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Figure 1: LaRS features diverse and challenging USV-centric scenes with per-pixel panoptic annotations (right).

Abstract

The progress in maritime obstacle detection is hindered
by the lack of a diverse dataset that adequately captures the
complexity of general maritime environments. We present
the first maritime panoptic obstacle detection benchmark
LaRS, featuring scenes from Lakes, Rivers and Seas. Our
major contribution is the new dataset, which boasts the
largest diversity in recording locations, scene types, obsta-
cle classes, and acquisition conditions among the related
datasets. LaRS is composed of over 4000 per-pixel labeled
key frames with nine preceding frames to allow utilization
of the temporal texture, amounting to over 40k frames. Each
key frame is annotated with 8 thing, 3 stuff classes and
19 global scene attributes. We report the results of 27 se-
mantic and panoptic segmentation methods, along with sev-
eral performance insights and future research directions.
To enable objective evaluation, we have implemented an
online evaluation server. The LaRS dataset, evaluation
toolkit and benchmark are publicly available at: https:
//lojzezust.github.io/lars-dataset

1. Introduction
The maritime industry is undergoing a fundamental

transformation. With over 90% of goods being moved over
water, substantial efforts are being invested in development
of autonomous unmanned surface vessels (USV) [19, 15].
These autonomous boats serve a wide range of purposes,
ranging from automated inspection, environmental moni-
toring, waste cleanup, cargo shipping, to civilian transporta-

tion. The autonomy of USVs critically depends on obstacle
detection capability for timely collision avoidance. Simi-
larly to the automotive domain [18, 21], cameras have been
extensively explored for this task [26, 7, 36, 3, 35, 2].

There are several challenges associated with maritime
obstacle detection. The appearance of the navigable sur-
face (water) is dynamic and reflects the environment, often
containing strong mirroring and sun glitter (Figure 1). Al-
though modern detectors [45, 46, 8] can accurately detect
common dynamic obstacles such as ships and boats, the ap-
pearance of obstacles such as buoys, people and animals
can vary significantly, bringing the task closer to anomaly
detection [30, 9]. Furthermore, background static obstacles,
such as shorelines and piers, cannot be addressed by these
methods.

The currently dominant approach [26, 2] instead em-
ploys semantic segmentation to decompose the scene into
three semantic classes (water, obstacles and sky), which
jointly address static and dynamic obstacles. Nevertheless,
the recent detection benchmark [5] indicates that segmen-
tation methods could benefit from the detection approach.
A natural approach that combines these two principles is
panoptic segmentation [24], which has proven highly ef-
fective in the related field of autonomous ground vehi-
cles [18, 21, 14, 55]. Unfortunately, panoptic segmentation
has not been fully explored for maritime perception, primar-
ily due to the lack of a diverse, publicly available, curated
panoptic dataset.

Several maritime evaluation [37, 3, 5] and training [4,
15] datasets have been proposed, as shown in Table 1. How-
ever, a common drawback of the major evaluation datasets
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is that the dynamic obstacles are annotated only with bound-
ing boxes, limiting the evaluation capability. Additionally,
the current segmentation training datasets [4, 15] are mod-
est in size and diversity, and the only reported RGB-based
maritime panoptic dataset [38] is private and cannot be uti-
lized by the community. Moreover, the scene diversity in
individual datasets is fairly low, since they are all captured
in limited geographic locations, which hampers the devel-
opment of robust maritime obstacle detection methods ca-
pable of handling general maritime environments.

We address the aforementioned drawbacks by proposing
the first maritime panoptic obstacle detection benchmark.
Our major contribution is the Lakes Rivers and Seas (LaRS)
dataset (see Figure 1). LaRS surpasses existing datasets
in terms of diversity, obstacle types and acquisition condi-
tions. The dataset is composed of over 4000 key frames
with panoptic labels for 3 stuff and 8 thing categories, and
19 global scene attributes. Each key frame is equipped with
the preceding nine frames to facilitate the development of
methods that exploit temporal texture. To ensure equal at-
tribute distribution, the training, validation, and test splits
were carefully constructed, and we have implemented an
online evaluation server to mitigate test-set overfitting.

