lenges of VLCP, and establish baseline library for VLCP
by extending popular continual learning methods and
evaluating them in a unified setting.

* We propose a simple yet effective method CTP for VLCP,
which achieve both superior performance and efficient
training.

2. Related Work
2.1. Vision-language pretraining

Vision-Language Pretraining (VLP) [15] leverages
large-scale web image-text pairs as pretraining data and
adopts self-supervised learning (contrastive learning [33] or
masked modeling [4]) to train the transferable image-text
embeddings. The VLP models can coarsely be divided into
two paradigms according to architectures: 1) Dual-Encoder
and 2) Fusion-Encoder. Dual-Encoder models encode im-
ages and texts respectively by separate encoders and em-
ploy cosine similarity to build the image-text alignment.
The Dual-Encoder models [29, 33, 19] achieve promising
results on image-text retrieval with linear time complex-
ity. However, the loose modal interaction by cosine simi-
larity also limits the multi-modal fusion ability [3, 9, 46].
Thus, the other paradigm Fusion-Encoder employs cross-
modal attention to jointly encode images and text. The
prior works [8, 25, 52] use pretrained detectors to extract
regional features and Transformers [40] for multi-modal fu-
sion. However, extracting region features is computation-
ally expensive and the joint transformer requires quadratic
time complexity for retrieval tasks. Thus, align before fuse
(ALBEF) architecture [24, 23, 48] incorporates the image-
text contrastive loss before multi-modal fusion and replaces
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the detector with VIT [12] for the end-to-end pretraining.
It not only eliminates the burden of object detection pre-
processing but also keeps multi-modal interaction by the
top fusion layers and linear retrieval time complexity by the
bottom dual encoders.

Nevertheless, current VLP models are all trained in a
joint manner using prepared data and keep fixed pretrained
parameters. In the long term, they cannot constantly accu-
mulate knowledge and evolve themselves to accommodate
the dynamic world. Thus, we concentrate on the vision-
language continual pretraining based on the ALBEF archi-
tecture and evaluate the cross-modal alignment and multi-
modal fusion capabilities in the continual environment.

2.2. Continual Learning

Continual learning aims to overcome catastrophic for-
getting and integrate novel knowledge in a sequential fash-
ion where old data are unavailable. Conventional contin-
ual learning methods mainly focus on image classification
tasks. They can be roughly categorized into three groups:
1) Regularization-based methods [20, 2, 49, 41, 6, 27]
limit the plasticity of the model to address catastrophic for-
getting by regularizing important parameters or knowledge
distillation. Although these methods alleviate forgetting to
some extent without storing old samples, they cannot get
satisfactory performance in some complex datasets [45] and
challenging settings [30]. 2) Architecture-based methods
[35, 36, 31, 26] keep old parameters fixed while growing
and allocating weights for learning new data. These meth-
ods can expand sub-networks or focus more on the specific
part of network modules. However, these models require
task identity to condition the network at test time, which
is impractical for more realistic and task-agnostic settings
e.g. retrieval tasks. Additionally, as the number of tasks
increases, the parameters of the added sub-networks be-
come very huge, which is also not suitable for application
deployment. 3) Replay-based methods [7, 34, 17] apply
extra memory to store a few samples from previous tasks
or learn to generate pseudo data and train with the current
data together. Based on this simple yet effective idea, recent
methods further improve and achieve state-of-the-art perfor-
mance by involving different sampling strategies. However,
the memory size and the training complexity will be en-
larged significantly and unaffordable as the growth of tasks,
especially for costly large-scale pretraining.

However, It is an inflexible way to get the foundation
model with continual learning ability through image clas-
sification. Firstly, most real-world data can not be accu-
rately represented semantics by simple category labeling,
and class annotation is labor-intensive. Secondly. the ever-
expanding classifier will also bring endless growth of pa-
rameters. In contrast, VLP does not require explicit “’class”
labeling and can cover wider visual concepts by text, while

its fixed output dimensions can continually support down-
stream tasks without increasing parameters.

3. Dataset

Traditional CIL datasets [22, 21] usually use simple im-
ages with single-semantic and have the same sample num-
ber for different tasks. This ideal setting is difficult to sim-
ulate the real-world data which is noisy and long-tail dis-
tributed. Meanwhile, despite massive web data collected
by some VLP datasets [37, 5], The simple random parti-
tioning will make each chunk still conform to the overall
distribution and unable to simulate the continual environ-
ment. Considering the rich product samples in e-commerce
websites, which not only conform to the real web-data na-
ture but also have category, industry, and title information as
weakly semantic correspondence, we use e-commerce data
to construct the first vision-language continual pretraining
dataset P9D and establish the unified evaluation benchmark.

