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Figure 1. Precise local control achieved by LinkGAN, where we can manipulate the image content within a spatial region (e.g., a single
eye or the right half of the image) or a semantic category (e.g., car) simply by resampling the latent code on some sparse axes. Our
approach works well for 2D image syntheses, like StyleGAN2 [27] (left three columns), and 3D-aware image synthesis, like EG3D [5]
(right two columns). It is noteworthy that, under the 3D-aware case, we can control both the appearance and the underlying geometry.

Abstract
This work presents an easy-to-use regularizer for GAN

training, which helps explicitly link some axes of the latent
space to a set of pixels in the synthesized image. Es-
tablishing such a connection facilitates a more convenient
local control of GAN generation, where users can alter the
image content only within a spatial area simply by partially
resampling the latent code. Experimental results confirm
four appealing properties of our regularizer, which we call
LinkGAN. (1) The latent-pixel linkage is applicable to either
a fixed region (i.e., same for all instances) or a particular
semantic category (i.e., varying across instances), like the
sky. (2) Two or multiple regions can be independently linked
to different latent axes, which further supports joint control.
(3) Our regularizer can improve the spatial controllability
of both 2D and 3D-aware GAN models, barely sacrificing
the synthesis performance. (4) The models trained with our
regularizer are compatible with GAN inversion techniques
and maintain editability on real images. Project page can
be found here.

† indicates equal contribution.

1. Introduction

Generative adversarial networks (GANs) [12] have been
shown to produce photo-realistic and highly diverse images,
facilitating a wide range of real world applications [21,
36, 11, 41, 42]. The generator in a GAN is formulated
to take a randomly sampled latent code as the input and
output an image with a feed forward network. Given a well-
learned GAN model, it is generally accepted that a variety
of semantics and visual concepts automatically emerge in
the latent space [57, 43, 14, 22, 64], which naturally support
image manipulation. Some recent work also reveals the
potential of GANs in local editing by steering the latent
code along a plausible trajectory in the latent space [30, 63].

However, most studies on the relationship between the
latent codes and their corresponding images depend on
a posterior discovery, which usually suffers from three
major drawbacks. (1) Instability: The identification of
emerging latent semantics is very sensitive to the samples
used for analysis, such that different samples may lead to

* This work was done during an internship at Ant Group.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7656

https://zhujiapeng.github.io/linkgan/


different results [14, 42]. (2) Inaccuracy: Given the high-
dimensional latent space (e.g., 512d in the popular Style-
GAN family [26, 27]), finding a semantically meaningful
subspace can be challenging. (3) Inflexibility: Existing
manipulation models are usually linear (i.e., based on vector
arithmetic [42, 22]), limiting the editing diversity.

This work offers a new perspective on learning control-
lable image synthesis. Instead of discovering the semantics
from pre-trained GAN models, we introduce an efficient
regularizer into the training of GANs, which is able to
explicitly link some latent axes with a set of image pixels.
In this way, the selected axes and the remaining axes
are related to the in-region pixels and out-region pixels,
respectively, with little cross-influence (see Fig. 1). Such
a design, termed as LinkGAN, enables a more accurate and
more convenient control of the generation, where we can
alter the image content within the linked region simply by
resampling on the corresponding axes.

We conduct experiments on various datasets to evaluate
the efficacy of LinkGAN and demonstrate its four appealing
properties. (1) It is possible to link an arbitrary image region
to the latent axes, no matter the region is pre-selected before
training and fixed for all instances, or refers to a semantic
category and varies across instances (see Sec. 4.2.1). (2)
Our regularizer is capable of linking multiple regions to
different sets of latent axes independently, and allows joint
manipulation of these regions (see Sec. 4.2.2). (3) Our
approach lends itself well to both 2D image synthesis
models [27] and 3D-aware image synthesis models [5],
appearing as sufficiently improving the controllability yet
barely harming the synthesis performance. (4) The models
trained with our regularizer are compatible with GAN
inversion techniques [65] and maintain the editability on
real images (see Sec. 4.3). We believe that this work makes
a big step towards the spatial controllability of GANs as
well as the explicit disentanglement of GAN latent space. It
can be expected that the new characteristic (i.e., the latent-
pixel linkage) of generative models could open up more
possibilities and inspire more applications in the future.

