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Abstract

We present a unified perspective on tackling various
human-centric video tasks by learning human motion rep-
resentations from large-scale and heterogeneous data re-
sources. Specifically, we propose a pretraining stage in
which a motion encoder is trained to recover the underly-
ing 3D motion from noisy partial 2D observations. The
motion representations acquired in this way incorporate
geometric, kinematic, and physical knowledge about hu-
man motion, which can be easily transferred to multiple
downstream tasks. We implement the motion encoder with
a Dual-stream Spatio-temporal Transformer (DSTformer)
neural network. It could capture long-range spatio-temporal
relationships among the skeletal joints comprehensively and
adaptively, exemplified by the lowest 3D pose estimation
error so far when trained from scratch. Furthermore, our
proposed framework achieves state-of-the-art performance
on all three downstream tasks by simply finetuning the pre-
trained motion encoder with a simple regression head (1-2
layers), which demonstrates the versatility of the learned
motion representations. Code and models are available at
https://motionbert.github.io/

1. Introduction

Perceiving and understanding human activities have long
been a core pursuit of machine intelligence. To this end,
researchers define various tasks to estimate human-centric
semantic labels from videos, e.g. skeleton keypoints [13,33],
action classes [60, 116], and surface meshes [42, 66]. While
significant progress has been made in each of these tasks,
they tend to be modeled in isolation, rather than as intercon-
nected problems. For example, Spatial Temporal Graph Con-
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Figure 1. Framework overview. We utilize a motion encoder to
learn human motion representations via recovering 3D human mo-
tion from corrupted 2D skeleton sequences. To adapt to different
downstream tasks, we finetune the pretrained motion representa-
tions with a linear layer or a simple MLP.

volutional Networks (ST-GCN) have been applied to model-
ing spatio-temporal relationship of human joints in both 3D
pose estimation [12, 109] and action recognition [89, 116],
but their connections have not been fully explored. Intu-
itively, these models should all have learned to identify typi-
cal human motion patterns, despite being designed for dif-
ferent problems. Nonetheless, current methods fail to mine
and utilize such commonalities across the tasks. Ideally, we
could develop a unified human-centric video representation
that can be shared across all relevant tasks.

One significant challenge to developing such a represen-
tation is the heterogeneity of available data resources. Mo-
tion capture (Mocap) systems [36, 71] provide high-fidelity
3D motion data obtained with markers and sensors, but the
appearances of captured videos are usually constrained to
simple indoor scenes. Action recognition datasets provide
annotations of the action semantics, but they either contain
no human pose labels [15, 88] or feature limited motion
of daily activities [59, 60, 86]. In contrast, in-the-wild hu-
man videos offer a vast and diverse range of appearance and
motion. However, obtaining precise 2D pose annotations
requires considerable effort [3], and acquiring ground-truth
(GT) 3D joint locations is almost impossible. Consequently,
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most existing studies focus on a specific task using a single
type of human motion data, and they are not able to enjoy
the advantages of other data resources.

In this work, we provide a new perspective on learning
human motion representations. The key idea is that we can
learn a versatile human motion representation from hetero-
geneous data resources in a unified manner, and utilize the
representation to handle different downstream tasks in a
unified way. We present a two-stage framework, consist-
ing of pretraining and finetuning, as depicted in Figure 1.
In the pretraining stage, we extract 2D skeleton sequences
from diverse motion data sources and corrupt them with ran-
dom masks and noises. Subsequently, we train the motion
encoder to recover the 3D motion from the corrupted 2D
skeletons. This challenging pretext task intrinsically requires
the motion encoder to i) infer the underlying 3D human struc-
tures from its temporal movements; ii) recover the erroneous
and missing observations. In this way, the motion encoder
implicitly captures human motion commonsense such as
joint linkages, anatomical constraints, and temporal dynam-
ics. In practice, we propose Dual-stream Spatio-temporal
Transformer (DSTformer) as the motion encoder to capture
the long-range relationship among skeleton keypoints. We
suppose that the motion representations learned from large-
scale and diversified data resources could be shared across
different downstream tasks and benefit their performance.
Therefore, for each downstream task, we adapt the pretrained
motion representations using task-specific training data and
supervisory signals with a simple regression head.

In summary, the contributions of this work are three-fold:
1) We provide a new perspective on solving various human-
centric video tasks through a shared framework of learning
human motion representations. 2) We propose a pretraining
method to leverage the large-scale yet heterogeneous human
motion resources and learn generalizable human motion
representations. Our approach could take advantage of the
precision of 3D mocap data and the diversity of in-the-wild
RGB videos at the same time. 3) We design a dual-stream
Transformer network with cascaded spatio-temporal self-
attention blocks that could serve as a general backbone for
human motion modeling. The experiments demonstrate that
the above designs enable a versatile human motion represen-
tation that can be transferred to multiple downstream tasks,
outperforming the task-specific state-of-the-art methods.

