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Abstract

Most recent unsupervised person re-identification meth-
ods maintain a cluster uni-proxy for contrastive learning.
However, due to the intra-class variance and inter-class
similarity, the cluster uni-proxy is prone to be biased and
confused with similar classes, resulting in the learned fea-
tures lacking intra-class compactness and inter-class sep-
aration in the embedding space. To completely and ac-
curately represent the information contained in a cluster
and learn discriminative features, we propose to maintain
discrepant cluster proxies and multi-instance proxies for a
cluster. Each cluster proxy focuses on representing a part
of the information, and several discrepant proxies collabo-
rate to represent the entire cluster completely. As a com-
plement to the overall representation, multi-instance prox-
ies are used to accurately represent the fine-grained infor-
mation contained in the instances of the cluster. Based on
the proposed discrepant cluster proxies, we construct clus-
ter contrastive loss to use the proxies as hard positive sam-
ples to pull instances of a cluster closer and reduce intra-
class variance. Meanwhile, instance contrastive loss is con-
structed by global hard negative sample mining in multi-
instance proxies to push away the truly indistinguishable
classes and decrease inter-class similarity. Extensive exper-
iments on Market-1501 and MSMT17 demonstrate that the
proposed method outperforms state-of-the-art approaches.

1. Introduction

Unsupervised person re-identification (Re-ID) aims to
retrieve images of a particular person across camera views
and scenes without annotations [35, 48]. Most unsupervised
methods adopt a two-step alternating training scheme: 1)
generating pseudo labels by k-nearest neighbor search [34,
42] or clustering [15, 13, 27, 43, 8]; 2) training the model
based on a uni-proxy (i.e., cluster centroid [9] or learnable
weight [13]) of each cluster. However, due to the intra-class
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Figure 1. An illustration demonstrating that global hard negatives
are more effective than batch hard in promoting inter-class sepa-
ration. Different shapes represent different classes. (a) The batch
hard negatives are the ones easy to distinguish. b) Our global hard
negatives are the truly hardest and most informative samples of in-
distinguishable classes.

variance and inter-class similarity caused by the changeable
human pose, illumination, and camera views [54], a uni-
proxy /is often biased and confused, failing to fully and
accurately describe the information of a cluster. As a re-
sult, the features learned based on the uni-proxy are not
compact and have unclear cluster boundaries in the embed-
ding space, which in turn affects the quality of clustering.
In order to learn discriminative features, CAP [36] subdi-
vides each cluster to obtain multiple camera-aware prox-
ies, pulling an instance (i.e., sample) closer to all proxies in
the cluster to alleviate intra-class variance. The later works
ICE [2] and PPLR [7] adopt the same strategy. Although
these methods improve the compactness of clusters, they
depend on extra labels and ignore the intra-class variance
caused by factors other than camera views. On the other
hand, several works [46, 14, 7] focus on reducing inter-class
similarity to learn discriminative features. They consider
performing batch hard negative sample mining [20] to pro-
mote inter-class separation. However, as shown in Figure
1, due to the randomness of sampling, the negative samples
selected for a query from the mini-batch may not be true
hard negatives in the global embedding space, and therefore
cannot enlarge the inter-class separation of actual indistin-
guishable classes.

To reduce intra-class variance without relying on addi-
tional annotations, we propose to use several discrepant
cluster proxies to complementarily represent a cluster. Each
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Figure 2. An illustration showing that discrepant cluster proxies
make a loosely distributed cluster gain intra-class compactness.
Through the strong pull generated by each proxy for its low-
similarity queries and the collaboration of two proxies, the whole
cluster eventually gets more compact.

proxy concentrates on representing a portion of the infor-
mation and the whole cluster is fully represented by several
discrepant proxies. We obtain discrepant cluster proxies
simply by updating the same cluster centroid with differ-
ent update designs. Based on the cluster proxies, we pro-
pose cluster contrastive loss to increase the compactness of
the clusters. As shown in Figure 2, Proxy1 and Proxy2 are
the corresponding hard positive sample and easy positive
sample for Query1 according to pairwise similarity. Thus,
contrastive loss enables Proxy1 to generate a strong pull on
Query1 and Proxy2 to generate a weak pull, resulting in
Query1 being closer to Proxy1 after model optimization.
Similarly, Query2 will be closer to Proxy2. As a result,
Query1 and Query2 will become closer. Since the prox-
ies are updated by these closer queries, Proxy1 and Proxy2
will also approach with training. Through the collaboration
of two discrepant proxies, the cluster gradually gains intra-
class compactness.