2. Related Work
Generative adversarial networks (GANs) are composited
by a generator and a discriminator, which are trained si-
multaneously by playing a two-player minimax game [12],
have made tremendous progress in generating high quality
and diverse images [26, 27, 25, 4, 56]. In turn, there are
widely used in a variety of tasks, such as representation
learning [23, 55], image-to-image translation [21, 8], image
segmentation [61], 3D generation [54, 5, 44], etc.
Regularizers for GAN training. Many attempts have been
made to regularize GANs during training [13, 31, 27, 52,
15, 39, 56]. Some of them try to improve the training
stability of GANs by regularizing the gradients of the

discriminator [13, 31], the spectral norm of each layer [32],
or the singular values of the generator [35]. Besides, some
of them [39, 52, 15, 27] aim to improve the disentanglement
property of GANs. For example, [39, 52] try to disentangle
each component in the latent vectors so that each dimension
in the latent codes can only affect one attribute on the output
images by adding some regularizers (e.g., Hessian Penalty
or Orthogonal Jacobian Regularization).
Image editing with GANs. Image editing using GANs
includes many different tasks, such as style transfer [58, 18],
image-to-image translation [66, 51, 7, 36, 37], and semantic
image editing using pre-trained GANs [42, 57, 22]. For
semantic image editing tasks, one line of work is focused
on controlling the image globally [42, 57, 43, 14, 22, 6, 40,
47, 49, 29, 50, 60], and another is focused on controlling the
image locally [48, 55, 53, 2, 1, 9, 28, 24, 30, 63, 64]. For
local image control, the straightforward way is to employ
region-based feature modification [48, 55, 2, 37], which
highly relies on the spatial correspondence between the
feature maps and the synthesized images. An alternative
way is to control from the latent space [9, 30, 63] yet suffers
from limited controllability (e.g., it is hard to close one eye
with the other kept open).
Independent latent axis control. There are many studies
in the literature exploring the independent control of the
latent axes of GANs [10, 45, 20, 19, 34, 33, 46, 11],
such that we can partially re-configure the generated image
through resampling the latent code on some axes. Among
them, [10, 45] target aligning the latent axes with some im-
age attributes under the supervision of pre-trained attribute
classifiers, which treat the entire image as a whole, limiting
their applications in local control. Some attempts have been
made towards compositional image synthesis [20, 19, 34,
33], which employs separate latent codes to take responsi-
bility for the generation of different objects. LDBR [17]
introduces block-wise latent space and manages to build a
spatial correspondence between per-block latents and image
patches. Infinite image generation [46, 11], which is able to
expand (e.g., outpainting) the synthesis through sampling
the latent code repeatedly, can be viewed as a special type
of independent latent axis control. Compared to previous
work, our approach is far more flexible in two folds. (1) We
introduce a simple regularizer into GAN training, with no
need for architecture re-designing. (2) We manage to link
the latent axes with an arbitrary set of image pixels.

3. Method
In this section, we introduce a simple yet effective

regularizer such that some latent axes of GANs can be
explicitly linked to a set of image pixels after training.
We first give a brief introduction of GAN formulation
in Sec. 3.1 and describe how to establish the latent-pixel
linkage in Sec. 3.2.
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3.1. Preliminaries

A GAN model consists of a generator G(·) that maps
latent vectors z ∼ p(z) to fake images, i.e. x̃ = G(z), and
a discriminator D(·) that tries to differentiate fake images
from real ones. They are trained in an adversarial manner
in the sense that the generator tries to fool the discriminator.
The training loss can be formulated as follows:

LG = Ep(x̃)[f(1−D(x̃))], (1)
LD = Ep(x)[f(D(x))]− Ep(x̃)[f(1−D(x̃))], (2)

where p(x) and p(x̃) are the distributions of real images
and synthesized images, respectively. Here, f(·) is a model-
specific function that varies between different GANs.

3.2. Linking Latents to Pixels

With the rapid development of manipulation technique,
several works [30, 63] have shown that some subspaces of
the latent space (i.e., the W space in StyleGAN [26]) can
control local semantics over output images. Specifically,
traversing a latent code within those subspaces results in a
local modification in the synthesis. However, there lacks
an explicit connection between the local regions and the
specified axes of latent spaces. To this end, we propose
a new regularizer explicitly linking the axes to arbitrary
partitions of synthesized images.