2. Related Work
Learning Human Motion Representations. Early works
formulate human motion with Hidden Markov Models [49,
101] and graphical models [47, 92]. Kanazawa et al. [39]
design a temporal encoder and a hallucinator to learn rep-
resentations of 3D human dynamics. Zhang et al. [124]
predict future 3D dynamics in a self-supervised manner.
Sun et al. [95] further incorporate action labels with an ac-

tion memory bank. From the action recognition perspective,
a variety of pretext tasks are designed to learn motion repre-
sentations in a self-supervised manner, including future pre-
diction [93], jigsaw puzzle [56], skeleton-contrastive [100],
speed change [94], cross-view consistency [58], and contrast-
reconstruction [110]. Similar techniques are also explored
in tasks like motion assessment [31, 80] and motion retar-
geting [119, 130]. These methods leverage homogeneous
motion data, design corresponding pretext tasks, and apply
them to a specific downstream task. In this work, we pro-
pose a unified pretrain-finetune framework to incorporate
heterogeneous data resources and demonstrate its versatility
in various downstream tasks.

3D Human Pose Estimation. Recovering 3D human
poses from monocular RGB videos is a classical problem,
and the methods can be categorized into two categories.
The first is to estimate 3D poses with CNN directly from
images [77, 97, 128]. However, one limitation of these ap-
proaches is that there is a trade-off between 3D pose pre-
cision and appearance diversity due to current data collec-
tion techniques. The second category is to extract the 2D
pose first, then lift the estimated 2D pose to 3D with a
separate neural network. The lifting can be achieved via
Fully Connected Network [28, 73], Temporal Convolutional
Network (TCN) [21, 83], GCN [12, 27, 109], and Trans-
former [52, 87, 126, 127]. Our framework is built upon the
second category as we use the proposed DSTformer to ac-
complish 2D-to-3D lifting.

Skeleton-based Action Recognition. The pioneering
works [69, 108, 120] point out the inherent connection be-
tween action recognition and human pose estimation. To-
wards modeling the spatio-temporal relationship among hu-
man joints, previous studies mainly employ LSTM [91, 129]
and GCN [20, 51, 64, 89, 116]. Most recently, PoseC-
onv3D [30] proposes to apply 3D-CNN on the stacked 2D
joint heatmaps and achieves improved results. In addition to
the fully-supervised action recognition task, NTU-RGB+D-
120 [60] brings attention to the challenging one-shot action
recognition problem. To this end, SL-DML [76] applies deep
metric learning to multi-modal signals. Sabater et al. [85]
explores one-shot recognition in therapy scenarios with TCN.
We demonstrate that the pretrained motion representations
could generalize well to action recognition tasks, and the
pretrain-finetune framework is a suitable solution for the
one-shot challenges.

Human Mesh Recovery. Based on the parametric human
models such as SMPL [66], many research works [38,70,78,
115, 125] focus on regressing the human mesh from a single
image. SPIN [44] additionally incorporates fitting the body
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Figure 2. Model architecture. We propose the Dual-stream Spatio-temporal Transformer (DSTformer) as a general backbone for human
motion modeling. DSTformer consists of N dual-stream-fusion modules. Each module contains two branches of spatial or temporal MHSA
and MLP. The Spatial MHSA models the connection among different joints within a timestep, while the Temporal MHSA models the
movement of one joint.

model to 2D joints in the training loop. Despite their promis-
ing per-frame results, these methods yield jittery and unsta-
ble results [42,123] when applied to videos. To improve their
temporal coherence, PoseBERT [7] and SmoothNet [123]
propose to employ a denoising and smoothing module to the
single-frame predictions. Several works [23, 39, 42, 99] take
video clips as input to exploit the temporal cues. Another
common problem is that paired images and GT meshes are
mostly captured in constrained scenarios, which limits the
generalization ability of the above methods. To that end,
Pose2Mesh [24] proposes to first extract 2D skeletons using
an off-the-shelf pose estimator, then lift them to 3D mesh
vertices. Our approach is complementary to state-of-the-art
human mesh recovery methods and could further improve
their temporal coherence with the pretrained motion repre-
sentations.

3. Method

3.1. Overview

As discussed in Section 1, our approach consists of two
stages, namely unified pretraining and task-specific fine-
tuning. In the first stage, we train a motion encoder to
accomplish the 2D-to-3D lifting task, where we use the pro-
posed DSTformer as the backbone. In the second stage,
we finetune the pretrained motion encoder and a few new
layers on the downstream tasks. We use 2D skeleton se-
quences as input for both pretraining and finetuning be-
cause they could be reliably extracted from all kinds of
motion sources [3, 9, 71, 81, 96], and is more robust to varia-
tions [18, 30]. Existing studies have shown the effectiveness
of using 2D skeleton sequences for different downstream
tasks [24, 30, 83, 102]. We will first introduce the architec-
ture of DSTformer, and then describe the training scheme in
detail.

3.2. Network Architecture

Figure 2 shows the network architecture for 2D-to-3D
lifting. Given an input 2D skeleton sequence x ∈ RT×J×Cin ,
we first project it to a high-dimensional feature F0 ∈
RT×J×Cf , then add learnable spatial positional encoding
PS

pos ∈ R1×J×Cf and temporal positional encoding PT
pos ∈

RT×1×Cf to it. We then use the sequence-to-sequence model
DSTformer to calculate Fi ∈ RT×J×Cf (i = 1, . . . , N )
where N is the network depth. We apply a linear layer with
tanh activation [29] to FN to compute the motion represen-
tation E ∈ RT×J×Ce . Finally, we apply a linear transfor-
mation to E to estimate 3D motion X̂ ∈ RT×J×Cout . Here,
T denotes the sequence length, and J denotes the number
of body joints. Cin, Cf, Ce, and Cout denote the channel
numbers of input, feature, embedding, and output respec-
tively. We first introduce the basic building blocks of DST-
former, i.e. Spatial and Temporal Blocks with Multi-Head
Self-Attention (MHSA), and then explain the DSTformer
architecture design.