On the other hand, to further effectively decrease inter-
class similarity while reducing intra-class variance, we pro-
pose to maintain finer-grained and more accurate multi-
instance proxies through instance features of a cluster as
the supplement of coarse-grained cluster proxies. Distin-
guished from the previous batch hard sample mining, the
hard negative samples of a query are selected among the
multi-instance proxies of all other classes with a global
view. Then we exploit the true hard negatives to construct
instance contrastive loss and purposefully increase the inter-
class variance of indistinguishable classes.

Our contributions can be summarized as follows:
• We propose contrastive learning based on discrepant

cluster proxies, which complementarily represent a
cluster and collaboratively reduce intra-class variation.

• We propose global hard negative sample mining based
on multi-instance proxies to select truly hard and infor-
mative negative samples to purposefully increase the
inter-class variance of indistinguishable classes.

• Extensive experimental results with superior perfor-
mance against the state-of-the-art methods demon-
strate the effectiveness of the proposed method.

2. Related Work

Unsupervised Person Re-ID. Existing unsupervised meth-
ods can be roughly categorized into unsupervised domain
adaptive (UDA) methods and purely unsupervised learning
(USL) methods. UDA methods [13, 15, 14, 31, 44, 26, 35,
11, 52, 1, 21] transfer the knowledge learned from the la-
beled source domain to the unlabeled target domain. In con-
trast, USL methods [28, 34, 27, 43, 36, 41, 7, 46, 25, 45] is
trained directly on unlabeled target datasets. Our method
meets the more challenging USL setting. Recently, USL
methods that generate pseudo labels by clustering and per-
form contrastive learning on cluster proxies have made
great progress. SpCL [15] averages the instance features
of a class in the memory bank as a uni-proxy for the class.
Cluster-Contrast [9] directly stores a uni-proxy for each
cluster to maintain the updating consistency. However,
the cluster uni-proxy cannot effectively reduce the exist-
ing intra-class variance. Thus, CAP [36] forms multiple
camera-aware proxies for each cluster to alleviate the cam-
era domain gap. MCRN [39] stores multi-centroid repre-
sentations for a cluster but only selects one as the proxy for
a query to mitigate the effects of mixed clusters. Unlike
these methods, we obtain several discrepant cluster proxies
to completely represent a cluster and serve as hard positive
samples to collaboratively enhance intra-class compactness.

Hard Sample Mining. Hard sample mining can improve
training speed and performance [49]. Many recent unsu-
pervised Re-ID methods utilize hard batch sample min-
ing [20] to increase intra-class compactness and inter-class
separation. MMT [14] and PPLR [7] learn hard samples
by constructing softmax-triplet loss on the hardest posi-
tive and negative sample pairs. ICE [2] mines the hard-
est positive sample in the mini-batch and takes all samples
of other identities as negatives to reduce intra-class vari-
ance. ISE [46] explores the hardest positive and negative
samples among the original and generated samples within a
batch. However, hard sample mining in the mini-batch does
not consider global information of all classes. Therefore,
we propose global hard negative sample mining based on
multi-instance proxies to effectively enhance the inter-class
variance among classes hard to discriminate.

Contrastive Learning. Contrastive learning [17, 6, 5, 32,
40, 16, 37] aims at maximizing the similarity of represen-
tations obtained from different distorted versions of a sam-
ple [16]. MoCo [17] builds a queued dictionary to keep an
abundance of negative samples and introduces a momen-
tum encoder to ensure their consistency. We perform both
cluster-level and instance-level contrastive learning based
on discrepant cluster proxies and multi-instance proxies.
Like MoCo, We use a momentum encoder to keep the con-
sistency of negative samples.
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Figure 3. An overview framework of the proposed DCMIP. It alternates two steps. (a) In the clustering step, we cluster encoder-encoded
features to generate pseudo labels. We then initialize the discrepant cluster proxies (DCP) with cluster centroids of these features and
initialize the multi-instance proxies (MIP) with randomly selected K instance features encoded by the momentum encoder fθm for each
cluster. (b) In the training step, we exploit the hard positive proxies in DCP and hard negative proxies in MIP by LDCP and LMIP to
perform discrepant cluster proxies collaborating and global hard negative sample mining, respectively. Then, different update designs are
applied to encoder-encoded features to update DCP, and all instance features encoded by fθm are used to update MIP.