Partition of latent codes and images. In order to set up
the explicit link between some axes of latent space and
local regions of an image, we first introduce some notations
for the corresponding partition. Taking StyleGAN [26] as
an example, w ∈ Rdw is the intermediate latent vector of
dimension dw derived from the mapping network. Through
a generator G(·), an image x̃ ∈ RH×W×C is produced,
i.e., x̃ = G(w), and we denote dx = H × W × C
as the dimension of x̃. We first divide the latent space
into several subspaces. Namely, a latent code w could
be divided into K partitions and each partition consists
of multiple channels, i.e., w = [w1,w2, . . . ,wK ], where
wi ∈ Rni and ΣK

i=1ni = dw. Similarly, an image x̃ could
also produce several partitions i.e., x̃ = [x̃1, x̃2, . . . , x̃K ],
where x̃i ∈ Rmi and ΣK

i=1mi = dx. For convenience, we
further define wc

i and x̃c
i are the complements of wi and x̃i,

respectively, i.e., wc
i = [w1, . . . ,wi−1,wi+1, . . . ,wK ],

x̃c
i = [x̃1, . . . , x̃i−1, x̃i+1, . . . , x̃K ]. Fig. 2 presents an

example (K is equal to 2) where the blue part of the latent
code and pixels within the blue bounding box denotes the
partitions wi and x̃i, respectively. Now, our goal is that the
latent fragment wi only controls the pixels in x̃i and wc

i

controls the pixels in x̃c
i , namely, building an explicit link.

Learning objectives. To our surprise, we find in practice
that a simple regularizer combined with the StyleGAN
framework is sufficient to achieve this goal. Formally,

Latent code

Synthesis

Pixels of interest

Explicit link

Figure 2. Concept diagram of LinkGAN, where some axes of the
latent space are explicitly linked to the image pixels of a spatial
area. In this way, we can alter the image content within the linked
region simply by resampling the latent code on these axes.

we can randomly perturb wi and wc
i and then minimize

the variations on x̃c
i and x̃i, respectively, expecting that

wi merely controls x̃i and hardly affects x̃c
i and vice

versa. Specifically, we can perturb the wi partition among
w by given vector pi sampled from a standard Gaus-
sian distribution N (0, Ini) and get the perturbed image,
i.e., x̃1 = G′

w(wi, αpi) ≜ G([w1, . . . ,wi−1,wi +
αpi,wi+1, . . . ,wK ]), where α is the perturbation strength.
Furthermore, we can get the perturbed image using a
vector pc

i ∈ N (0, Idw−ni) to perturb wc
i , i.e., x̃2 =

G′
w(wc

i , αp
c
i ). After obtaining the perturbed images, we

can compute the variations in each part. The pixel change
in x̃i after the perturbation by pc

i can be computed as

Li = ||Mi ⊙ (x̃2 − x̃)||22
= ||Mi ⊙ (G′

w(wc
i , αp

c
i )−G(w))||22,

(3)

where Mi is the binary mask indicating the chosen pixels of
interest (i.e., selecting the pixels in the blue box in Fig. 2),
|| · ||2 denotes the ℓ2 norm. We enforce the pixels to
change in the region x̃i as minimally as possible after the
perturbation by pc

i . Similarly, the pixels change in x̃c
i after

the perturbation by pi can be written as

Lc
i = ||M c

i ⊙ (x̃1 − x̃)||22
= ||M c

i ⊙ (G′
w(wi, αpi)−G(w))||22,

(4)

where M c
i is the binary mask denoting the region out of

interest. These two losses Li and Lc
i can be integrated as a

regularizer in the StyleGAN framework

Li
reg = λ1Li + λ2Lc

i , (5)

where λ1 and λ2 are the weights to balance these two terms.
Therefore, the total loss to train the generator in StyleGAN
can be formulated as

L = LG +

k∑
i=1

Li
reg, (6)
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where k (1 ≤ k ≤ K) is the number of links we want to
build. Practically, we could apply the new regularization
in a lazy way, in the sense that

∑k
j=1 Lj

reg is calculated
once every several iterations (8 iterations in this paper),
greatly improving the training efficiency. Additionally, the
perturbed images would be also fed into the discriminator
during training.