Spatial Block. Spatial MHSA (S-MHSA) aims at model-
ing the relationship among the joints within the same time
step. It is defined as

S-MHSA(QS,KS,VS) = [head1; ...; headh]W
P
S ,

headi = softmax(
Qi

S(K
i
S)

′
√
dK

)Vi
S,

(1)

where WP
S is a projection parameter matrix, h is the number

of the heads, i ∈ 1, . . . , h, and ′ denotes matrix transpose.
We utilize self-attention to get the query QS, key KS, and
value VS from input per-frame spatial feature FS ∈ RJ×Ce

for each headi,

Qi
S = FSW

(Q,i)
S , Ki

S = FSW
(K,i)
S , Vi

S = FSW
(V,i)
S , (2)

where W(Q,i)
S , W(K,i)

S , W(V,i)
S are projection matrices, and

dK is the feature dimension of KS. We apply S-MHSA to
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features of different time steps in parallel. Residual connec-
tion and layer normalization (LayerNorm) are used to the
S-MHSA result, which is further fed into a multilayer per-
ceptron (MLP), and followed by a residual connection and
LayerNorm following [105]. We denote the entire spatial
block with MHSA, LayerNorm, MLP, and residual connec-
tions by S.

Temporal Block. Temporal MHSA (T-MHSA) aims at
modeling the relationship across the time steps for a body
joint. Its computation process is similar with S-MHSA ex-
cept that the MHSA is applied to the per-joint temporal
feature FT ∈ RT×Ce and parallelized over the spatial dimen-
sion.

T-MHSA(QT,KT,VT) = [head1; ...; headh]W
P
T ,

headi = softmax(
Qi

T(K
i
T)

′
√
dK

)Vi
T,

(3)

where i ∈ 1, . . . , h, QT, KT, VT are computed similar with
Formula 2. We denote the entire temporal block by T .

Dual-stream Spatio-temporal Transformer. Given spa-
tial and temporal MHSA that captures the intra-frame and
inter-frame body joint interactions respectively, we assemble
the basic building blocks to fuse the spatial and temporal
information in the flow. We design a dual-stream architec-
ture with the following assumptions: 1) Both streams should
be capable of modeling the comprehensive spatio-temporal
context. 2) Each stream should be specialized in different
spatio-temporal aspects. 3) The two streams should be fused
together, with the fusion weights dynamically balanced de-
pending on the input spatio-temporal characteristics.

Hence, we stack the spatial and temporal MHSA blocks in
different orders, forming two parallel computation branches.
The output features of the two branches are fused using
adaptive weights predicted by an attention regressor. The
dual-stream-fusion module is then repeated for N times:

Fi = αi
ST◦T

i
1 (Si

1(F
i−1))+αi

TS◦S
i
2(T i

2 (F
i−1)), i ∈ 1, . . . , N,

(4)
where Fi denotes the feature embedding at depth i, ◦ denotes
element-wise production. Orders of S and T blocks are
shown in Figure 2, and different blocks do not share weights.
Adaptive fusion weights αST,αTS ∈ RN×T×J are given by

αi
ST,α

i
TS = softmax(W([T i

1 (Si
1(F

i−1)),Si
2(T i

2 (F
i−1))])),

(5)
where W is a learnable linear transformation. [, ] denotes
concatenation.

3.3. Unified Pretraining

We address two key challenges when designing the uni-
fied pretraining framework: 1) How to learn a powerful

motion representation with a universal pretext task. 2) How
to utilize large-scale but heterogeneous human motion data
in all kinds of formats.

For the first challenge, we follow the successful practices
in language [11, 29, 84] and vision [6, 34] modeling to con-
struct the supervision signals, i.e. mask part of the input and
use the encoded representations to reconstruct the whole
input. Note that such “cloze” task naturally exists in human
motion analysis, that is to recover the lost depth information
from the 2D visual observations, i.e. 3D human pose estima-
tion. Inspired by this, we leverage the large-scale 3D mocap
data [71] and design a 2D-to-3D lifting pretext task. We first
extract the 2D skeleton sequences x by projecting the 3D
motion orthographically. Then, we corrupt x by randomly
masking and adding noise to produce the corrupted 2D skele-
ton sequences, which also resemble the 2D detection results
as it contains occlusions, detection failures, and errors. Both
joint-level and frame-level masks are applied with certain
probabilities. We use the aforementioned motion encoder
to get motion representation E and reconstruct 3D motion
X̂. We then compute the joint loss L3D between X̂ and GT
3D motion X. We also add the velocity loss LO following
previous works [83, 126]. The 3D reconstruction losses are
thus given by

L3D =

T∑
t=1

J∑
j=1

∥ X̂t,j−Xt,j ∥2, LO =

T∑
t=2

J∑
j=1

∥ Ôt,j−Ot,j ∥2,

(6)
where Ôt = X̂t − X̂t−1, Ot = Xt −Xt−1.

