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Abstract

The popularity of Contrastive Language-Image Pre-
training (CLIP) has propelled its application to diverse
downstream vision tasks. To improve its capacity on
downstream tasks, few-shot learning has become a widely-
adopted technique. However, existing methods either ex-
hibit limited performance or suffer from excessive learnable
parameters. In this paper, we propose APE, an Adaptive
Prior rEfinement method for CLIP’s pre-trained knowl-
edge, which achieves superior accuracy with high compu-
tational efficiency. Via a prior refinement module, we ana-
lyze the inter-class disparity in the downstream data and
decouple the domain-specific knowledge from the CLIP-
extracted cache model. On top of that, we introduce
two model variants, a training-free APE and a training-
required APE-T. We explore the trilateral affinities between
the test image, prior cache model, and textual represen-
tations, and only enable a lightweight category-residual
module to be trained. For the average accuracy over 11
benchmarks, both APE and APE-T attain state-of-the-art
and respectively outperform the second-best by +1.59%
and +1.99% under 16 shots with ×30 less learnable pa-
rameters. Code is available at https://github.com/
yangyangyang127/APE.

1. Introduction

The advent of contrastive visual-language pre-training
has provided a new paradigm for multi-modal learning [16,
17, 22, 42]. Its popularity has been observed across di-
verse downstream vision tasks, including 2D or 3D classifi-
cation [14, 39, 41, 9], segmentation [27, 48, 36, 44], and de-
tection [38, 45, 29]. CLIP [26] is one of the most acknowl-
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Figure 1: Comparison of Accuracy, Training GFLOPs,
and Learnable Parameters on 16-shot ImageNet [3] clas-
sification. We compare the training GFLOPs including gra-
dient back-propagation, and the icon sizes denote the num-
ber of learnable parameters. Our APE and APE-T achieve
superior performance with high implementation efficiency.

edged contrastive visual-language models and has attained
widespread attention for its simplicity and superiority. Pre-
trained by massive image-text pairs sourced from the Inter-
net, CLIP exhibits remarkable aptitude in aligning vision-
language representations with favorable zero-shot perfor-
mance on downstream tasks. To further enhance CLIP
in low-data regimes, many efforts propose few-shot learn-
ing techniques with additional learnable modules upon the
frozen CLIP for new semantic domains.

As shown in Figure 2 (a) and (b), existing CLIP-based
few-shot methods can be categorized as two groups con-
cerning whether to explicitly construct learnable modules
by CLIP’s prior knowledge. 1) Non-prior Methods ran-
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(b) Prior-based methods (c) Our Proposed APE-T(a) Non-prior methods 

Figure 2: Comparison of Existing CLIP-based Few-shot Methods. We only show the training-required model variants of
prior-based methods and our APE-T. EV , ET denote CLIP’s pre-trained visual and textual encoders, respectively.

domly initialize the learnable modules without CLIP’s prior,
and optimize them during few-shot training. For instance,
CoOp series [47, 46] adopt learnable prompts before CLIP’s
textual encoder, and CLIP-Adapter [7] instead learns two
residual-style adapters after CLIP. Such networks only in-
troduce lightweight learnable parameters but suffer from
limited few-shot accuracy, since no pre-trained prior knowl-
edge is explicitly considered for the additional modules. 2)
Prior-based Methods construct a key-value cache model
via CLIP-extracted features from the few-shot data and are
able to conduct recognition in a training-free manner, in-
cluding Tip-Adapter [40], Tip-X [33], and CaFo [43]. Then,
they can further regard the cache model as a well-performed
initialization and fine-tune the cache keys for better classi-
fication accuracy. These prior-based methods explicitly in-
ject prior knowledge into the training process but are cum-
bersome due to the large cache size with enormous learn-
able parameters. We then ask the question, can we integrate
their merits to make the best of both worlds, namely, not
only equipping efficient learnable modules, but also bene-
fiting from CLIP’s prior knowledge?

To this end, we propose Adaptive Prior rEfinement,
termed as APE, which efficiently adapts CLIP for few-shot
classification by refining its pre-trained knowledge in visual
representations. APE can not only achieve superior perfor-
mance via CLIP’s prior, but also consumes less computa-
tion resource than non-prior methods, as shown in Figure 1.
We observe that not all CLIP’s prior, i.e., the extracted vi-
sual features of the cache model or test image, are signifi-
cant for downstream tasks along the channel dimension. In
Figure 3, we divide the feature channels of CLIP-extracted
visual representations into two groups, and respectively vi-
sualize their similarity maps with the textual representation
in ImageNet [3]. Features in the first group (a) can observe
much better vision-language alignment than the second one
(b). Motivated by this, we propose a prior refinement mod-
ule to adaptively select the most significant feature channels
by two criteria, inter-class similarity and variance. By max-
imizing the inter-class disparity in few-shot training data,
the refined feature channels can discard redundant informa-