3. Method
3.1. Overview

Given an unlabeled person Re-ID dataset D = {xi}ND
i=1,

where xi is the i-th image and ND is the number of images.
For the USL Re-ID task, the objective is to train a robust
network fθ to project a sample xi in the data space D to a
feature fθ (xi) in the embedding space F .

Recently, most unsupervised Re-ID methods [15, 9, 46,
36, 2] generate pseudo labels by DBSCAN [12] algorithm.
After DBSCAN clustering, the unlabeled dataset D be-
comes D′ = {(xi, yi)}

N ′
D

i=1, where yi ∈ {1, 2, . . . , C} is
the pseudo label of the i-th image. N ′

D is the number of im-
ages after discarding outliers and C is the number of clus-
ters. Then a memory bankM is constructed to store prox-
ies for clusters. Since the cluster centroid contains average
information, recent methods [9, 46] simply use it as the uni-
proxy for a cluster. Based on the proxies, the InfoNCE loss
function [32] is applied for model optimization. Despite
there are also different variants of proxies [15, 53, 36], we
summarize their general formulation as follows:

LInfo = − log
exp (q · p+/τ)∑N
i=1 exp (q · pi/τ)

, (1)

where q is a query instance feature extracted by fθ. pi is
the i-th proxy of selected N proxies from the memory bank
M. Among the N proxies, p+ shares the same pseudo label
with q. τ is a temperature factor. Since both q and pi are
L2-normalized, the cosine similarity q · pi is used as the
similarity score between features.

When the model parameters are updated by gradient de-
scent, the proxy p+ are also updated by the query q:

p+ ← µ · p+ + (1− µ) · q, (2)

where µ is a momentum factor.
In this paper, we propose a contrastive learning frame-

work based on discrepant cluster proxies and multi-instance
proxies (DCMIP) as shown in Figure 3. As above, we ex-
tract the features of the training set by encoder fθ and gen-
erate pseudo labels through DBSCAN. The difference is
that we simultaneously maintain cluster proxies and multi-
instance proxies for a cluster, and construct contrastive loss
at both the cluster and instance levels.

Due to the large number of instance proxies, we intro-
duce a momentum encoder fθm following MoCo [17] to
maintain the consistency of negative instance proxies. The
update of the momentum encoder is formulated as follows:

θtm = αθt−1
m + (1− α)θt, (3)

where α is the momentum coefficient that controls the up-
dated speed and is set to 0.999. The momentum encoder
fθm evolves more smoothly, so the instance features en-
coded by fθm are more consistent. Note that, the clus-
ter proxies are initialized and updated with the encoder-
encoded features, while the instance proxies are initialized
and updated with instance features encoded by fθm .

3.2. Discrepant Cluster Proxies

We argue that the cluster uni-proxy tends to focus on the
common information of a class and fails to reflect the intra-
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class variance that exists. To solve this problem, we pro-
pose to maintain discrepant cluster proxies (DCP) to com-
plementarily represent a cluster and improve the compact-
ness of the cluster based on these discrepant proxies.
Memory initialization. For each cluster, we maintain M
cluster proxies in the memory bankM. For all proxies of
the j-th cluster, we initialize them with the cluster centroid
cj = 1

|Hj |
∑

xi∈Hj
xi, where Hj denotes the j-th cluster

and | · | denotes the number of instances in it. Thus, the
memory bankM ∈ RC×M×d has C ×M entries, and d is
the dimension of the features.
Memory update. Previous studies [22, 55] found that the
hardness of positive and negative samples is crucial for con-
trastive learning. The gradient of InfoNCE loss (Eq. 1) cor-
responding to query q is:

∂LInfo

∂q
= −1

τ

(
1− P+

)
· p+ −

∑
p−∈Nq

P− · p−

 ,

(4)
where P+/− ∈ [0, 1] is the matching probability distri-
bution between query q and the positive/negative proxy

p+/p−, i.e., P+/− =
exp(q·p+/−/τ)∑N
i=1 exp(q·pi/τ)

. Nq denotes the

set of N − 1 negative proxies other than positive p+. We
can find that a hard positive sample with low similarity to
the query tends to produce a larger gradient, generating a
stronger pull to draw the query closer. But only employing
such a single proxy to represent a cluster is biased and may
affect the learning of inter-class relationships. Therefore,
we propose to use several discrepant proxies for a cluster.