For the second challenge, we notice that 2D skeletons
could serve as a universal medium as they can be extracted
from all sorts of motion data sources. We further incorporate
in-the-wild RGB videos into the 2D-to-3D lifting framework
for unified pretraining. For RGB videos, the 2D skeletons
x could be given by manual annotation [3] or 2D pose es-
timators [13, 96], and the depth channel of the extracted
2D skeletons is intrinsically “masked”. Similarly, we add
extra masks and noises to degrade x (if x already contains
detection noise, only masking is applied). As 3D motion GT
X is not available for these data, we apply a weighted 2D
re-projection loss which is calculated by

L2D =
T∑

t=1

J∑
j=1

δt,j∥x̂t,j − xt,j∥2, (7)

where x̂ is the 2D orthographical projection of the estimated
3D motion X̂, and δ ∈ RT×J is given by visibility annota-
tion or 2D detection confidence.

The total pretraining loss is computed by

L = L3D + λOLO︸ ︷︷ ︸
for 3D data

+ L2D︸︷︷︸
for 2D data

, (8)

where λO is a constant coefficient to balance the losses.
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3.4. Task-specific Finetuning

The learned feature embedding E serves as a 3D-aware
and temporal-aware human motion representation. For down-
stream tasks, we adopt the minimalist design principle, i.e.
implementing a shallow downstream network and training
without bells and whistles. In practice, we use an extra linear
layer or an MLP with one hidden layer. We then finetune the
whole network end-to-end.

3D Pose Estimation. As we utilize 2D-to-3D lifting as the
pretext task, we simply reuse the whole pretrained network.
During finetuning, the input 2D skeletons are estimated from
videos without extra masks or noises.

Skeleton-based Action Recognition. We directly apply a
global average pooling over different persons and timesteps.
The result is then fed into an MLP with one hidden layer. The
network is trained with cross-entropy classification loss. For
one-shot learning, we apply a linear layer after the pooled
features to extract clip-level action representation. We intro-
duce the detailed setup of one-shot learning in Section 4.4.

Human Mesh Recovery. We use SMPL [66] model to
represent the human mesh and regress its parameters. The
SMPL model consists of pose parameters θ ∈ R72 and
shape parameters β ∈ R10, and calculates the 3D mesh as
M(θ, β) ∈ R6890×3. To regress the pose parameters for
each frame, we feed the motion embeddings E to an MLP
with one hidden layer and get θ̂ ∈ RT×72. To estimate
shape parameters, considering that the human shape over a
video sequence is supposed to be consistent, we first perform
an average pooling of E over the temporal dimension and
then feed it into another MLP to regress a single β̂ and
then expand it to the entire sequence as β̂ ∈ RT×10. The
shape MLP has the same architecture as the pose regression
one, and they are initialized with the mean shape and pose,
respectively, as in [42]. The overall loss is computed as

L = λm
3DL

m
3D + λθLθ + λβLβ + λnLnorm + λm

OL
m
O , (9)

where each term is calculated as

Lm
3D = ∥X̂m −Xm∥1, Lθ = ∥θ̂ − θ∥1, Lβ = ∥β̂ − β∥1,

Lnorm = ∥θ̂∥2 + ∥β̂∥2, Lm
O = ∥Ôm −Om∥2.

(10)
Note that each 3D pose in motion Xm at frame t is re-
gressed from mesh vertices by Xm

t = JM(θt,βt), where
J ∈ RJ×6890 is a pre-defined matrix [9]. Om = Xm

t+1−Xm
t ,

Ôm = X̂m
t+1 − X̂m

t . λm
3D, λθ, λβ , λn and λm

O are constant
coefficients to balance the training loss.

4. Experiments
4.1. Implementation

We implement the proposed motion encoder DSTformer
with depth N = 5, number of heads h = 8, feature size
Cf = 512, embedding size Ce = 512. For pretraining, we
use sequence length T = 243. The pretrained model could
handle different input lengths thanks to the Transformer-
based backbone. During finetuning, we set the backbone
learning rate to be 0.1× of the new layer learning rate. We
introduce the experiment datasets in the following sections
respectively. Please refer to the appendix for more experi-
mental details.

4.2. Pretraining

We collect diverse and realistic 3D human motion from
two datasets, Human3.6M [36] and AMASS [71]. Hu-
man3.6M [36] is a commonly used indoor dataset for
3D human pose estimation which contains 3.6 million
video frames of professional actors performing daily ac-
tions. Following previous works [73, 83], we use subjects
1, 5, 6, 7, 8 for training, and subjects 9, 11 for testing.
AMASS [71] integrates most existing marker-based Mocap
datasets [1,2,4,10,14,17,32,35,48,65,67,72,79,90,103,104]
and parameterizes them with a common representation. We
do not use the images or 2D detection results of the two
datasets during pretraining as Mocap datasets usually do not
provide raw videos. Instead, we use orthographic projec-
tion to get the uncorrupted 2D skeletons. We further incor-
porate two in-the-wild RGB video datasets PoseTrack [3]
(annotated) and InstaVariety [39] (unannotated) for higher
motion diversity. We align the body keypoint definitions
with Human3.6M and calibrate the camera coordinates to
pixel coordinates following [26]. We randomly zero out 15%
joints, and sample noises from a mixture of Gaussian and
uniform distributions [16]. We first train on 3D data only
for 30 epochs, then train on both 3D data and 2D data for 60
epochs, following the curriculum learning practices [8, 111].