Figure 3: Similarity Maps for Vision-language Align-
ment. We utilize CLIP with ResNet-50 [11] visual encoder
and refine 512 feature channels from 1024 ones, where the
refined features are more attentive towards object targets.

tion and reduce the cache size with less memory cost.
On top of this, we present two variants of our approach,

denoted as APE and APE-T. The first one is a training-
free model that directly utilizes the refined cache model
for inference. APE novelly explores the trilateral affini-
ties between the test image, the refined cache model, and
the textual representations for robust training-free recogni-
tion. The second one, APE-T (Figure 2(c)), simply trains
lightweight category residuals on top, other than costly fine-
tuning the entire cache model. Such category residuals
further update the refined cache model and are shared be-
tween modalities to ensure the vision-language correspon-
dence. Our APE and APE-T respectively achieve state-of-
the-art performance compared with existing training-free
and training-required methods on 11 few-shot benchmarks,
surpassing the second-best by +1.59% and +1.99% for the
average 16-shot accuracy.
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The contributions of our work are summarized below:

• We propose Adaptive Prior rEfinement (APE), an
adaption method of CLIP to explicitly utilize its prior
knowledge while remain computational efficiency.

• After prior refinement, we explore the trilateral affini-
ties among CLIP-extracted vision-language represen-
tations for effective few-shot learning.

• Our training-free APE and APE-T exhibit state-of-the-
art performance on 11 few-shot benchmarks, demon-
strating the superiority of our approach.

2. Related Work
Zero-shot CLIP. For a test image within the C-category
dataset, CLIP [26] utilizes its encoders to extract the D-
dimensional visual and textual representations, denoted as
f ∈ RD and W ∈ RC×D, respectively. Then, the zero-shot
classification logits are calculated by their similarity as

RfW = fW⊤ ∈ R1×C . (1)

Based on such a zero-shot paradigm, existing few-shot
adaption methods are categorized into two groups.

Non-prior Methods append additional learnable mod-
ules on top of CLIP and randomly initialize them without
explicit CLIP’s prior. Such methods include CoOp [47],
CoCoOp [46], TPT [30], and CLIP-Adapter [7]. These ap-
proaches only introduce a few learnable parameters, e.g.,
prompts or adapters, but attain limited accuracy for down-
stream tasks for lack of CLIP’s prior knowledge.

Prior-based Methods can achieve higher classification
accuracy by explicitly utilizing CLIP priors with a cache
model, including Tip-Adapter [40], Causal-FS [18], Tip-
X [33], and CaFo [43]. For a C-category dataset with K
samples per class, a key-value cache model is built on top.
The cache keys and values are initialized with the CLIP-
extracted training-set features, F ∈ RCK×D, and their one-
hot labels, L ∈ RCK×C , respectively. Then the similarity
RfF between the test image and training images is calcu-
lated as

RfF = exp
(
−β(1− fF⊤)

)
∈ R1×CK , (2)

where β is a smoothing scalar. Then, the relation RfF is
regarded as weights to integrate the cache values, i.e., the
one-hot labels L, and blended with the zero-shot prediction
as few-shot logits,

logits = RfW + αRfFL, (3)

where α denotes a balance factor. In this way, prior-based
methods can leverage the bilateral relations of RfW and
RfF to achieve training-free recognition. On top of this,
they can further enable the cache model to be learnable,

and optimize the training-set features F during training. Al-
though the initialization of learnable modules has explicitly
incorporated CLIP’s prior knowledge, these methods suffer
from excessive parameters derived from the cache model.

Different from all above methods, our APE and APE-T
can not only perform competitively via CLIP’s prior knowl-
edge, but also introduce lightweight parameters and compu-
tation resources by an adaptive prior refinement module.

3. Method
In Section 3.1, we first illustrate the prior refinement

module in our APE by two inter-class metrics. Then in Sec-
tion 3.2 and Section 3.3, we respectively present the details
of our training-free and training-required variants, APE and
APE-T, based on the refined representations.

3.1. Prior Refinement of CLIP

For a downstream dataset, the CLIP-extracted visual rep-
resentations could comprise both domain-specific and re-
dundant information along the channel dimension. The for-
mer is more discriminative at classifying downstream im-
ages, and the latter represents more general visual seman-
tics. Therefore, we propose two criteria, inter-class simi-
larity and variance, to adaptively select the most significant
feature channels for different downstream scenarios.

3.1.1 Inter-class Similarity

This criterion aims to extract the feature channels that
minimize the inter-class similarity, namely, the most dis-
criminative channels for classification. For a downstream
image, we represent its CLIP-extracted feature as x ∈ RD,
where D denotes the entire channel number and we seek to
refine Q feature channels from D. We then set a binary flag
B ∈ {0, 1}D, where Bk = 1 (k = 1, ..., D) denotes the
kth element xk is selected, and BB⊤ = Q. Now, our goal
turns to find the optimal B to produce the highest inter-class
divergence for downstream data.