3.1. Dataset Split

As the Figure 2(c), P9D includes more than 1 million
image-text pairs of real products. According to the industry
name of products, P9D is divided into 9 tasks to sequen-
tial training (default order) which are Household, Furnish-
ings, Food, Beauty, Clothing, Auto, Parenting, Outdoor,
and Electronics. We select 1,014,599 image-text pairs for
training, and 2,846 pairs as the test set of cross-modal re-
trieval. 4,615 and 46,855 pairs as the query set and gallery
set of multi-modal retrieval. The quantity distributions of
the four sets are consistent and more details can refer to the
appendix. Considering the descriptions of similar products
may be very similar, to avoid the situation that one image
corresponds to multiple captions affecting the overall eval-
uation of cross-modal retrieval, we save one sample for the
categories owning more than 100 samples in the training
set. Meanwhile, For the query set, the number of samples
per class is about 0.5% of that in the training set.

3.2. Data Analysis.

Real-world Web Data: We collect massive commodity
data from e-commerce websites and split task identity ac-
cording to industry to simulate real-world rich-concept but
non-stationary data streams. Different from the existing
CIL datasets with clear images and labels, our images
present the characteristics of multi-domain mixing (as Fig-
ure 2(b)). e.g., multiple backgrounds, amorphous water-
marks, occlusion, and multi-view. Meanwhile, although
only text can be used in training, P9D also includes prod-
uct class labels to evaluate the fusion feature clustering by
multi-modal retrieval.

Rich Categories: Some recent papers can obtain preferable
classification results on traditional CIL datasets by finetun-
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Figure 2: The dataset statistic of P9D. (a) The abbreviated hierarchical categories structure of P9D. (b) Some multi-domain
mixing examples about the product ‘Keyboard and mouse set’. (c) The quantity distribution of P9D train set. (d) The sample
number distribution of category in P9D. The red line represents the sample number of each category in decreasing order.

ing [43] and even freezing [38] the weight of pretrained
models. We suppose that the traditional benchmark datasets
contain limited classes (e.g. MNIST [22] and CIFAR-100
[21]) and thus cannot adequately evaluate the continual
learning methods in the face of powerful generalized pre-
trained models. Unlike these datasets with the narrow space
of category labels, our dataset contains over 3800 categories
and divides each task in a way that matches the real-world
industry domains. Therefore, our setting is more challeng-
ing and realistic. The abbreviated hierarchical categories
structure of P9D is shown in the Figure 2(a), and more com-
parisons with other datasets can refer to the appendix.

Real-World Distribution: The conventional CIL datasets
consider a balanced distribution for each task but ignore
the nature of long-tailed distributions in the real world. In
contrast, our dataset contains a different number of cate-
gories for each task and the long-tailed distribution aligns
well with real-world scenarios. The Figure 2(d) shows the
sample number distribution of the categories.

4. Methodology
4.1. Preliminary

Problem Setting: We propose a vision-language contin-
ual pretraining (VLCP) setting, where models are sup-
posed to be sequentially trained on 7 tasks data D =
{D1,Ds,...,Dr}. In the t-th task, the whole sub-dataset

D, = {(I}, T})} X, contains the N; image-text pairs where
I! and T} respectively denote the i-th image and the corre-
sponding text description of the ¢-th task. Because the old
task data is unseen in the continual setting, the VLP model
trained on the current dataset D; needs to resist forgetting
and performs well for all learned datasets {D1, D, ..., D }.

Model Architecture: As shown in Figure 3, We use a 12-
layer ViT-B/16 [12] as the image encoder f;,, and initialize
it with weights pretrained on ImageNet-1k from [39]. The
image I is encoded into patch feature sequence f,(I) =
{v, o1, ..., vV}, Meanwhile, We use the first and the last 6
layers of BERT},,5¢ [10] model to initialize the text encoder
ft and multi-modal encoder f,,. The text T is encoded into
word feature sequence f;(T) = {ws, w!,...;w™}. Then,
the text features f;(7T") will fuse with the image features
fv»(I) through cross attention at each layer of multi-modal
encoder f,,,. Two linear transformations g, and g; are map
the v!* and w®'® to the low-dimensional (256-d) represen-
tations for Image-Text Alignment (ITA). It can be denoted
v = g,(v") and w = g, (W),

Given a pair of image-text data (I;, T;) in the current Dy,
the image-text similarity function s(I;, T;) is defined as the

T,. . .