To obtain discrepant cluster proxies, we momentum up-
date each of the M identically initialized proxies of a cluster
as Eq. 2 by different feature vectors from the current mini-
batch. For the m-th proxy pi,m of the i-th cluster, the feature
vector can be obtained in several ways:

qmean ←
1

K

∑
q∈Qi

q, (5)

qrand ← qj , qj ∈ Qi, (6)

qhard ← argmin
q

q · pi,m, q ∈ Qi, (7)

where Qi is the sample feature set of the i-th cluster in cur-
rent mini-batch. qmean is the average feature of the set.
qrand is a randomly selected sample feature from Qi. The
selection probability is P(qrand=qj) =

1
K , j = 1, 2, . . . ,K,

where K denotes the number of samples for an identity in
the batch. qhard is the sample feature which has lowest
similarity with proxy pi,m. The three different vectors cor-
respond to three different update designs for cluster proxies,
which we name “Mean”, “Rand” and “Hard”, respectively.

In our experiments, we find that the optimum cluster
proxies obtained by different update designs should not

only be discrepant but also stable. The discrepancy of
proxies ensures the hardness of positive samples, i.e., the
strength of the generated pull to the queries. The stability
ensures that the pull direction of a proxy does not change
drastically, otherwise, a proxy cannot form a stable pull,
and a stable collaboration cannot be formed among several
proxies. According to experimental results, maintaining
two cluster proxies with update designs of ”Mean”+”Hard”
and ”Mean”+”Rand” for Market-1501 and MSMT17 deliv-
ers the best performance by making a trading-off between
high discrepancy and high stability. We further discuss the
discrepancy and stability in Sec. 4.4.
Cluster contrastive loss. With M discrepant cluster prox-
ies, we form a cluster contrastive loss as follows:

LDCP = − 1

M

M∑
j=1

log
exp

(
q · p+

j /τ
)∑C

i=1 exp (q · pi,j/τ)
, (8)

where pi,j is the j-th proxy of the i-th cluster. p+
j shares the

same label with the query q and is the j-th proxy for that
cluster. Note that the same update design is adopted for the
j-th proxy of all clusters.

Several discrepant proxies complementarily represent a
cluster, and collaboratively reduce intra-class variance to
make the cluster compact.

3.3. Multi-Instance Proxies

Considering that the discrepant cluster proxies cannot re-
flect the valuable fine-grained information contained in the
hard instances of the cluster, we further maintain multi-
instance proxies (MIP) for each cluster to perform global
hard negative sample mining.
Memory initialization. We randomly select K instance
features encoded by the momentum encoder fθm to ini-
tialize multi-instance proxies for each cluster. Note that
K equals the number of images sampled for an identity
in a mini-batch. Combining cluster proxies and instance
proxies, the memory bank M ∈ RC×(M+K)×d has C ×
(M +K) entries in total.
Memory update. While updating the model parameters,
the instance features of the current mini-batch are used to
update the instance proxies as follows:

P i ← Qi
m, (9)

where Qi
m is the instance feature set of the i-th cluster in

the mini-batch encoded by fθm and P i is the set of instance
proxies of that cluster in the memory bankM. Unlike the
momentum update of the cluster proxies, the instance prox-
ies are directly replaced by the K instances with the same
label in the current mini-batch. This allows us to keep as
many up-to-date instance proxies as possible to represent
the fine-grained information of a cluster.
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Instance contrastive loss. We compute the pairwise sim-
ilarity of an input query to all instance proxies of other
classes in the memory bank and rank them in descending
order. We select the top-N most similar instance proxies as
the global hardest negatives. Considering that the instance
features in the current mini-batch are more up-to-date than
those in the memory bankM, and that the momentum en-
coder fθm is more stable and more robust to label noise,
we choose the instance feature in the batch encoded by fθm
with the lowest similarity to the query as the hard positive.
Based on the hard positive and the N global hardest nega-
tives, the following instance contrastive loss is constructed:

LMIP = − log
exp (q ·m+) /τ

exp (q ·m+) /τ +
∑N

i=1 exp (q · pi
n) /τ

,

(10)
where m+ is the hard positive and pin is the i-th hard neg-
ative instance proxies. These hard negatives accurately in-
crease the inter-class variance of indistinguishable classes
in the global embedding space from the perspective of inter-
instance relationships.

3.4. Overall Loss

We name the contrast learning framework based on dis-
crepant cluster proxies and multi-instance proxies DCMIP.
The overall loss function of DCMIP is:

LDCMIP =

{
LDCP , if epoch ⩽ Eins

λLDCP + (1− λ)LMIP else
, (11)

where λ is the loss weight. For LMIP , due to the poor
quality of the representations in the early training stage, the
hard samples at this point may be meaningless. Using these
hard samples may lead to the model being trained in the
wrong direction from the beginning [49]. Therefore, we set
Eins = 20 to start the instance-level contrastive learning
from the 21st epoch, and the parameters of fθm are initial-
ized with the parameters of current fθ. We also report the
results starting from other epochs in Appendix A.1.