For a C-category downstream dataset, we calculate the
average similarity S between categories of all training sam-
ples. We adopt cosine similarity, δ(·, ·), as the metric as

S =

C∑
i=1

P i
C∑

j=1
j ̸=i

P j 1

M i

1

M j

Mi∑
m=1

Mj∑
n=1

δ(xi,m,xj,n), (4)

where i, j ∈ {1, ..., C} represent two different categories.
P i, P j denote the prior probability of the two categories,
and M i,M j denote their total number of training samples.

However, calculating S for the whole dataset, even few
shots, is computational expensive. Considering CLIP’s con-
trastive pre-training, where the vision-language representa-
tions have been well aligned, the textual features of down-
stream categories can be regarded as a set of visual proto-
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Figure 4: The Effectiveness of Prior Refinement Mod-
ule, which minimizes the inter-class visual similarity and
improves the text-image alignment.

types [31, 4, 13]. Such prototypes can approximate the clus-
tering centers in the embedding space for the visual features
of different categories [8, 35]. To obtain the textual fea-
tures, we simply utilize the template ‘a photo of a [CLASS]’
and place all category names into [CLASS] as the input for
CLIP. We then denote the textual features of downstream
categories as xi ∈ RD, where i ∈ {1, ..., C}.

Therefore, we adopt these textual features to substi-
tute the image ones for each category, which determines
M1 = ... = MC = 1. Under open-world settings, we
can also assume P 1 = ... = PC = 1

C . Then, we define the
optimization problem to minimize the inter-class similarity,

min
B

S =
1

C2

C∑
i=1

C∑
j=1
j ̸=i

δ(xi ⊙B,xj ⊙B),

s.t. BB⊤ = Q,

(5)

where ⊙ denotes element-wise multiplication and x ⊙ B
only selects the domain-specific feature channels. We fur-
ther suppose the textual features have been L2-normalized,
so we can simplify the cosine similarity as

S =

dQ∑
k=d1

Sk =

dQ∑
k=d1

 1

C2

C∑
i=1

C∑
j=1
j ̸=i

xi
k · xj

k

 , (6)

where k = {d1, d2, ..., dQ} denotes the indices of se-
lected feature channels with Bk = 1, and Sk =
1
C2

∑C
i=1

∑C
j=1
j ̸=i

xi
k · xj

k represents the average inter-class
similarity of the k-th channel. From Equation 6, we observe
that solving the optimization problem in Equation 5 equals
selecting Q elements with the smallest average similarity.
That is, we sort all D elements by their average similari-
ties and select the top-Q smallest ones. In this way, we can
derive the binary flag B and obtain the most discriminative
feature channels for downstream classification.

3.1.2 Inter-class Variance

Besides the inter-class similarity, we introduce another
criterion to eliminate the feature channels that remain al-

most constant between categories, which exhibit no inter-
class difference with little impact for classification. For ef-
ficiency, we also adopt the category textual features, xi ∈
RD, where i ∈ {1, ..., C}, as visual prototypes for the
downstream datasets. For the kth feature channel, we for-
mulate its inter-class variance as

Vk =
1

C

C∑
i=1

(xi
k − x̄k)

2, (7)

where x̄k =
∑C

i=1 x
i
k denotes the average variance of the

kth channel across categories. Likewise to Equation 6, the
variance criterion can also be regarded as a ranking prob-
lem, but instead selecting the top-Q channels with the high-
est variances. By this, we can effectively filter out the re-
dundant and less informative channels within CLIP’s prior
knowledge for the downstream dataset.

Finally, we blend the similarity and variance criteria with
a balance factor λ as the final measurement. For the kth

feature channel, we formulate it as

Jk = λSk − (1− λ)Vk, (8)

where k = 1, ..., D. The top-Q smallest Jk are selected as
the final refined feature channels, which indicate the most
inter-class divergence and discrimination.

3.1.3 Effectiveness

Figure 4 shows the benefit brought by our adaptive re-
finement module. We conduct the refinement by textual
features on ImageNet [3] validation set and visualize the
statistic, where the category number C equals 1000. We
experiment with ResNet-50 [11] as CLIP’s visual encoder,
where we refine Q = 512 feature channels from the entire
D = 1024 ones. We compare three types of metrics refer-
ring to [33]. As shown, for the refined 512 feature chan-
nels, the inter-class similarity between images (‘Inter-class
Image-Image’) has been largely reduced, indicating strong
category discrimination. Meanwhile, our refinement bet-
ter aligns the paired image-text features (‘Matched Image-
Text’), and pushes away the unpaired ones (‘Unmatched
Image-Text’), which enhances the multi-modal correspon-
dence of CLIP for downstream recognition.