In addition to the LaRS dataset, our second contribution
is the analysis of 19 recent semantic segmentation networks
and 8 panoptic segmentation networks. We highlight sev-
eral limitations of these methods and identify opportunities
for their improvement. The dataset, benchmark, and evalua-
tion toolkit will be publicly released, to enable the research
community to utilize and build upon our work.

2. Related Work
Maritime obstacle detection. The early works in
camera-based obstacle detection include statistical seman-
tic segmentation methods [26], handcrafted saliency estima-
tion [6], background subtraction [36] and stereo reconstruc-
tion [48, 33]. These methods, however, typically fail on
mirroring, glitter and other visual ambiguities. The general-
purpose CNN-based object detectors [39, 32, 5] have shown
a much better resilience, but do not cope well with long-
tail distribution object types and cannot address background
static obstacles.

The current dominant line of research stems from the
early statistical method [27], which proposed segmenting
the scene into navigable and non-navigable regions (i.e.,
water and obstacles), thus jointly addressing dynamic and
static obstacles. Several works [7, 4] have shown that se-
mantic segmentation networks from the AGV domain un-
derperform in the maritime setup and a number of maritime-
specific segmentation networks have been proposed since,
most notably [42, 2, 12, 51]. A recent work [57] proposed
exploiting the temporal texture to address reflections, while
several works considered alternative visual modalities such

Classes

Dataset Frames T Env. Ann. St. Th. Im.

MODD [26] 4454 - S B 1 2 -
MODD2 [3] 11,675 - S B 1 2 -
SMD [37] 16,000 - S B 1 1 -
MODS [5] 8175 9 S B 1 3 -
FloW-Img [16] 2000 - L , R B - 1 -

Waterline [42] 400 - L , R S 2 - -
Tamp-WS [44] 600 - L , R S 2 - -
USVI-WS [15] 700 - L , R S 2 - -
ROSEBUD [28] 549 - R S 7 - -
MaSTr1325 [4] 1325 - S S 4 - -
MaSTr1478 [57] 1478 5 L , R , S S 4 - -

MarPS-1395 [38] 1395 - S P 3 3 -
LaRS 4006 9 L , R , S P 3 8 19

Table 1: Comparison of RGB-based maritime obstacle de-
tection datasets in the number of annotated frames (Frames)
and temporal context frames (T), environment types (Env.),
number of stuff (St.), thing (Th.) and image-level (Im.)
classes. Grayed out datasets are not publicly available.
Environments: L - lake, R - river, S - sea. Obstacle labels:
B - bounding box, S - semantic seg., P - panoptic seg.

as thermal imaging [40, 34]. [38] reported some success
of a maritime panoptic ship and buoy detection network on
a private RGB dataset. Recently the Maritime Computer
Vision (MaCVi) initiative has been introduced [22] with the
goal of uniting the community and moving the field towards
common goals. Notably, it features USV-based obstacle
detection and segmentation challenges with several teams
contributing approaches surpassing the previous state-of-
the-art.

Maritime datasets. The existing RGB maritime obsta-
cle detection datasets are summarized in Table 1. Several
datasets annotate only dynamic obstacles using bounding
boxes and often focus on a specific class of objects such
as ships (SMD [37]) or floating waste (FloW-IMG [16]).
MODD [26] and MODD2 [3] feature more diverse dynamic
obstacles annotated by bounding boxes and annotate the
static obstacles by lines separating them from the water.
A recent evaluation-only dataset MODS [5] surpasses its
predecessors in the number of annotated obstacles and pro-
poses an evaluation protocol for both object detection- and
segmentation-based maritime methods. The evaluation em-
phasizes performance aspects important for USV naviga-
tion. Two maritime datasets have been recently released in
the robotics domain [19, 1], but are not annotated for obsta-
cle detection.