DCMIP enhances the quality of representations from
both intra-class and inter-class relationships. The intra-class
variance is reduced by using the cluster proxies as hard posi-
tive samples in cluster contrastive loss (Eq. 8), and the inter-
class variance is increased by using the instance proxies as
hard negative samples in instance contrastive loss (Eq. 10).
This allows the model to learn discriminative features and
in turn improve the clustering quality.

4. Experiments
4.1. Datasets and Evaluation Protocols

We evaluate our method on Market-1501 [47] and
MSMT17 [38]. Market-1501 is collected with 6 cameras on

the Tsinghua University campus and consists of 32,668 im-
ages of 1,501 person identities, with a training set of 12,936
images of 751 identities and a test set of 19,732 images of
750 identities. MSMT17 is a more challenging dataset, us-
ing 15 cameras for data collection and consisting of 126,441
images of 4,101 identities, with a training set of 32,621 im-
ages of 1,041 identities and a test set of 93,820 images of
3,060 identities. Both Cumulative Matching Characteristics
(CMC) Top-1, Top-5, Top-10 accuracies and mean Average
Precision (mAP) are adopted in our experiments.

4.2. Implementation Details

We adopt ResNet50 [18] pre-trained on ImageNet [10]
as the backbone. Following Cluster-Contrast [9], the gener-
alized mean pooling [30] is used for the final pooling layer.
The input image size is 320×128. At the beginning of each
epoch, we use DBSCAN clustering to generate pseudo la-
bels. The maximum distance between two samples in DB-
SCAN is set to 0.45 for Market-1501 and 0.7 for MSMT17.
The mini-batch size is 256 consisting of 16 identities and
16 images for each identity. From the 21st epoch, we start
instance-level contrastive learning and K = 16 instance
proxies are maintained for each cluster. In instance con-
trastive loss (Eq. 10), we select N = 256 negative instance
proxies for each query and set the loss weight λ = 0.5
(Eq. 11). The update momentum µ of cluster proxies is
set to 0.1 (Eq. 2). The temperature hyper-parameter τ in
the two losses (Eq. 8, Eq. 10) is set to 0.05. We use an
Adam [23] optimizer with weight decay of 5 ×10−4. The
initial learning rate is set to 3.5 ×10−5 and divided by 10
every 20 epochs. For both datasets, we train 50 epochs.
After training, the momentum encoder fθm is used for in-
ference. We also provide the analysis for the maximum dis-
tance of DBSCAN and the loss weight λ in Appendix A.1.

4.3. Ablation Study

In this subsection, to analyze the effectiveness of the pro-
posed components, we conduct extensive experiments on
Market-1501 and MSMT17. We adopt the method that uses
the cluster centroid as the uni-proxy of a cluster and updates
the uni-proxy by the design of “Mean” as our baseline.
Effectiveness of the discrepant cluster proxies (DCP).
Note that for Market-1501 and MSMT17, we maintain two
discrepant cluster proxies and use the update designs of
“Mean”+“Hard” (Eq. 5, Eq. 7) and “Mean”+“Rand” (Eq. 5,
Eq. 6), respectively. As shown in Table 1, our DCP signif-
icantly exceeds the baseline using the uni-proxy, especially
+4.8%/+1.5% mAP/top-1 improvement on Market-1501
and +3.2%/+2.7% mAP/top-1 improvement on MSMT17.
It demonstrates that complementary and collaborative dis-
crepant cluster proxies can describe clusters more compre-
hensively, therefore contributing to learning good sample
representations more than the cluster uni-proxy.
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Method Market-1501 MSMT17
mAP top-1 mAP top-1

Baseline 81.0 92.8 35.2 66.1
Baseline+DCP 85.8 94.3 38.4 68.8
Baseline+MIP 84.5 93.9 39.2 68.3
DCMIP 86.7 94.7 40.9 69.3

Table 1. Ablation studies on proposed components of DCMIP.