= m Given a batch of B
i J

pairs, the model uses the symmetric cross-entropy loss over

the B x B similarity matrix to optimize the parameters. The

image-to-text loss L;o; and the text-to-image loss L;o; are

cosine similarity s(1;, Tj)
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Figure 3: Illustration of the proposed vision-language continual pretraining method CTP. (a) shows the overall continual
pretraining model architecture, and (b) shows the interactive adjustment of the compatible momentum model M, and current
training model M;. The M, absorb the parameter of current model M, and previous-task model M;_1, and in turn constrains
the update of M. (c) shows that the topology relationship of previous task is maintained as much as possible while allowing

the overall embedding to be updated.

formulated as:
B

exp(s(L;, T;) /T
Ei?t = 75 B
i=1 > j=1 exp(s(I;, T}

r - Z exp Tl,L;)/T
t2¢ — T )
>y exp(s(T, 1) /7)

where 7 is the temperature parameter.
Alignment (ITA) loss is defined as : L;;, =

In Masked Language Modeling (MLM), give an image-
text pair, we randomly mask out the words with probabil-
ity of 15% [10, 24], and replace masked ones w,, with the
special token [MASK]. The goal is to predict these masked
tokens based on their surrounding words and the image fea-
tures, by minimizing the cross-entropy loss:

E(I,T)NDtH(ymvpgl(Iv T))a (2)

where the y™ is the one-hot vocabulary distribution where
the masked token has a probability of 1, and p§ (1, T) is the
predicted probability of model 6 for masked token wy,. The
total VLP loss is defined as Ly .p = Lita + Lonim.-

)
)/7) 0
)
)

The Image-Text
Liot+Li2i
5t

L?nlm = -

4.2. Compatible Momentum Contrast

Due to the fixed-dimensional embedding, VLP cannot
isolate old and new knowledge like CIL by extending pro-
jection parameters. Therefore, both the vision and lan-
guage embeddings need to be constantly adjusted to simul-
taneously accommodate the old and new image-text pairs.

In order to review old knowledge and adapt to the new
task, we use the momentum model M. initialized by the
previous-task trained model M;_; as additional supervision
of the current training model M;. Some single-modal [16]
or vison-language [18] pretraining works also adopt mo-
mentum model as a temporal ensembling method [14] to
smoothly guide the training. However, the traditional mo-
mentum model is updated by only parameters of training
model. With the accumulation of training steps, it will be
gradually affected by the new model and also suffers catas-
trophic forgetting. Moreover, recklessly maintaining old
knowledge will also make the model lose the plasticity to
acquire new knowledge. Therefore, we propose the com-
patible momentum update which synchronously absorbs the
old and new knowledge:

bom 0ot g+ g 3

2 2

where m € [0,1) is the momentum coefficient and 6 is
the model parameters. The adjustment of models is inter-
active. Compatible momentum model M, updates parame-
ters 6. through the previous-task model M;_; and training
model M;. In turn, the training model M; are optimized
by the back-propagation of momentum contrast and affects
the parameters 6; to be passed in the next step. To further
steadily update uni-modal encoders f, and f;, we main-
tain two dynamic queues to preserve the K negative im-
age/text features. The image features v§ and text feature
wf from compatible momentum encoders are constantly
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pushed into visual queue Qf = {v§,v§, - , v}, + and text
queue QT = {w§,ws, - ,wiy, } which Ng = K + B.
The compatible momentum contrastive losses about the vi-

sion and language encoders can be formulated as follows:

B

c 1 exp(s(]l-, Q;T)/T)

2t — T IOg 5

* B g >N exp(s(1, Q1)) /7)

. 1 & exp(s(Ti, Q1) /7) “)
i T o 1 y

# B ; % TN exp(s(T1, Q1)/7)

Lipet+Lis; c
3 .

Similarly, £f,, = <o constraints that the
contrastive relation of image-text pairs is still workable be-
tween the encoders of the compatible momentum model and
current model. It allows slow adjustment of uni-modal en-
coders. Besides, The compatible momentum model also
provides the soft predicted probability for masked language
modeling loss.