Several segmentation-oriented datasets have been pro-
posed. A training dataset MaSTr1325 [4] is captured in a
maritime environment and annotated with per-pixel labels
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for water, obstacle and sky. Several smaller datasets follow-
ing the same annotation protocol (Waterline [42], Tampere-
WaterSeg [44] and USVInland-WS [15]) were captured
on inland waters, where reflections are more commonly
present due to calmer waters. ROSEBUD [28] extends the
number of segmentation classes, but is among the small-
est datasets. Recently MaSTr1478 [57] temporally ex-
tended [4] with preceding frames and included additional
153 images from inland environments featuring scenes with
strong reflections. This is currently the largest maritime
segmentation training dataset for obstacle detection. Only
two panoptic maritime obstacle detection datasets have
been published: MarPS-1395 [38] and MassMIND [34].
However, MarPS-1395 is not publicly available and Mass-
MIND addresses thermal imaging only.

In short, existing public maritime datasets either lack an-
notations for panoptic obstacle detection or are too small
for training and testing modern deep learning methods. Fur-
thermore, they lack scene diversity since they are recorded
at a single geographic location. The LaRS dataset, which
we present next, overcomes these limitations and fills the
gap to enable the development of the next generation of
maritime obstacle detection methods.

3. LaRS: Lakes Rivers and Seas dataset
A wide range of sources was considered to ensure the vi-

sual diversity of LaRS.Specifically, we (i) collected scenes
from public online videos featuring various activities cap-
tured from boats around the world, (ii) recorded new se-
quences in a number of different geographic locations our-
selves and (iii) included the most challenging scenes from
existing maritime datasets.

The collection of public videos was guided using search
prompts related to underrepresented scenes in the existing
datasets. This includes canals (e.g. ”canal tour”), exotic lo-
cations (e.g. ”tropic boat tour”, ”polar kayaking”), crowded
scenes (e.g. ”boat parade”), strong reflections (e.g. ”still
lake”), and poor visibility conditions (e.g. ”boat ride in the
rain”, ”night-time boat ride”). At least one key frame was
extracted from each of the collected 396 sequences, to en-
sure visual diversity. In addition, a state-of-the-art obsta-
cle segmentation network [2] on the collected sequences to
identify additional difficult key frames. Namely, we manu-
ally inspected the predicted segmentation and included ex-
amples with failures such as false negative obstacle segmen-
tation and false positives on reflections to increase the dif-
ficulty level. In this way, a set of 897 representative key
frames spanning diverse and challenging scenes was se-
lected.

Next, we manually recorded videos at various locations
on lakes, rivers and seas. From these, we identified 494
challenging sequences, and using the same process as for
online videos, we identified 1354 diverse and challenging

Source Sequences Key Frames

In-house 494 1354 (33.8 %)
Web videos 396 897 (22.4 %)
MaSTr1325 [4] - 1323 (33.0 %)
USV Inland [15] 29 211 (5.3 %)
MIT Sea Grant [19] 35 122 (3.0 %)
SMD [37] 32 99 (2.5 %)

Table 2: LaRS data sources with number of the sourced se-
quences, the number of selected frames and their percentage
in the final dataset.

key frames.
We reviewed sequences from existing maritime datasets

spanning different tasks [37, 15, 19] and selected 96 of the
most challenging sequences – of these, 432 key frames were
selected. We also included 1323 frames from the major
USV-oriented segmentation training dataset [4]. The col-
lection process thus yielded a set of 4006 key frames. The
contributions of individual data sources to the final set are
summarized in Table 2.

Following [57], to facilitate future development of de-
tection methods that might exploit the temporal texture, we
equipped all 4k key frames with the preceding 9 frames.The
total number of images in LaRS is thus over 40k. Faces
were de-identified in all frames by running a face detector
and blurring, followed by manual inspection.