4. Experiments
4.1. Experimental Setup

We conduct extensive experiments to evaluate our pro-
posed method. We mainly conduct our experiment on
StyleGAN2 [27] and EG3D [5] models. The datasets we
use are FFHQ [26], AFHQ [8], LSUN-Church, and LSUN-
Car [59]. We also use a segmentation model [62] to select
pixels with the same semantic (e.g., all the pixels in the
sky on LSUN-Church), which is often used by previous
work [3, 2, 53]. The main metrics we use to qualify our
method are Fréchet Inception Distance (FID) [16] and the
masked Mean Squared Error (MSE) [63]. The experiments
are organized as follows. First, Sec. 4.2 shows the proper-
ties of LinkGAN, which can relate an arbitrary region in the
image to the latent fragment. Second, Sec. 4.3 gives some
applications of our method, such as local control on the 3D
generative model, real images, and some comparisons with
the baselines.At last, an ablation study on the size of the link
latent subspace is presented in Sec. 4.4. For the experiment
details and more results, please refer to the Supplementary
Material, in which we also include a video that provides
continuous control via interpolating the original and the
resampled latent codes.

4.2. Properties of LinkGAN

In this section, we mainly demonstrate the effectiveness
of the proposed approach by explicitly linking the pixels
in any region (both the single region or multi-regions) to
a partition of the corresponding latent codes, while seldom
deteriorating the quality of synthesis. Tab. 1 reports FID on
different datasets when our regularizer is added, from which
we can see our regularizer only has a minor influence on the
synthesized quality. Empirically, we find that it would more
stable if the proposed regularizer is incorporated after the
convergence of the generator. Therefore, we start training
from a relatively well-trained generator and equipping it
with our approach.

4.2.1 Linking Latents to Single Region

Regarding the partition of latent codes, we could easily
choose the first several channels as one group. Accord-
ingly, the remaining ones become the complementary code.
Therefore, the goal of the proposed regularizer is to enable
the explicit control of certain regions of interest through the

Table 1. Performance change after introducing our proposed
regularizer into 2D and 3D baselines, where the synthesis quality
slightly drops but the controllability significantly improves (see
Figs. 3 to 6 for details).

StyleGAN2 [27] EG3D [5]
Dataset FFHQ AFHQ Car Church FFHQ
LDBR [17] 12.24 – – 8.68 –
w/o Linking 3.98 8.44 2.95 3.82 4.28
LinkGAN (ours) 5.00 9.85 3.09 3.97 4.25

chosen channels. Note that the number of first channels
that would be grouped usually depends on the area ratio of
the chosen region over the entire image. In the following
context, we will show different ways of choosing pixels out
of images and building explicit links between the chosen
channels and pixels.
Region-based control. One general way of grouping pixels
is to use a bounding box that could cover a rectangle region.
Fig. 3 presents the qualitative results of choosing different
regions randomly. Red bounding boxes in Fig. 3 denote
the chosen regions of interest. In terms of animal faces on
AFHQ, we randomly select two spatial patches and link
each region to a specific latent fragment (e.g., the latent
fragment can be localized at a random position). Obviously,
after building the explicit link, we could merely change the
chosen regions by perturbing the corresponding partition of
latent codes, while maintaining the rest regions untouched.
Besides, perturbing the complementary latent codes results
in substantial change for regions out of interest, demonstrat-
ing that the spatial controlling is well-built by the proposed
explicit link. Additionally, we also verify the effectiveness
of our regularizer on various datasets. For instance, the
connection between a partition of latent code and half of
the entire image (i.e., Church and Car) also could be easily
set up, causing appealing editing results. The LSUN Church
and Car results imply that even if the images are not aligned,
we can still build a link and get satisfying editing results. In
other words, whether images are aligned does not affect the
linkage construction. The difference maps further present
how well such an explicit link could control a region of
interest.
Semantic-based control. Prior experimental results
demonstrate the control on a rectangle region that seems to
be irrelevant to a certain visual concept. Namely, this link is
semantic-agnostic since it merely bridges several channels
with spatial locations rather than semantics. Therefore,
we further conduct experiments on semantic controlling.
To be specific, by leveraging an off-the-shelf segmentation
model [62], we could easily obtain mask annotations that
specify various semantics. Fig. 4 presents the semantic
control on two datasets, LSUN Church and Car [59]. In
particular, churches and cars are chosen as the semantics
that we would like to build a link between latent space to,
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Figure 3. Linking latents to single fixed region, which is pre-selected before training and shared by all instances. Linked latent subspaces
and regions are highlighted with red fragments and boxes, respectively, and the heatmaps reflect the change of pixel values after in-region
resampling and out-region resampling. We find that LinkGAN can robustly link the latent to an arbitrary image region.