On top of the refined CLIP-extracted features, we present
two few-shot adaption methods for CLIP, the training-free
APE, and training-required APE-T.

3.2. Training-free APE

In essence, CLIP is a zero-shot similarity-based classi-
fier, which relies on the distance between the test image and
category textual representations in the embedding space.
Considering this, our APE is based on the refined CLIP’s
prior and explores the trilateral embedding distances among
the test image, downstream category texts, and the training
images in the cache model, as shown in Figure 5.
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Figure 5: Framework of APE. Based on the prior re-
finement (PR), APE explores trilateral relations of vision-
language representations in a training-free manner.

For a C-way-K-shot downstream dataset with K train-
ing samples per category, we adopt CLIP to extract the
L2-normalized features of the test image, category texts,
and the training images, respectively denoted as f ∈ RD,
W ∈ RC×D, and F ∈ RCK×D. We then conduct our adap-
tive prior refinement module to obtain the most Q informa-
tive channels for the three features, formulated as f ′ ∈ RQ,
W′ ∈ RC×Q, and F′ ∈ RCK×Q. This not only discards the
redundant signals in pre-trained CLIP, but also reduces the
cache model with less computation cost during inference.

As for the trilateral relations, we first denote the relation
between f and W as

RfW = fW⊤ ∈ R1×C , (9)

which represents the cosine similarity between the test im-
age and category texts, i.e., the original classification logits
of CLIP’s zero-shot prediction as described in Section 2.
Then, we formulate the affinities between f ′ and F′ as

Rf ′F ′ = exp
(
−β(1− f ′F′⊤)

)
∈ R1×CK , (10)

which indicates the image-image similarities from the cache
model with a modulating scalar β, referring to the prior-
based methods [40, 33]. Further, we take the relationship
between F′ and W′ into consideration, and formulate their
cosine similarity as F′W′⊤, which denotes CLIP’s zero-
shot prediction to the few-shot training data. To evaluate
such downstream recognition capacity of CLIP, we calcu-
late the KL-divergence, DKL(·|·), between CLIP’s predic-
tion and their one-hot labels, L. We formulate it as

RF ′W ′ = exp
(
γDKL(L|F′W′⊤)

)
∈ R1×CK , (11)

where γ serves as a smooth factor. RF ′W ′ can be regarded
as a score for each training feature in the cache model, in-
dicating its representation accuracy extracted by CLIP and

Training Set

=

Training-required APE-T

Figure 6: Framework of APE-T. Our training-required
variant appends learnable category residuals along with
RF ′W ′ on top of APE for few-shot training.

how much it contributes to the final prediction.
Finally, integrating all trilateral relations, we obtain the

overall classification logits of APE as

logits = RfW + αRf ′F ′

(
diag(RF ′W ′)L

)
, (12)

where α serves as a balance factor and diag(·) denotes diag-
onalization. The first term represents the zero-shot predic-
tion of CLIP and contains its pre-trained prior knowledge.
The second term denotes the few-shot prediction from the
cache model, which is based on the refined feature channels
and RF ′W ′ ’s reweighing. Therefore, by the adaptive prior
refinement and trilateral relation analysis, our APE can en-
hance few-shot CLIP both efficiently and effectively.

3.3. Training-required APE-T

To further improve the few-shot performance of APE, we
introduce a training-required framework, APE-T, in Figure
6. Existing prior-based methods [40, 18] directly fine-tune
all the training features in the cache model, which leads to
large-scale learnable parameters and computational cost. In
contrast, APE-T freezes the cache model, and only trains a
group of additional lightweight category residuals, Res ∈
RC×Q, along with the cache scores RF ′W ′ ∈ R1×CK .

Specifically, the category residuals Res are imple-
mented by a set of C learnable embeddings. Each embed-
ding corresponds to a downstream category, which aims to
optimize the refined Q feature channels for different cat-
egories during few-shot training. To preserve the vision-
language correspondence in the embedding space, we apply
Res to both textual features W and training-set features F′.

For Equation 9, we first pad the Q-channel Res into D
channels as W by filling the redundant channel indices with
zero. Then, we element-wisely add the padded Res with
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Figure 7: Few-shot Performance of APE and other Training-free Methods on 11 image classification datasets.

W, which updates CLIP’s zero-shot prediction by the opti-
mized textual features, formulated as

RfW = f
(
W + Pad(Res)

)⊤
. (13)

For Equation 10, we first broadcast the C-embedding
Res into CK as F′ by repeating the residual within each
category. Then, we element-wisely add the expanded Res
with F′, which improves the cache model’s few-shot pre-
diction by optimizing training-set features, formulated as

Rf ′F ′ = exp
(
− β

(
1− f ′(F′ + Expand(Res))⊤

))
.