Method Market-1501 MSMT17
mAP top-1 mAP top-1

DCMIP w/o MIP 85.4 93.7 37.5 68.0
+ MIP 86.7 94.7 40.9 69.3
+ Batch hard triplet 86.1 93.9 37.9 66.0
+ Batch hard instance 86.0 94.4 38.4 66.2

Table 2. Ablation studies on different hard sample mining tech-
niques. In all rows, we keep the weight λ of cluster contrastive
loss in total loss (Eq. 11) as 0.5 from the 21st epoch.

Effectiveness of the multi-instance proxies (MIP). To
demonstrate the effectiveness of MIP, we combine MIP
with the baseline and DCP respectively. In Table 1, com-
paring to the baseline, mAP/top-1 of Baseline+MIP is im-
proved by 3.5%/1.1% on Market-1501 and 4.0%/2.2% on
MSMT17. DCMIP (DCP+MIP) increases mAP/top-1 of
Baseline+DCP by 0.9%/0.4% and 2.5%/0.5% on Market-
1501 and MSMT17 severally. This demonstrates that for
both cluster uni-proxy and multi-proxies, global hard nega-
tive mining based on MIP can capture the fine-grained infor-
mation contained in truly hard instances in the global em-
bedding space. In Table 2, we compare MIP with two batch
hard sample mining techniques. One way is hard batch
triplet mining [20], which forms a triplet with the anchor,
the hardest positive, and the hardest negative in the mini-
batch. The other way is batch hard instance mining [2],
which uses the most similar instance of the same class and
all instances of other classes in the mini-batch as the pos-
itive and the negatives. As the results show, global hard
negative sample mining based on MIP outperforms the two
techniques. This demonstrates that our MIP overcomes the
limitation of batch hard sample mining by exploiting the
hardest negative instance proxies to purposefully increase
the inter-class variance of indistinguishable classes.

DCMIP combines DCP and MIP for contrastive learn-
ing based on both cluster proxies and instance proxies.
Compared with the cluster uni-proxy baseline, our method
improves mAP/top-1 by 5.7%/1.9% on Market-1501 and
5.7%/3.2% on MSMT17 by a large margin. We believe
that DCMIP can reduce intra-class variance through the col-
laboration of discrepant cluster proxies and increase inter-
class variance through global hard negative mining based
on multi-instance proxies.
Clustering quality. To intuitively demonstrate the ability
of our method to reduce intra-class variation and inter-class
similarity, we visualized randomly selected samples of 20

Baseline Our DCMIP

Figure 4. The t-SNE visualization of 20 random classes in Market-
1501 between baseline and our DCMIP. Different colors represent
different IDs. At the bottom, we show the case of small inter-
class variance and large intra-class variance through partial person
images of several identities.

Update policy Market-1501 MSMT17
mAP top-1 mAP top-1

Mean 81.0 92.8 35.2 66.1
Rand 81.6 92.4 35.8 64.6
Hard 82.6 92.3 18.5 39.8

Mean+Hard 85.8 94.3 33.9 61.0
Mean+Rand 83.1 93.1 38.4 68.8
Rand+Hard 84.7 93.3 31.8 58.4

Mean+Rand+Hard 85.5 94.2 37.5 65.4
Table 3. Comparison of different update policies for cluster prox-
ies.

classes by t-SNE [33]. As shown in Figure 4, the compact-
ness of all classes is significantly improved in DCMIP com-
pared to the baseline. For several classes that are too close
to distinguish in the baseline, our method increases their
inter-class distances. Moreover, for the two classes with
mixed features, DCMIP successfully separates them. We
also report the results of cluster quality measured with four
cluster evaluation metrics on Market-1501 and MSMT17 in
Appendix A.2.

4.4. Parameter Analysis

Different update policies for cluster proxies. We de-
fined three update designs in Sec. 3.2 to update the cluster
proxies: “Mean”, “Rand”, and “Hard”, as shown in Eq. 5,
Eq. 6, and Eq. 7, respectively. Several cluster proxies are
obtained by applying different update designs to the same
initial cluster centroid. The three designs can form seven
different update policies by combination: “Mean”, “Rand”,
“Hard”, “Mean+Hard”, “Mean+Rand”, “Rand+Hard”, and
“Mean+Rand+Hard”. As shown in Table 3, discrepant clus-
ter proxies obtained by appropriate update policies out-
perform the uni-proxy, but the number of cluster proxies