no matter where the chosen semantics are. Similarly, we
manage to connect several channels of latent space with
a given semantic such that perturbing the chosen channels
will result in the obvious change of semantics. For instance,
the color and shape of a church vary while the sky keeps the
same and vice versa. Regarding the experiments on cars,
the color could be modified no matter what cars face and
how many pixels cars occupy. All these results together
with the rectangle region control demonstrate the arbitrary
region control enabled by our approach.

4.2.2 Linking Latents to Multiple Regions

After checking the effectiveness of our approach to build
one explicit link, a natural question then arises: is it possible

to link multiple regions of interest to multiple partitions
of latent codes? The answer is yes. Fig. 5 presents the
corresponding results. On the top group, we link three
subspaces to three image regions i.e., eyes, top-left, and top-
right regions, respectively. Even though we could remain to
manipulate semantics individually. The bottom one moves
forward to a more challenging setting where both latent
spaces and images are equally divided into four groups and
four corners without any overlap. To this end, we could
tell that such a regularizer could build a full explicit link
between the entire latent space and the whole synthesis in a
disentangled way. Namely, we can even tokenize an image
and assign one subspace to each token.
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Figure 4. Linking latents to the semantic region (i.e., church and car), which dynamically varies across instances. Our LinkGAN manages
to precisely control a particular semantic category simply by resampling on some sparse latent axes.
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Figure 5. Linking latents to multiple regions, where the linked latent subspaces and image regions are highlighted using different colors.
Each linked region can be independently controlled by partially resampling the corresponding latent code.

4.3. Applications of LinkGAN

In this part, we show that our proposed method can
be used in various applications, such as controlling 3D

generative models, real image manipulation, and precise
local image editing, etc.
Towards 3D-aware generation. We implement our regu-
larizer on the 3D generative model EG3D [5]. Surprisingly,
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Figure 6. Controllability on 3D-aware generative model, i.e., EG3D [5], under the cases of mouth and nose. We find that LinkGAN is
well compatible with 3D-aware image synthesis and allows controlling both the appearance and the underlying geometry.

our regularizer performs well not only in controlling the
RGB images but also in controlling the geometry of the
corresponding image, showing the good generalization
ability of our regularizer. Fig. 6 shows the results of
controlling the mouth and nose region by perturbing the first
64 channels of latent codes. Importantly, controlling the
linked subspace simultaneously changes the RGB images
and their geometry, i.e., mouth is opening for both RGB
and corresponding 3D geometry.
Real image editing. After the generator is trained, we can
use the property of the trained generator to control real
images locally by inversion [65, 27]. Fig. 7 shows the
editing results on the real image, in which the eyes can be
independently controlled, i.e., we can only open one eye
yet keep another eye untouched. In this case, we need to
explicitly link two eye regions to two latent subspaces, i.e.,
one subspace controls one eye. And when the generator is
well-learned, we can edit the eye region by controlling the
corresponding subspace on the inverted latent code.
Comparison with existing methods. Now we compare
our method with some state-of-the-art algorithms. We
choose LDBR [17], StyleSpace [53], StyleCLIP [38], and
ReSeFa [64] to compare. For LDBR, we report FID in
Tab. 1, from which we can see that our method significantly
outperforms it.1 And for the rest methods, we compare the
accuracy when editing the eyes, nose, and mouth of the face
synthesis. Tab. 2 reports the masked MSE between our
method and these baselines when controlling those three
regions. Namely, when editing a specific region, we want
the change in this region to be as larger as possible (the
higher MSEi, the better) and the change in the remaining
region as small as possible (the smaller MSEo, the better).
For these methods, we can observe that the MSEs within

1There is no official implementation or released checkpoints. Hence
we do not report the qualitative results. The quantitative results on FFHQ
and Church are borrowed from the original paper [17].