Lytm = ~E 4y, B05. (1T, 05, (1, 7)), (5)

Thus, Compatible Momentum Contrastive loss can be de-
fined as Loy = LG, + LS

mlm*

4.3. Topology Preservation

Although the compatible momentum contrast can flex-
ibly adjust the output feature of uni-modal and fusion en-
coder, It does not directly transfer relationship knowledge
of samples across tasks and the model may forget the overall
topology of prior embedding to obtain sub-optimal perfor-
mance. Unlike CIL can receive the gradient of old classes
according to labels, VLCP has no gradient from old contrast
samples and the image-text encoder is bidirectional syn-
chronization adjustment according to the image-text simi-
larity. To integrate the old and new knowledge while main-
taining the topology relationship of prior tasks, we con-
strained the mini-batch sample relationships of the current
and previous-task models to be consistent. Specifically, it is
mainly divided into cross-modal topology preservation loss
L. and same-modal topology preservation loss L. To im-
age I ={I,Is,...,Ig} and text T = {11, Ts, ..., T}, we
define the image-to-text similarity distribution as follows:

pi2t _ Bexp(s([, T;)/7) 7 (6)
2 iz exp(s(1, T3))/7)
and the definition of text-to-image similarity distribution
P2t is similar. Thus, the £, can be formulated as the cross-
entropy H between current model M, and previous-task
model M;_q:

L. = §E(I,T)NDt [H(,ngil ) ,Pﬂft) + H(ng,l ) P;f )]7 (7)

In the same-modal topology preservation, the similarity
of the same sample is 1 under both old and new models.

However, such a large similarity would suppress the rela-
tional distillation of other unmatched pairs [54]. Thus, we
conduct the simple strategy that changes the similarity at
the diagonal of s(I, I) from 1 to a minimum (e.g.-1000) to
exclude the “apical dominance” of matched samples. We
formulate the changed matrix as §(/, I) and the £, can be
formulated as:

exp(8(1,1,)/7)
S exp(3(1,11)) /1)

1 pi2i  5i2i S S
Lo =SB mynn, [HPo", Po) + H(PG",, Pol)), O)

Thus, the overall continual pretraining loss is as follows:

L=Lyrp+Loyme+ Lo+ Ls, (10)

5. Experiment
5.1. Experimental Setup

Implementation Details Regarding offline pretrained VLP
models have established widespread generalization, direct
finetuning may involve knowledge leakage and weaken the
accurate evaluation of continual learning ability. Therefore,
we do not load the weight of the pretrained VLP model for
initialization. For each task, All models are trained for 5
epochs on 4 NVIDIA A100 GPUs with batch size 128 per
GPU. We use the AdamW [28] optimizer with a weight de-
cay of 0.05, and the learning rate is set as le-4 and decays
to le-6 following a cosine schedule. We take random image
crops of resolution 224 x 224 during pretraining and also
apply RandAugment. The maximum sequence length of to-
kens is limited to 30. The momentum parameter is set as
0.9, and the queue size K is set as 1024. The cross-modal
alignment temperature 7 = 0.07.

Evaluation Setting. With the knowledge accumulation in
continual learning, the evaluation galleries of cross-modal
and multi-modal retrieval also need to expand by merg-
ing the data of new tasks. Similar to the standard vision-
language modeling setting[33, 24, 23], For cross-modal
retrieval, we measure the performance with Recall at K
(R@K, K=1,5,10) [13], which is defined as the proportion
of ground truth being retrieved at top-K of the ranking list.
Also, we use Rm as the overall metric, which is defined as
the mean of R@K of both text and image retrieval.

The multi-modal encoder can fuse the multi-modal in-
formation and produce a comprehensive representation to
predict masked words. Thus, we use the multi-modal out-
put [CLS] token to retrieve samples of the same class to
evaluate the zero-sample clustering ability of multi-modal
fusion features for similar products. It will not introduce ex-
tra interference from finetuning on downstream tasks. (e.g.
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Training