11063



0 2k 4k 6k 8k 10k
Training Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Di
sc

re
pa

nc
y

Mean+Hard
Mean+Rand
Rand+Hard
Mean+Rand+Hard

0 2k 4k 6k 8k 10k
Training Iterations

0.975

0.980

0.985

0.990

0.995

1.000

St
ab

ilit
y

Mean
Rand
Hard

(a) Market-1501

0 2k 4k 6k 8k 10k
Training Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Di
sc

re
pa

nc
y

Mean+Hard
Mean+Rand
Rand+Hard
Mean+Rand+Hard

0 2k 4k 6k 8k 10k
Training Iterations

0.980

0.985

0.990

0.995

1.000

St
ab

ilit
y

Mean
Rand
Hard

(b) MSMT17

Figure 5. The discrepancy of cluster multi-proxies and the stabil-
ity of uni-proxy on Market-1501 and MSMT17. The discrepancy
is calculated by taking the mean cosine similarity of proxy pairs
inside a cluster, averaging it over all clusters, and then subtracting
that value from 1. The stability is computed by averaging the co-
sine similarity of a uni-proxy before and after being updated over
all clusters, reflecting the smoothness of the update.

is not always the more the better. According to the re-
sults, Market-1501 and MSMT17 achieve the optimum with
“Mean+Hard” and “Mean+Rand”, respectively. Without
specification, we use the two policies by default.

The discrepancy and stability of cluster proxies. As
shown in Table 3, Market-1501 prefers the update design
“Hard” in all policies, while MSMT17 does the opposite.
The proxy updated by “Hard” has lower similarity to the
instances of a cluster and can produce a larger gradient.
However, due to the drastic updates, the design “Hard” is
less stable than “Mean” and “Rand” in Figure 5. Consid-
ering that the clustering quality of MSMT17 is low (see
Appendix A.2), the sample least similar to a proxy is very
likely to be noise, updating with it may lead to incorrect
learning direction. Conversely, the proxy of Market-1501
updated by “Hard” is more reliable due to the higher clus-
tering quality. In addition, MSMT17 has a higher stability
requirement than Market-1501 because it has about twice as
many samples per class as Market-1501, which means that
a proxy must be stable for a larger number of samples, and
forming a stable collaboration is more difficult when us-
ing several proxies. Therefore, the design “Hard” behaves
differently on two different-sized datasets. For Market-
1501, “Mean+Hard” has a high discrepancy, and “Mean”
complements the stability of “Hard”, thus achieving the
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Figure 6. Parameter analysis of the number of hard negative in-
stance proxies N on Market-1501 and MSMT17.

best balance between high discrepancy and high stability.
For MSMT17, although “Mean+Rand” has a low discrep-
ancy, it avoids the problem of ”Hard” and forms discrepant
proxies which can collaborate stably to achieve the best
performance. We conjecture that since three dynamically
changing proxies are more difficult to form a stable col-
laboration than two proxies, despite the high discrepancy
and the ability to represent more information, the policy
“Mean+Rand+Hard” is not optimal.
The number of hard negative instance proxies. We an-
alyze the number of hard negative instance proxies N se-
lected by global hard negative mining. In Figure 6, we
can see that the performance of Market-1501 and MSMT17
firstly increases and then decreases as N raises. N = 0
indicates the case of cluster-level contrastive learning based
on DCP only. Both datasets achieve the best mAP when
we set N to 256. We speculate that when N > 0, we can
effectively increase distances between classes hard to dis-
tinguish with the valuable globally hardest negative sam-
ples. However, asN grows, meaningless easy samples may
be selected, instead reducing the matching probability of
meaningful samples and affecting the gradient thus causing
a decrease in performance. Therefore, we set N = 256.

4.5. Comparison with State-of-the-Arts

In Table 4, we compare our DCMIP with state-of-the-
art Re-ID methods on Market-1501 and MSMT17. In an
unsupervised setting, our DCMIP significantly outperforms
previous methods. We achieve mAP/top-1 of 86.7%/94.7%
and 40.9%/69.3% on Market-1501 and MSMT17, respec-
tively. Compared to unsupervised methods without any
labels, our discrepant cluster proxies and multi-instance
proxies substantially improve mAP by 3.7% and 7.9%
on Market-1501 and MSMT17 than the uni-proxy method
Cluster-Contrast [9]. Moreover, our DCMIP surpasses
the second-best method ISE [46] on Market-1501 and
MSMT17 by 1.4% and 3.9% in mAP and outperforms
ICE [2] and PPLR [7] on MSMT17 by a remarkable margin.
Compared to unsupervised methods with camera labels, our
DCMIP without any camera knowledge outperforms four
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Method Market-1501 MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