For Equation 11, we directly enable the RF ′W ′ to be
learnable during training without manual calculation. By
this, APE-T can adaptively learn the optimal cache scores
for different training-set features and determine which one
to contribute more to the prediction.

Finally, we also leverage Equation 12 to obtain the final
classification logits for APE-T. By only training such small-
scale parameters, APE-T avoids the expensive fine-tuning
of the cache model and achieves superior performance by
updating the refined features for both modalities.

4. Experiments

In Section 4.1, we first present the detailed settings of
APE and APE-T. Then in Section 4.2, we evaluate our ap-
proach on 11 widely-adopted benchmarks.

4.1. Experimental Settings

Datasets. We adopt 11 image classification benchmarks
for comprehensive evaluation: ImageNet [3], Caltech-
101 [6], DTD [2], EuroSAT [12], FGVCAircraft [21],
Flowers102 [23], Food101 [1], OxfordPets [24], Stanford-
Cars [15], SUN397 [37], and UCF101 [32]. In addition,
ImageNet-Sketch [34] and ImageNet-V2 [28] are adopted
to test the generalization ability. Given the few-shot training
data from each dataset, we tune our models on the official
validation set and evaluate the result on the full test set.

Experiment Settings. For APE and APE-T, we adopt
ResNet-50 [11] as the visual encoder of CLIP by default,
which outputs vision-language features with D = 1024
channels. We follow existing works [47, 40, 7] to conduct
1/2/4/8/16-shot learning and utilize the textual prompt in
Tip-X [33] and CuPL [25]. For the prior refinement module,
we set λ in Equation 8 to 0.7 for APE, and 0.2 for APE-T.
To train APE-T, we adopt a batch size 256 and AdamW [20]
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Figure 8: Few-shot Performance of APE-T and other Training-required Methods on 11 image classification datasets.

optimizer with a cosine annealing scheduler [19]. We uti-
lize a learning rate of 0.0001 for ImageNet and Food101,
and 0.001 for the rest datasets.

4.2. Performance Analysis

APE Results. Under the training-free settings, we com-
pare our APE with Tip-Adapter [40] and Tip-X [33] in Fig-
ure 7. They are both prior-based methods and also training-
free with a cache model. As shown by the average results
across 11 datasets, APE exhibits consistent advantages over
other methods for 1 to 16 shots, indicating our strong few-
shot adaption capacity. Although We lag behind Tip-X on
OxfordPets, remarkable gains are observed on DTD and Eu-
roSAT datasets, i.e., +7.03% and +7.53% over Tip-Adapter
under the 16-shot setting. This demonstrates the effective-
ness of refining domain-specific knowledge and exploiting
the trilateral relations for different downstream scenarios.

APE-T Results. In Figure 8, we compare APE-T with
three other training-required methods, CoOp [47], CLIP-
Adapter [7], and Tip-Adapter-F [40]. Our APE-T out-
performs existing ones on every benchmark and achieves
state-of-the-art results for all few-shot settings. On aver-
age, APE-T’s 16-shot accuracy of 77.28% surpasses Tip-

Adapter-F by +1.59%. Particularly, we observe APE-T con-
tributes to substantial improvements of +3.05% and +4.50%
classification accuracies respectively on DTD and FGV-
CAircraft than Tip-Adapter-F. These superior results fully
verify the significance of updating the refined feature chan-
nels by our learnable category residuals.

Computation Efficiency. We also compare the comput-
ing overhead between our approach and existing methods
in Table 1. We test by an NVIDIA RTX A6000 GPU and
report the performance on 16-shot ImageNet. As presented,
CoOp involves the least learnable parameters but requires
numerous training time and GFLOPs to back-propagate the
gradients across the whole textual encoder. Tip-Adapter-F
reduces the training time but brings large-scale learnable pa-
rameters by fine-tuning the full cache model along with no
small GFLOPs for the gradients. In contrast, our APE-T not
only attains the highest accuracy, but also achieves advanta-
geous computation efficiency: ×5000 fewer GFLOPs than
CoOp, and ×30 fewer parameters than Tip-Adapter-F.

Generalization Ability. In Table 2, we train the mod-
els by in-domain ImageNet and test their generalization
ability on out-of-distribution datasets. With the best in-
domain performance, our APE and APE-T both achieve
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Figure 9: Ablation Study on Prior Refinement.
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Figure 10: Ablation Study on APE and APE-T.

Methods Training Epochs GFLOPs Param. Acc.