Input Inversion Left Eye Right Eye

Figure 7. Real image editing achieved by LinkGAN via borrow-
ing the GAN inversion technique [27]. We manage to edit the
two eyes of human independently in a very convenient way, i.e.,
partially resampling the inverted code.

the edited regions are comparable. However, regarding the
MSEs out of the edited regions, our method significantly
outperforms these three baselines. Fig. 8 gives the qualita-
tive comparison with ReSeFa, and for the comparison with
other methods, we include them in Supplementary Material
due to the limited space. From Fig. 8, we can observe
that our method can reach more precise control on the local
regions than ReSeFa. For instance, when modifying eyes,
ReSeFa also results in a change of face color. On the
contrary, when editing the specific region, our method has
negligible changes in the other regions.
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Figure 8. Qualitative comparison with ReSeFa [64], which posteriorly discovers semantics from a pre-trained model, on the task of local
editing. LinkGAN achieves more precise control within the regions of interest. See Tab. 2 for quantitative results.

4.4. Ablation Study on Linking Dimensionality

In this part, we conduct an ablation study on how
many axes are required to build an explicit link. Eyes
of faces are chosen as regions of interest. Tab. 3 gives
the quantitative results of changing in/out eye regions with
the same perturbation strength. In Tab. 3, all the training
configurations are the same except for the number of axes
during training. MSEi and MSEo are computed in and out
of the eye region when perturbing on their complementary
latent space, respectively. Take axes number 8 as an
example, the MSEi is computed within the eye region when
perturbing on axes from 8 to 512, while MSEo is computed
out of the eye region perturbing on axes from 0 to 8. In
such a way, precise control could be obtained since the
perturbing on the complementary latent space should barely
influence the regions of interest. Hence, in this situation,
both MSEi and MSEo are the smaller, the better. Obviously,
when occupying the first 64 axes, we can get satisfying
results since the sum of them is the smallest. In practice,
we set the number of axes in latent code to 64 in most cases,
such as when controlling on eyes, nose, mouth, etc.

5. Discussion and Conclusion
We have demonstrated the success of our approach in

linkage building, flexible controllability, and more precise
spatial control. Still, there are some limitations. For exam-
ple, the built linkage is not perfect, such as when editing
a specific part, the remaining area is slightly influenced as

Table 2. Quantitative comparison with baselines on the task of
local editing. Pixel-wise mean square error (MSE) within/out of
the region of interest (scaled by 1e−3 for better readability) is used
as the metric. Lower MSEo and higher MSEi are better.

Region Eyes Nose Mouth
Metrics MSEi MSEo MSEi MSEo MSEi MSEo

StyleCLIP [38] 3.91 74.17 1.91 72.73 3.81 65.42
ReSeFa [64] 5.90 61.14 1.12 60.4 2.02 50.55
StyleSpace [53] 3.81 18.21 0.40 14.30 3.6 19.04
LinkGAN (ours) 5.25 2.24 1.82 2.25 3.10 2.21

Table 3. Ablation study on the linking dimensionality. MSEi

measures the effect of unlinked axes on the linked region, while
MSEo measures the effect of linked axes on the unlinked region,
both of which enjoy a small value. All numbers are scaled by 1e−3

for better readability.

# Linked axes 8 16 32 64 128 256
MSEi 17.45 16.70 3.29 0.95 0.78 0.43
MSEo 0.86 1.53 7.41 8.20 8.71 24.78

the MSEo shown in Tab. 2. The success of this linkage also
brings a side effect, i.e., the inconsistency sometime will
appear on the image after we resample part of the latent
code, see the detailed analysis in Supplementary Material.
In summary, this work proposes LinkGAN that explicitly
links some latent axes to some specific pixels in the images
by utilizing an easy yet powerful regularizer. Extensive
experiments demonstrate the capability of LinkGAN in
local synthesis control using the precisely linked latent
subspace.
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