Cross-modal Retrieval ‘ ‘

Multi-modal Retrieval

Methods h

o TR@l TR@5 TR@I0|IR@1 IR@5 IR@I0| Rm || mAP@I mAP@5 mAP@10
JointT - 6131 87.17 91.67 | 61.60 8679 91.95 |80.08| 6379  70.10  67.40
Memory-Free
SeqF 34 3479 6283 7203 |3573 63.63 7214 [56.86| 6215  68.03 6530
SI[49] 49 3496 63.60 7301 | 3584 6349 7344 |5739| 6132 6748 6478
MAS [2] 41 3665 6469 7393 | 3725 6455 7439 |5857| 6262  68.63 6579
EWC [20] 46 3728 6511 7438 |38.05 6557 7505 |59.24| 6299 6875  65.62
AFEC [41] 87 3767 6634 7467 |3879 6648 7516 |59.85| 6258 6844  65.66
LWF [27] 40 3763 6655 7509 | 3826 66.62 7526 |59.90| 6234  68.64 6594
RWalk [6] 62 3777 68.10 7670 |38.83 6739 7674 |60.92| 6241 6843 6559
Our:CTP 40 4343 7210 80.08 | 4339 71.15 79.06 | 64.87 | 6264 6821  65.10
Memory-Buffer
MoF [34] 48 4287 7193 80.60 | 4371 7203 80.67 |6530| 6284 6879 6598
LUCIR [17] 55 4382 73.68 82.04 |4438 7354 8099 |66.41| 61.06 6757 6474
ER [7] 44 4519 7340 8197 | 4497 7270 8110 | 6656 | 6221 6839 6580
Kmeans [7] 47 4617 7465 8233 | 4592 73.68 81.80 | 6726| 6277 6882  66.04
ICARL [34] 53 4585 7463 8257 |4624 7323 8183 |6739| 6351 6920  66.39
Our:CTP+ER 47 5053 77.62 84.57 |49.79 76.77 8447 |70.63 | 6262  68.68 6581

Table 1: The final cross-modal and multi-modal retrieval performance comparison with different Memory-Free and Memory-

Buffer continual learning baselines.
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Figure 4: The performance curve of different methods on the continual learning. For Task 4, the model 6; only test on the

merged test set of learned tasks {Dg, D1, ..., D; }.

classification needs to train new classification head from
scratch). Because each query here corresponds to multi-
ple targets with the same class, multi-modal retrieval con-
siders both the number and ranking of targets in the top-K
retrieved candidates. For multi-modal retrieval, we adopt
mean Average Precision (nAP@N ) [44, 50, 11] as the eval-
uation metrics. mAP@N is computed as follows:

1 & 1 &
mAP@N = — %" — " P,(k)d,(k)
Q@ im1 Ma ;5

Ry(k) +1
k
where () is the total number of multi-modal queries and m,

(11)
Pq(k) =

is the total target number of the g-th query in the retrieved
top-N relevant candidates from gallery. P, (k) is the preci-
sion at rank k for the g-th query, and the d,(k) is a binary
indicator function that returns 1 when the k-th prediction
is correct for the g-th query and O otherwise. R, (k) is the
current sum of returned correct predictions at the rank k.

Comparison Methods. To verify the effectiveness of our
method, we compare it with several popular continual learn-
ing methods. Since all competitors are originally proposed
for classification settings. We replace the instance-label
cross-entropy loss with image-text contrastive loss to train
the VLP model and add the Masked Language Modeling
loss to train the multi-modal fusion capability as follows
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[24]. Besides, We use joint training (JointT) of all seen
samples as the upper-bound performance and sequential
finetuning (SeqF) as the lower-bound. All baselines can
be separated into Memory-Free and Memory-Buffer meth-
ods based on the availability of old samples. For the for-
mer. we evaluate representative regularization-based meth-
ods such as EWC [20], SI [49], MAS [2], AFEC [41],
RWalk [6], and LwF [27]. As for the latter, we evaluate dif-
ferent replay sampling strategies: ER [7], Mean-of-Feature
(MoF)[34], and Kmeans [7], and some replay-based meth-
ods: ICARL[34] and LUCIR [17]. We must emphasize that
although Memory-Buffer methods usually have higher per-
formance than Memory-Free methods in CIL, they bring ex-
pensive storage costs in large-scale pretraining, and perfor-
mance is directly related to the replay sample size. For the
comprehensive and unified study of VLCP, to all Memory-
Buffer methods, we maintain a fixed-size buffer of 10000
image-text pairs (about 1% dataset) and continually up-
date the stored samples. The detailed introduction for each
method can refer to the appendix.

5.2. Experimental Results

Cross-modal vs. Multi-modal. From the Figure 4, we
found an interesting phenomenon that SeqF (lower-bound)
and JointT (upper bound) have a large gap (23.22% in
Rm) in cross-modal retrieval, but a small gap (1.65%
in mAP@1) in multi-modal retrieval. This phenomenon
shows that multi-modal fusion is stronger anti-forgetting
ability than cross-modal alignment in VLCP. We suppose
that on the one hand, The redundancy and complementarity
of multi-modal information help multi-modal fusion resist
the forgetting of class attributes. On the other hand, the pre-
text task MLM beforehand creates a word prediction clas-
sifier that corresponds to each word of the dictionary and
keeps consistency across tasks. This predefined and well-
initialized label space [47] maybe train models more stably
than ever-expanding label space.