Zero-shot
CLIP [26] - - - - 60.33
CALIP [10] - - - - 60.57

Training-free
Tip-Adapter [40] 0 0 - 0 62.03
Tip-X [33] 0 0 - 0 62.11
APE 0 0 - 0 63.41

Training-required
CoOp [47] 14 h 200 >10 0.01 M 62.95
CLIP-Adapter [7] 50 min 200 0.004 0.52 M 63.59
Tip-Adapter-F [40] 5 min 20 0.030 16.3 M 65.51
APE-T 5 min 20 0.002 0.51 M 66.07

Table 1: Comparison of Accuracy (%) and Efficiency on 16-
shot ImageNet [3]. “GFLOPs” are calculated during training
with gradient back-propagation.

Datasets
Source Target

ImageNet [3] -V2 [3] -Sketch [28]

Zero-Shot
CLIP [26] 60.33 53.27 35.44
CALIP [10] 60.57 53.70 35.61

Training-free
Tip-Adapter [40] 62.03 54.60 35.90
APE 63.42 55.94 36.61

Training
CoOp [47] 62.95 54.58 31.04
CLIP-Adapter [7] 63.59 55.69 35.68
Tip-Adapter-F [40] 65.51 57.11 36.00
APE-T 66.07 57.59 36.36

Table 2: Domain Generalization Performance (%)
of APE and APE-T. We utilize 16-shot ImageNet [3]
as the training data before out-of-distribution test.

significant out-of-distribution performance on ImageNet-
V2. For ImageNet-Sketch with more distribution shifts, our
training-free APE outperforms all existing methods includ-
ing the training-required ones. However, as we train the
category residuals on the in-domain ImageNet, APE-T per-
forms worse than APE by testing on ImageNet-Sketch.

5. Ablation Study
In this section, we perform extensive ablation experi-

ments to investigate the contribution of our method, re-
spectively for the prior refinement module, the training-
free APE, and training-required APE-T. All experiments are
conducted on ImageNet.

Prior Refinement Module. In Figure 9 (a), we evaluate
the impact of our two refinement criteria, inter-class sim-
ilarity and variance, and adopt our training-free APE with
ResNet-50 [11] as the baseline. As shown, the absence of
either similarity or variance would harm the performance.
In addition, we observe that the similarity criterion plays
a more important role than variance, which better selects
the most discriminative channels from CLIP-extracted rep-
resentations. Then in Figure 9 (b), we investigate the influ-
ence of refined channel number Q. For all shots, the chan-

nel number within the range [500, 900] yields better perfor-
mance. This indicates the more significance of our refined
feature channels than other redundant ones.

Training-free APE. In Figure 10 (a), we decompose the
proposed trilateral relations and reveal their roles respec-
tively. For the 0-shot result, ‘Only RfW ’ denotes the per-
formance of zero-shot CLIP with 61.64% accuracy. By
equipping ‘RfW + Rf ′F ′ ’, the cache model with prior
refinement can help to attain higher performance under
the few-shot settings. Finally, considering all three rela-
tions (‘APE’) builds the best-performing framework, which
demonstrates the effective boost from our trilateral analysis.

Training-required APE-T. In Figure 10 (b), we compare
the impact of different learnable modules in APE-T, includ-
ing the category residuals Res for the visual F′ and the
textual W, and the cache scores, RF ′W ′ . From the pre-
sented results, each learnable component is necessary to
best unleash the potential of APE-T. We observe that tuning
the refined feature channels in W is more significant than
F′. This suggests the role of textual zero-shot prediction is
more critical than the cache model, since CLIP’s original
pre-training target lies in the vision-language contrast.
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(a) Results with ResNet-50
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(b) Results with ResNet-101
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(c) Results with ViT-B/16
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(d) Results with ViT-B/32

Figure 11: Ablation Study with Different Backbones.
The dashed and solid lines represent training-free and
training-required methods, respectively. Totally four net-
work structures are involved: ResNet-50 [11], ResNet-
101 [11], ViT-B/16 [5], and ViT-B/32 [5].

Different Backbones. We implement our approach and
existing models under different CLIP encoders in Figure 11.
We utilize the best settings and only substitute the encoder
network. The ResNet [11] and Vision Transformer (ViT) [5]
backbones are investigated, with which we still achieve the
best accuracy, under training or training-free settings.

Different Prompt. We consider the influence of prompt
in Figure 12. Three types of prompts are involved. The
template prompt is the widely utilized version, e.g., ensem-
bling 7 different templates for ImageNet, following [40].
The CuPL prompt proposed in [25] is generated by GPT-3.
We ensemble template and CuPL prompt in our work, de-
noted as “CuPL+t”. From Figure 12, CuPL+t prompt can
advance all few-shot approaches. Besides, our APE and
APE-T perform the best under all sorts of prompts.