4.3. 3D Pose Estimation

We evaluate the 3D pose estimation performance on Hu-
man3.6M [36] and report the mean per joint position er-
ror (MPJPE) in millimeters, which measures the average
distance between the predicted joint positions and the GT
after aligning the root joint. We also compute the mean
per-joint velocity error (MPJVE) to evalute the temporal
smoothness following previous works [126, 127]. We use
the Stacked Hourglass (SH) networks [81] to extract the
2D skeletons from videos, and finetune the entire network
on Human3.6M [36] training set. In addition, we train a
separate model of the same architecture, but with random
initialization rather than pretrained weights. As shown in
Table 1 (top), the model trained from scratch outperforms
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Method T Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg
Martinez et al. [73] ICCV’17 1 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Pavlakos et al. [82] CVPR’18 1 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
LCN [27] ICCV’19 1 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Xu et al. [114] CVPR’21 1 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
VideoPose3D [83] CVPR’19 243 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Cai et al. [12] ICCV’19 7 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Yeh et al. [122] NeurIPS’19 243 44.8 46.1 43.3 46.4 49.0 55.2 44.6 44.0 58.3 62.7 47.1 43.9 48.6 32.7 33.3 46.7
Liu et al. [63] CVPR’20 243 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
∗ Cheng et al. [21] AAAI’20 128 36.2 38.1 42.7 35.9 38.2 45.7 36.8 42.0 45.9 51.3 41.8 41.5 43.8 33.1 28.6 40.1
∗ UGCN [109] ECCV’20 96 38.2 41.0 45.9 39.7 41.4 51.4 41.6 41.4 52.0 57.4 41.8 44.4 41.6 33.1 30.0 42.6
† PoseFormer [127] ICCV’21 81 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
∗ Wehrbein et al. [112] ICCV’21 200 38.5 42.5 39.9 41.7 46.5 51.6 39.9 40.8 49.5 56.8 45.3 46.4 46.8 37.8 40.4 44.3
† MHFormer [52] CVPR’22 351 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
∗† MixSTE [126] CVPR’22 243 36.7 39.0 36.5 39.4 40.2 44.9 39.8 36.9 47.9 54.8 39.6 37.8 39.3 29.7 30.6 39.8
† P-STMO [87] ECCV’22 243 38.4 42.1 39.8 40.2 45.2 48.9 40.4 38.3 53.8 57.3 43.9 41.6 42.2 29.3 29.3 42.1
† Ours (scratch) 243 36.3 38.7 38.6 33.6 42.1 50.1 36.2 35.7 50.1 56.6 41.3 37.4 37.7 25.6 26.5 39.2
† Ours (finetune) 243 36.1 37.5 35.8 32.1 40.3 46.3 36.1 35.3 46.9 53.9 39.5 36.3 35.8 25.1 25.3 37.5
Method T Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg
Martinez et al. [73] ICCV’17 1 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
LCN [27] ICCV’19 1 36.3 38.8 29.7 37.8 34.6 42.5 39.8 32.5 36.2 39.5 34.4 38.4 38.2 31.3 34.2 36.3
Xu et al. [114] CVPR’21 1 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8
UGCN [109] ECCV’20 96 23.0 25.7 22.8 22.6 24.1 30.6 24.9 24.5 31.1 35.0 25.6 24.3 25.1 19.8 18.4 25.6
† PoseFormer [127] ICCV’21 81 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3
† MHFormer [52] CVPR’22 351 27.7 32.1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 39.3 30.0 31.0 29.4 22.2 23.0 30.5
† MixSTE [126] CVPR’22 243 21.6 22.0 20.4 21.0 20.8 24.3 24.7 21.9 26.9 24.9 21.2 21.5 20.8 14.7 15.6 21.6
† P-STMO [87] ECCV’22 243 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3
† Ours (scratch) 243 16.7 19.9 17.1 16.5 17.4 18.8 19.3 20.5 24.0 22.1 18.6 16.8 16.7 10.8 11.5 17.8
† Ours (finetune) 243 15.9 17.3 16.9 14.6 16.8 18.6 18.6 18.4 22.0 21.8 17.3 16.9 16.1 10.5 11.4 16.9
Method T Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg
VideoPose3D [83] CVPR’19 243 3.0 3.1 2.2 3.4 2.3 2.7 2.7 3.1 2.1 2.9 2.3 2.4 3.7 3.1 2.8 2.8
† PoseFormer [127] ICCV’21 81 3.2 3.4 2.6 3.6 2.6 3.0 2.9 3.2 2.6 3.3 2.7 2.7 3.8 3.2 2.9 3.1
∗† MixSTE [126] CVPR’22 243 2.5 2.7 1.9 2.8 1.9 2.2 2.3 2.6 1.6 2.2 1.9 2.0 3.1 2.6 2.2 2.3
† Ours (scratch) 243 1.8 2.1 1.5 2.0 1.5 1.9 1.8 2.1 1.2 1.8 1.5 1.4 2.6 2.0 1.7 1.8
† Ours (finetune) 243 1.7 1.9 1.4 1.9 1.4 1.7 1.7 1.9 1.1 1.6 1.4 1.3 2.4 1.9 1.6 1.7