Parameter vs. Topology Preservation. From the compari-
son of Memory-Free methods in Table 1, we observe that
the regularization methods [49, 2, 41, 6] represented by
EWC [20] perform poorly. Probably because such meth-
ods conservatively trust the old model parameters and can-
not flexibly update representation to better accommodate
new knowledge. Meanwhile, They introduce the extra post-
processing of calculating the fisher matrix which reduces
training efficiency. In contrast, benefiting from flexible
updating of compatible momentum contrast and soft con-
straints of topology preservation, Our CTP achieves 3.95%
improvement over the most competitive method on Rm
while not bring more time costs and extra memory burden.

Memory-Free vs. Memory-Buffer. It can be noted that
the Memory-Buffer methods exhibit superior final perfor-

Leve Le L ER‘TR@I IR@1 Rm mAP@1
X X X X |3479 3573 56.86 62.15
v X X X |3781 37.63 59.86 62.10
X v X X |41.45 4039 62.50 61.32
v /X X |4269 4241 6438 61.89
v X v X 14192 4202 63.17 61.11
v / /X |4343 4339 64.87 62.64
v vV vV v/ |5053 49.79 70.63 62.62

Table 2: The ablation study on each component of CTP. the
Ly represent the compatible momentum contrast.

Method TR@l IR@1 Rm mAP
only 91 4195 4223 6357 62.06
only 6* 40.41 4034 6232 6232
w/o Q) 42.69 40.83 6394 61.63

wlo P2t & P12t | 40.76  40.86 63.12 62.04
Our:CTP 74343 4339 6487 62.64

Table 3: The more detailed ablation results of CTP.

mance and smaller performance fluctuations compared to
the Memory-Free methods. This is attributed to the use of
old data from the memory buffer as contrast samples, which
plays the role of joint optimization in continual pretrain-
ing. Meanwhile, we found different replay sampling strate-
gies have similar performance, but Kmeans[7] has a slight
advantage, It may be because Kmeans can unsupervised
cluster features to sample representative points of current
embedding without category prior. However, the Memory-
Buffer methods also bring extra storage and time cost caus-
ing by old data preservation and retraining process. The re-
sults show CTP can be further improved by 5.76% with ER
sampling strategy and outperform the second-place method
by 3.24% on Rm.

5.3. Ablations

We perform ablation of each module in the CTP method
and find that each module effectively improves the cross-
modal retrieval performance from the Table 2.

CMC vs. TP. It seems that cross-modal topology preserva-
tion plays a more direct anti-forgetting role than compati-
ble momentum contrast in cross-modal retrieval, which im-
proves 5.64% on Rm but also decreases 0.82% on mAP@1.
When they are combined, the cross-modal and multi-modal
retrieval performance were all improved by 1.88% and
0.57%. In addition, The same-modal topology preservation
further improves by 0.49% and 0.75%.

Compatible Update vs. Single-way Update. As shown in
Table 3, we compare compatible momentum update with
the single-way momentum update from the current model
' and the previous-step model ¢, and find the single-
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way update can not get well results due to totally relay on
the current or old model. In addition, the momentum up-
date from *~! is slightly higher than that from 6 in Rm.
This may be because the model accumulates large knowl-
edge in continual learning, and the non-globally optimal
update will lead to more forgetting in the later tasks. There-
fore, it should pay more attention to the maintenance of old
knowledge in the later periods of continual learning.

Momentum Queue.: We compare with the situation with-
out the momentum queue ‘w/o ° in Table 3 and find that
the queue can slightly improve the performance. We sup-
pose the queue stores negative samples of the current task,
which plays a role of smoothing training and anti-forgetting
to a certain extent.

Suppress Same-modal Maximum Similarity.: We find it
results in a negative effect and leads to performance degra-
dation if not suppressing same-modal maximum similarity.
It indicates that the maximum similarity will obscure the
sample relationship and affect the performance.

6. Conclusion

In this paper, we build the first Vision-Language Con-
tinual Pretraining benchmark dataset P9D which contains
over 1 million image-text pairs and task data with discrepant
knowledge to simulate the continual pretraining environ-
ment. Further, we comprehensively study new character-
istics and challenges of VLCP, and propose a new approach
CTP which combines the compatible momentum contrast
and topology preservation to flexibly update model to ac-
commodate the ever-changing embedding. It can achieve
the superior performance while ensuring efficient training.
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