Balance Factor λ and Smooth Factor γ. We explore the
effect of the values of λ in Equation 8 and γ in Equation
11. Balance factor λ controls the weights of the similarity
and variance criteria to the final blending criterion Jk. We
observe for APE, λ = 0.7 yields the best accuracy. This
suggests that the similarity criterion is more important for
APE. The smooth factor γ controls the contribution of each
training sample to the final prediction. We observe a sig-
nificant accuracy improvement when γ increases from 0 to
0.1, which indicates the efficacy of relation RF ′W ′ . When
γ increases from 0.2 to 0.3, i.e., relation RF ′W ′ becomes
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Figure 12: Different Prompt for APE and APE-T.

Balance Factor
λ

0.1 0.3 0.5 0.6 0.7 0.8

63.02 63.15 63.27 63.33 63.42 63.37

Smoothing Factor
γ

0.0 0.05 0.1 0.15 0.2 0.3

62.64 63.04 63.31 63.34 63.42 63.06

Table 3: Ablation Studies (%) for Hyper-parameters of
APE on ImageNet [3]. We investigate blending balance fac-
tor λ in Equation 8, and smooth factor γ in Equation 11.
The experiments are conducted under 16-shot settings with
ResNet-50 [11] backbone.

sharper, the performance reduces rapidly, which suggests
the few-shot performance is sensitive to hyper-parameter γ.
The positive value of γ indicates that Equation 11 is closer
to finding difficult samples.

6. Conclusion
In this paper, we propose an Adaptive Prior rEfinement

method (APE) to adapt CLIP for downstream datasets. Our
APE extracts the informative domain-specific feature chan-
nels with two criteria and digs into trilateral relations be-
tween three CLIP-extracted representations. On top of this,
we present two model variants of APE, respectively for
training-free and training-required few-shot learning. Ex-
tensive experiments have demonstrated our approach can
not only achieve leading few-shot results but also obtain su-
perior efficiency. Our future direction will focus on extend-
ing APE for wider CLIP-based downstream tasks besides
classification, e.g., open-world object detection, segmenta-
tion, and 3D point cloud recognition.

Acknowledgement. This work is partially supported by
the National Natural Science Foundation of China (Grant
No.62206272), and by the National Key R&D Program of
China (NO.2022ZD0160100).

2613



References
[1] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.

Food-101–mining discriminative components with random
forests. In European Conference on Computer Vision, pages
446–461, 2014. 6

[2] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3606–3613, 2014. 6

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 248–255, 2009. 1, 2, 4, 6, 8, 9

[4] Nanqing Dong and Eric P Xing. Few-shot semantic segmen-
tation with prototype learning. In BMVC, volume 3, 2018.
4

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 9

[6] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning gener-
ative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshop, pages 178–178, 2004. 6

[7] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao
Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao.
Clip-adapter: Better vision-language models with feature
adapters. arXiv preprint arXiv:2110.04544, 2021. 2, 3, 6,
7, 8

[8] Samantha Guerriero, Barbara Caputo, and Thomas Mensink.
Deepncm: Deep nearest class mean classifiers. 2018. 4

[9] Ziyu Guo, Renrui Zhang, Longtian Qiu, Xianzhi Li, and
Pheng Ann Heng. Joint-mae: 2d-3d joint masked autoen-
coders for 3d point cloud pre-training. IJCAI 2023, 2023.
1

[10] Ziyu Guo, Renrui Zhang, Longtian Qiu, Xianzheng Ma, Xu-
peng Miao, Xuming He, and Bin Cui. Calip: Zero-shot
enhancement of clip with parameter-free attention. arXiv
preprint arXiv:2209.14169, 2022. 8

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 2, 4, 6, 8, 9

[12] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 12(7):2217–2226, 2019. 6

[13] Saumya Jetley, Bernardino Romera-Paredes, Sadeep Jaya-
sumana, and Philip Torr. Prototypical priors: From im-
proving classification to zero-shot learning. arXiv preprint
arXiv:1512.01192, 2015. 4

[14] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom

Duerig. Scaling up visual and vision-language representa-
tion learning with noisy text supervision. In International
Conference on Machine Learning, pages 4904–4916. PMLR,
2021. 1

[15] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
Proceedings of the IEEE International Conference on Com-
puter Vision Workshops, pages 554–561, 2013. 6

[16] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for uni-
fied vision-language understanding and generation. In In-
ternational Conference on Machine Learning, pages 12888–
12900. PMLR, 2022. 1

[17] Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichten-
hofer, and Kaiming He. Scaling language-image pre-training
via masking. arXiv preprint arXiv:2212.00794, 2022. 1

[18] Guoliang Lin and Hanjiang Lai. Revisiting few-shot learning
from a causal perspective. arXiv preprint arXiv:2209.13816,
2022. 3, 5

[19] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 7

[20] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[21] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. arXiv preprint arXiv:1306.5151, 2013.
6