Table 1. Quantitative comparison of 3D human pose estimation on Human3.6M. (Top) MPJPE (mm) using detected 2D pose sequences.
(Middle) MPJPE (mm) using GT 2D pose sequences. (Bottom) MPJVE (mm) using detected 2D pose sequences. T denotes the clip length
used by the method. We select the best results reported by each work. ∗ denotes using HRNet [96] for 2D detection. † denotes implemented
with a spatio-temporal Transformer design. The best and second-best results are highlighted in bold and underlined formats.

previous methods including other Transformer-based designs
with spatio-temporal modeling. It shows the effectiveness of
the proposed DSTformer in terms of learning 3D geometric
structures and temporal dynamics. To further evaluate the
upper bound of the models’ capability, we compare the per-
formance when using 2D GT pose sequences as input, which
gets rid of the influence of different 2D detectors. As shown
in Table 1 (middle), our models significantly outperform
all the previous approaches. Table 1 (bottom) shows that
both of our models also surpass previous works in terms of
MPJVE, implying better temporal coherence. We attribute
the performance advantage of our scratch model to the pro-
posed DSTformer design. We include more comparisons and
analysis to demonstrate the advantage of DSTformer with re-
gard to other spatio-temporal architectures in Section 4.6 and
supplementary materials. Additionally, our method achieves
lower errors with the proposed pretraining stage.

4.4. Skeleton-based Action Recognition

We further explore the possibility to learn action seman-
tics with the pretrained human motion representations. We

use the human action dataset NTU-RGB+D [86] which con-
tains 57K videos of 60 action classes, and we follow the data
splits Cross-subject (X-Sub) and Cross-view (X-View). The
dataset has an extended version, NTU-RGB+D-120 [60],
which contains 114K videos of 120 action classes. We fol-
low the suggested One-shot action recognition protocol on
NTU-RGB+D-120. For both datasets, we use HRNet [96]
to extract 2D skeletons following [30]. Similarly, we train a
scratch model with random initialization for comparison. As
Table 2 (left) shows, our methods are comparable or superior
to the state-of-the-art approaches. Notably, the pretraining
stage accounts for a large performance gain.

Additionally, we delve into the one-shot setting which
holds significant practical importance. Real-world applica-
tions often require fine-grained action recognition in specific
domains such as education, sports, and healthcare. Unfortu-
nately, the action classes in these scenarios are not typically
defined in public datasets. As a result, only limited anno-
tations for these novel action classes are available, making
accurate recognition a challenging task. As proposed in [60],
we report the results on the evaluation set of 20 novel classes
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Method X-Sub X-View
ST-GCN [116] AAAI’18 81.5 88.3
2s-AGCN [89] CVPR’19 88.5 95.1
MS-G3D [64] CVPR’20 91.5 96.2

Shift-GCN [20] CVPR’20 90.7 96.5
CrosSCLR [58] CVPR’21 86.2 92.5

MCC (finetune) [94] ICCV’21 89.7 96.3
SCC (finetune) [118] ICCV’21 88.0 94.9

UNIK (finetune) [117] BMVC’21 86.8 94.4
CTR-GCN [19] ICCV’21 92.4 96.8

PoseConv3D [30] CVPR’22 93.1 95.7
Ours (scratch) 87.7 94.1
Ours (finetune) 93.0 97.2

Method Accuracy
ST-LSTM + AvgPool [61] 42.9

ST-LSTM + FC [62] 42.1
ST-LSTM + Attention [62] 41.0

APSR [60] 45.3
TCN OneShot [85] 46.5

SL-DML [76] 50.9
Skeleton-DML [75] 54.2

Ours (scratch) 61.0
Ours (finetune) 67.4

Table 2. Quantitative comparison of skeleton-based action recognition accuracy. (Left) Cross-subject and cross-view recognition
accuracy on NTU-RGB+D. All the methods are evaluated using only the “joint” modality with 1-clip sampling for the fairness of comparison.
(Right) One-shot recognition accuracy on NTU-RGB+D-120. All results are top-1 accuracy (%).