Unsupervised methods with camera labels
IICS [41] CVPR’21 72.9 89.5 95.2 97.0 26.9 56.4 68.8 73.4
CAP [36] AAAI’21 79.2 91.4 96.3 97.7 36.9 67.4 78.0 81.4
ICE [2] ICCV’21 82.3 93.8 97.6 98.4 38.9 70.2 80.5 84.4
PPLR [7] CVPR’22 84.4 94.3 97.8 98.6 42.2 73.3 83.5 86.5
Unsupervised methods without any labels
BUC [27] AAAI’19 29.6 61.9 73.5 78.2 - - - -
JVTC [24] ECCV’20 41.8 72.9 84.2 88.7 15.1 39.0 50.9 56.8
MMCL [34] CVPR’20 45.5 80.3 89.4 92.3 11.2 35.4 44.8 49.8
HCT [43] CVPR’20 56.4 80.0 91.6 95.2 - - - -
SpCL [15] NeurIPS’20 73.1 88.1 95.1 97.0 19.1 42.3 55.6 61.2
JVTC+* [3] CVPR’21 75.4 90.5 96.2 97.1 29.7 54.4 68.2 74.2
OPLG-HCD [50] ICCV’21 78.1 91.1 96.4 97.7 26.9 53.7 65.3 70.2
ICE [2] ICCV’21 79.5 92.0 97.0 98.1 29.8 59.0 71.7 77.0
MCRN [39] AAAI’22 80.8 92.5 - - 31.2 63.6 - -
SECRET [19] AAAI’22 81.0 92.6 - - 31.3 60.4 - -
PPLR [7] CVPR’22 81.5 92.8 97.1 98.1 31.4 61.1 73.4 77.8
RMCL [29] KBS’23 81.7 93.0 97.6 98.4 32.5 62.3 73.6 78.0
Cluster-Contrast [9] ACCV’22 83.0 92.9 97.2 98.0 33.0 62.0 71.8 76.7
ISE [46] CVPR’22 85.3 94.3 98.0 98.8 37.0 67.6 77.5 81.0
DCMIP (320× 128) This paper 86.7 94.7 98.0 98.8 40.9 69.3 79.7 83.6
Supervised methods
DG-Net [51] CVPR’19 86.0 94.8 - - 52.3 77.2 - -
ABD-Net [4] ICCV’19 88.3 95.6 - - 60.8 82.3 90.6 -
ISE (w/ ground truth) [46] CVPR’22 87.8 95.6 98.5 99.2 51.0 76.8 87.1 90.6
DCMIP (w/ ground truth) This paper 89.2 96.2 98.5 99.0 62.8 83.9 91.6 93.8

Table 4. Comparison with state-of-the-art methods on Market-1501 and MSMT17. The best results of unsupervised methods without any
labels are marked in bold. Note that the input image size of DCMIP is 320× 128.

methods (i.e., IICS [41], CAP [36], ICE [2], PPLR [7]) on
Market-1501 and three (i.e., IICS [41], CAP [36], ICE [2])
on MSMT17 in mAP. In addition, under the supervised
setting, our DCMIP achieves competitive performance to
the well-known supervised method DG-Net [51] and ADB-
Net [4]. It is worth noting that DCMIP with ground truth
scores higher in mAP and top-1 than ISE [46] by 11.8%
and 7.1% on MSMT17, which demonstrates the superiority
and potential of our approach on large datasets.

5. Discussion

Our DCMIP reduces intra-class variation by two dis-
crepant cluster proxies for all clusters, but this may not be
the optimal solution. For clusters with high intra-class com-
pactness, further reducing the intra-class variation is not
necessary, as it may impair generalizability. For clusters
with low intra-class compactness, more cluster proxies are
required to represent diverse subsets and lower intra-class
variance. We will explore additional strategies to obtain dis-
crepant proxies as well as a dynamic cluster proxy number
for different clusters in the future study.

6. Conclusion

In this paper, we propose a contrastive learning frame-
work based on discrepant cluster proxies and multi-instance
proxies for unsupervised person re-identification. We main-
tain two discrepant cluster proxies by different update de-
signs to complementarily represent a cluster and act as hard
positive samples in the cluster contrastive loss to collabora-
tively reduce intra-class variance. We also maintain multi-
instance proxies for a cluster to accurately represent the
fine-grained instance information. Then global hard neg-
ative sample mining is performed among the instance prox-
ies to increase the inter-class variance of indistinguishable
classes through the instance contrastive loss. Comprehen-
sive experiments have shown that our framework outper-
forms prior state-of-art methods on two prevalent datasets.
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