[22] Norman Mu, Alexander Kirillov, David Wagner, and Sain-
ing Xie. Slip: Self-supervision meets language-image pre-
training. arXiv preprint arXiv:2112.12750, 2021. 1

[23] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722–729, 2008. 6

[24] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
CV Jawahar. Cats and dogs. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3498–3505,
2012. 6

[25] Sarah Pratt, Rosanne Liu, and Ali Farhadi. What does a
platypus look like? generating customized prompts for zero-
shot image classification. arXiv preprint arXiv:2209.03320,
2022. 6, 9

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763, 2021. 1, 3, 8

[27] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong
Tang, Zheng Zhu, Guan Huang, Jie Zhou, and Jiwen Lu.
Denseclip: Language-guided dense prediction with context-
aware prompting. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18082–18091, 2022. 1

[28] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-

2614



agenet? In International Conference on Machine Learning,
pages 5389–5400. PMLR, 2019. 6, 8

[29] Hengcan Shi, Munawar Hayat, Yicheng Wu, and Jianfei
Cai. Proposalclip: unsupervised open-category object pro-
posal generation via exploiting clip cues. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9611–9620, 2022. 1

[30] Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom
Goldstein, Anima Anandkumar, and Chaowei Xiao. Test-
time prompt tuning for zero-shot generalization in vision-
language models. arXiv preprint arXiv:2209.07511, 2022.
3

[31] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. Advances in Neural Infor-
mation Processing Systems, 30, 2017. 4

[32] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 6

[33] Vishaal Udandarao, Ankush Gupta, and Samuel Albanie.
Sus-x: Training-free name-only transfer of vision-language
models. arXiv preprint arXiv:2211.16198, 2022. 2, 3, 4, 5,
6, 7, 8

[34] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. Learning robust global representations by penalizing
local predictive power. In Advances in Neural Information
Processing Systems, pages 10506–10518, 2019. 6

[35] Wenguan Wang, Cheng Han, Tianfei Zhou, and Dongfang
Liu. Visual recognition with deep nearest centroids. arXiv
preprint arXiv:2209.07383, 2022. 4

[36] Zhaoqing Wang, Yu Lu, Qiang Li, Xunqiang Tao, Yandong
Guo, Mingming Gong, and Tongliang Liu. Cris: Clip-
driven referring image segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11686–11695, 2022. 1

[37] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition,
pages 3485–3492, 2010. 6

[38] Lewei Yao, Jianhua Han, Youpeng Wen, Xiaodan Liang,
Dan Xu, Wei Zhang, Zhenguo Li, Chunjing Xu, and Hang
Xu. Detclip: Dictionary-enriched visual-concept paral-
leled pre-training for open-world detection. arXiv preprint
arXiv:2209.09407, 2022. 1

[39] Xin Yuan, Zhe Lin, Jason Kuen, Jianming Zhang, Yilin
Wang, Michael Maire, Ajinkya Kale, and Baldo Faieta. Mul-
timodal contrastive training for visual representation learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 6995–7004,
2021. 1

[40] Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao,
Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng Li.
Tip-adapter: Training-free clip-adapter for better vision-
language modeling. arXiv preprint arXiv:2111.03930, 2021.
2, 3, 5, 6, 7, 8, 9

[41] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xu-
peng Miao, Bin Cui, Yu Qiao, Peng Gao, and Hongsheng

Li. Pointclip: Point cloud understanding by clip. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8552–8562, 2022. 1

[42] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu,
Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and Yu Qiao.
Llama-adapter: Efficient fine-tuning of language models
with zero-init attention. arXiv preprint arXiv:2303.16199,
2023. 1

[43] Renrui Zhang, Xiangfei Hu, Bohao Li, Siyuan Huang, Han-
qiu Deng, Hongsheng Li, Yu Qiao, and Peng Gao. Prompt,
generate, then cache: Cascade of foundation models makes
strong few-shot learners. CVPR 2023, 2023. 2, 3

[44] Renrui Zhang, Zhengkai Jiang, Ziyu Guo, Shilin Yan, Junt-
ing Pan, Hao Dong, Peng Gao, and Hongsheng Li. Person-
alize segment anything model with one shot. arXiv preprint
arXiv:2305.03048, 2023. 1

[45] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chun-
yuan Li, Noel Codella, Liunian Harold Li, Luowei Zhou,
Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-
based language-image pretraining. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16793–16803, 2022. 1

[46] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Conditional prompt learning for vision-language mod-
els. In Proceedings of IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022. 2, 3

[47] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Learning to prompt for vision-language models. Inter-
national Journal of Computer Vision (IJCV), 2022. 2, 3, 6,
7, 8

[48] Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyao Zeng,
Shanghang Zhang, and Peng Gao. Pointclip v2: Adapting
clip for powerful 3d open-world learning. arXiv preprint
arXiv:2211.11682, 2022. 1

2615