Method Input T
Human3.6M 3DPW

MPVE↓ MPJPE↓ PA-MPJPE↓ MPVE↓ MPJPE↓ PA-MPJPE↓
HMR [38] CVPR’18 image 1 - 88.0 56.8 - 130.0 81.3
† SPIN [44] ICCV’19 image 1 82.3 59.4 39.3 129.1 100.9 59.1
Pose2Mesh [24] ECCV’20 2D pose 1 85.3 64.9 48.7 109.3 91.4 60.1
I2L-MeshNet [78] ECCV’20 image 1 - 55.7 41.7 110.1 93.2 58.6
† HybrIK [50] CVPR’21 image 1 58.1 47.4 30.1 82.4 71.3 41.9
METRO [54] CVPR’21 image 1 - 54.0 36.7 88.2 77.1 47.9
Mesh Graphormer [55] ICCV’21 image 1 - 51.2 34.5 87.7 74.7 45.6
PARE [43] ICCV’21 image 1 - - - 88.6 74.5 46.5
ROMP [98] ICCV’21 image 1 - - - 108.3 91.3 54.9
PyMAF [125] ICCV’21 image 1 - 57.7 40.5 110.1 92.8 58.9
ProHMR [46] ICCV’21 image 1 - - 41.2 - - 59.8
OCHMR [40] CVPR’22 image 1 - - - 107.1 89.7 58.3
3DCrowdNet [25] CVPR’22 image 1 - - - 98.3 81.7 51.5
CLIFF [53] ECCV’22 image 1 - 47.1 32.7 81.2 69.0 43.0
FastMETRO [22] ECCV’22 image 1 - 52.2 33.7 84.1 73.5 44.6
VisDB [121] ECCV’22 image 1 - 51.0 34.5 85.5 73.5 44.9
TemporalContext [5] CVPR’19 video 32 - 77.8 54.3 - - 72.2
HMMR [39] CVPR’19 video 20 - - 56.9 139.3 116.5 72.6
DSD-SATN [99] ICCV’19 video 9 - 59.1 42.4 - - 69.5
VIBE [42] CVPR’20 video 16 - 65.6 41.4 99.1 82.9 51.9
TCMR [23] CVPR’21 video 16 - 62.3 41.1 102.9 86.5 52.7
† MAED [107] ICCV’21 video 16 84.1 60.4 38.3 93.3 79.0 45.7
MPS-Net [113] CVPR’22 video 16 - 69.4 47.4 99.7 84.3 52.1
∗ PoseBERT [7] TPAMI’22 (+SPIN [44]) video 16 - - - - - 57.3 ↓ 2.3
∗ SmoothNet [123] ECCV’22 (+SPIN [44]) video 32 - 67.5 ↓ 1.0 46.3 ↓ 0.2 - 86.7 ↓ 0.9 52.7 ↓ 0.6

Ours (scratch) 2D motion 16 75.7 62.8 41.0 99.1 85.5 50.2
Ours (finetune) 2D motion 16 65.5 53.8 34.9 88.1 76.9 47.2
Ours (finetune) + SPIN [44] video 16 63.7 ↓ 18.6 52.2 ↓ 7.2 35.7 ↓ 3.6 92.8 ↓36.3 79.6 ↓ 21.3 48.2 ↓ 10.9

Ours (finetune) + MAED [107] video 16 66.8 ↓ 17.3 54.8 ↓ 5.6 36.4 ↓ 1.9 84.4 ↓ 8.9 72.3 ↓ 6.7 42.3 ↓ 3.4

Ours (finetune) + HybrIK [50] video 16 52.6 ↓ 5.5 43.1 ↓ 4.3 27.8 ↓ 2.3 79.4 ↓ 3.0 68.8 ↓ 2.5 40.6 ↓ 1.3

Table 3. Quantitative comparison of human mesh recovery on Human3.6M and 3DPW datasets. T denotes the clip length used by the
method. † denotes the results obtained with official model weights. The rest are all officially reported results. The gains in ∗ correspond to
different re-implemented SPIN [44] results.

using only 1 labeled video for each class. The auxiliary
set contains the other 100 classes, and all samples of these
classes can be used. We train the model on the auxiliary set
using the supervised contrastive learning technique [41]. For
a batch of auxiliary data, samples of the same class are pulled
together, while samples of different classes are pushed away
in the action embedding space. During the evaluation, we
calculate the cosine distance between the test examples and
the exemplars, and use 1-nearest neighbor to determine the
class. Table 2 (right) illustrates that the proposed models out-
perform state-of-the-art by a considerable margin. Moreover,

it is noteworthy that our pretrained model achieves optimal
performance with only 1-2 epochs of fine-tuning. Our results
indicate that the pretraining stage is effective in learning a
robust motion representation that generalizes well to novel
downstream tasks, even with limited data annotations.

4.5. Human Mesh Recovery

We conduct experiments on Human3.6M [36] and 3DPW
[106] datasets and additionally add COCO [57] dataset dur-
ing training following [42, 54, 107]. We keep the same train-
ing and test split for both datasets as in [73] (Section 4.2)
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Figure 3. Learning curves of finetuning and training from scratch.

Backbone MPJPE ↓ MPVE ↓ Accuracy ↑ Accuracy↑
(frozen) (3D pose) (mesh) (action x-view) (action 1-shot)

Random 404.4mm 114.4mm 47.6% 46.8%
Pretrained 40.3mm 72.1mm 87.3% 60.7%

Table 4. Comparison of partial finetuning.

and [42, 54, 107], respectively. Following the common prac-
tice [38,42,45,107], we report MPJPE (mm) and PA-MPJPE
(mm) of 14 joints obtained by JM(θ, β). PA-MPJPE cal-
culates MPJPE after aligning with GT in translation, ro-
tation, and scale. We further report the mean per vertex
error (MPVE) (mm) of the mesh M(θ, β), which measures
the average distance between the estimated and GT ver-
tices after aligning the root joint. Note that most previous
works [23, 38, 42, 44, 50, 54, 68, 107] use more datasets other
than COCO [57] during training, such as LSP [37], MPI-INF-
3DHP [74], etc., while we do not. Table 3 demonstrates that
our finetuned model delivers competitive results on both Hu-
man3.6M and 3DPW datasets, surpassing all the state-of-the-
art video-based methods, including MAED [107], especially
on the MPVE error. Nonetheless, we note that estimating
full-body mesh from sparse 2D keypoints alone [9, 24] is an
ill-posed problem because it lacks human shape information.
In light of this, we propose a hybrid approach that lever-
ages the strengths of both our framework (coherent motion)
and RGB-based methods (accurate shape). We introduce
a refiner module that can be easily integrated with existing
image/video-based methods, similar to [7,123]. Specifically,
our refiner module is an MLP that takes the combination of
our pretrained motion representations and an initial predic-
tion, regressing a residual in joint rotations. Our approach
effectively improves the state-of-the-art methods [44,50,107]
and achieves the lowest error to date.

4.6. Ablation Studies

Finetune vs. Scratch. We compare the training progress
of finetuning the pretrained model and training from scratch.
As Figure 3 shows, models initialized with pretrained
weights demonstrate superior performance and faster conver-
gence on all three tasks. This observation suggests that the
pretrained model learns transferable knowledge about hu-

Pretrain Noise Mask 2D
MPJPE↓ MPVE↓ Accuracy↑
(3D pose) (mesh) (action x-sub)

- - - - 39.2mm 75.7mm 87.7%
✓ - - - 38.8mm 70.6mm 89.4%
✓ ✓ - - 38.1mm 68.4mm 90.7%
✓ ✓ ✓ - 37.4mm 67.8mm 91.9%
✓ ✓ ✓ ✓ 37.5mm 65.5mm 93.0%

Table 5. Comparison of pretraining strategies.

man motion, facilitating the learning of multiple downstream
tasks.

Partial Finetuning. In addition to end-to-end finetuning,
we freeze the motion encoder backbone and only train the
regression head for each downstream task. To verify the
effectiveness of the pretrained motion representations, we
compared the pretrained motion encoder with a randomly
initialized motion encoder. We report results of 3D pose and
mesh on Human3.6M, action on NTU-RGB+D and NTU-
RGB+D-120 (same for the tables below). It can be seen in
Table 4 that based on the frozen pretrained motion representa-
tions, our method still achieves competitive performance on
multiple downstream tasks and shows a large improvement
compared to the baseline. Pretraining and partial finetuning
make it possible for all the downstream tasks to share the
same backbone, significantly reducing computation over-
head for applications requiring multi-task inference.

Pretraining Strategies. We evaluate how different pre-
training strategies influence the performance of downstream
tasks. Starting from the scratch baseline, we apply the pro-
posed strategies one by one. As shown in Table 5, a vanilla
2D-to-3D pretraining stage brings benefits to all the down-
stream tasks. Introducing corruptions additionally improves
the learned motion embeddings. Unified pretraining with
in-the-wild videos (w. 2D) enjoys higher motion diversity,
which further helps several downstream tasks.

Pretraining with Different Backbones. We further study
the universality of the proposed pretraining approach. We
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Setting
MPJPE ↓ MPVE ↓ Accuracy ↑ Accuracy↑
(3D pose) (mesh) (action x-view) (action 1-shot)

TCN (scratch) 50.1mm 92.6mm 91.5% 52.4%
TCN (finetune) 47.9mm 86.3mm 92.8% 59.9%
PoseFormer (scratch) 44.8mm 85.9mm 94.2% 57.4%
PoseFormer (finetune) 41.5mm 80.5mm 95.9% 60.7%

Table 6. Comparison of different backbones.

Arch. (a) (b) (c) (d) (e) (f)

Design S-T T-S S + T ST-MHSA
S-T + T-S S-T + T-S
(Average) (Adaptive)

MPJPE ↓ 40.58±0.31 41.05±0.24 41.76±0.22 41.54±0.35 39.87±0.32 39.25±0.27

Table 7. Comparison of model architecture variants. All the
methods are trained on Human3.6M from scratch over 5 runs and
measured by MPJPE (mm) with mean and standard deviation.

replace the motion encoder backbone with two variants:
TCN [83] and PoseFormer [127]. The models are slightly
modified to a seq2seq version, while all the configurations
for pretraining and finetuning are simply followed. Table 6
shows that the proposed approach consistently benefits dif-
ferent backbone models on different tasks.

Model Architecture. Finally, we study the design choices
of DSTformer. From (a) to (f) in Table 7, we compare
different structure designs of the basic Transformer mod-
ule. (a) and (b) are single-stream versions with different
orders. (a) is conceptually similar to PoseFormer [127], MH-
Former [52], and MixSTE [126]. (c) limits each stream to
either temporal or spatial modeling before fusion and is sim-
ilar to MAED [107]. (d) directly connects S-MHSA and
T-MHSA without the MLP in between and is similar to the
MSA-T variant in MAED [107]. (e) replaces the adaptive
fusion with average pooling on two streams. (f) is the pro-
posed DSTformer design. The result statistically confirms
our design principles that both streams should be capable
and meanwhile complementary, as introduced in Section 3.2.
In addition, we find out that pairing each self-attention block
with an MLP is crucial, as it could project the learned feature
interactions and bring nonlinearity. In general, we design
the model architecture for the 3D pose estimation task and
apply it to all other tasks without additional adjustment.

5. Conclusion
In this work, we provide a unified perspective to tackling

various human-centric video tasks. We develop a pretrain-
ing approach to learn human motion representations from
large-scale and heterogeneous data sources. We also propose
DSTformer as a universal human motion encoder. Experi-
mental results on multiple benchmarks demonstrate the ver-
satility of the learned motion representations. Future work
could explore fusing the learned motion representations with
generic video architectures as a human-centric semantic fea-

ture and applying it to more tasks (e.g., action assessment,
segmentation).
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