Dataset annotation. All 4k selected key frames were
manually annotated with per-pixel panoptic labels by a pro-
fessional labeling company. In particular, water, sky and
static obstacles like shores and piers were annotated as stuff
classes, while the dynamic obstacles instances were seg-
mented and classified into 8 different object categories (see
Figure 3): boat, row boat, paddle board, buoy, swimmer,
animal, float and an open-world other class to cover the re-
maining obstacles. Following a standard practice [29] group
labels were used to group multiple hard-to-delineate neigh-
bouring instances of the same category. Regions that could
not be reliably manually segmented were labeled with the
ignore class. Global attributes were assigned to key frames,
to indicate environment type, illumination conditions, pres-
ence of reflections, surface roughness and scene conditions.
Examples of scenes corresponding to the 19 global attribute
labels are shown in Figure 2.

Annotation correctness was further analyzed to ensure
the highest quality of the dataset. In the first pass, state-of-
the-art semantic segmentation and panoptic segmentatation
methods were trained and run on the entire dataset to iden-
tify major annotation errors. Visual inspection of large FP
and FN predictions revealed annotation errors in 210 im-
ages, which were manually corrected. Finally, we manually
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Environment Illumination
Day-like

Reflections Surface Conditions

Dawn/dusk-like

Night-like

None

Moderate

Heavy

Still

Disturbed

Rough

Under-exposure Over-exposure

Sun glitter Dirty lens

Fog Rain

Wakes Plants/debris

River-like 1134 28.3% 3849 96.1%

111 2.7%

46 1.1%

1937 48.4%

1912 47.7%

154 3.8%

303 7.6% 614 15.3%

263 6.6%

298 7.4%

306 7.6%

44 1.1%

70 1.7%

23 0.6%

105 2.6%

3680 92.1%

10 0.3%

2871 71.7%Sea/lake-like

Figure 2: LaRS frames are labeled with 19 global attributes relevant for navigation. Mutually exclusive and mutually non-
exclusive groups are indicated in blue and green, respectively. The numbers indicate the amount of frames in the dataset.

Boat/ship
general boat/ship category
14570 (69.4%)

Buoy
buoy-like objects on water
2570 (12.2%)

Other
all other dyn. obstacles
1044 (5.0%)

Row boat
small rowing boats
879 (4.2%)

Swimmer
people in the water
770 (3.7%)

Animal
animals (e.g. ducks)
765 (3.6%)

Paddle board
boards, surfs (w/ user)
343 (1.6%)

Float
floating platforms
48 (0.2%)

Figure 3: Statistics of dynamic obstacle classes in LaRS
(left) with respect to their size (right).

inspected all ground truth instance labels of the dynamic
obstacles and identified and corrected approximately 3600
annotation errors. The statistics of the final dynamic obsta-
cle categories their instance distribution by size are shown
in Figure 3.

Dataset evaluation splits. The dataset was split into
training (65 %), validation (5 %) and test (30 %) sets. To
prevent overfitting, we made sure there was no overlap be-
tween the sets, i.e., that all key frames extracted from a sin-
gle sequence are contained within the same set. We also en-
sured that the distribution of the resolution, reflection levels
and scene types is similar across the dataset splits. This was
done by computing histograms over the aforementioned
properties within each set and computing the Hellinger dis-
tances between all three pairs of image sets. A randomized

search was then applied to create splits that minimized the
average Hellinger distance. The training and test splits will
be publicly released along with the ground truth. For the
test set, only the frames will be released, while the ground
truth is withheld and an evaluation server has been set-up to
provide automated and unbiased evaluation.

4. Evaluation protocol

The methods are trained on the training set, the valida-
tion set is used for stopping criterion and the performance is
evaluated on the test set. The evaluation protocol includes
two tasks: (i) the classical semantic-segmentation-based ob-
stacle detection and (ii) panoptic-segmentation-based obsta-
cle detection. The respective performance measures are de-
scribed next.

4.1. Semantic segmentation performance measures

The standard maritime obstacle detection evaluation pro-
tocol MODS [5] is applied to analyze the methods based on
semantic segmentation. This protocol considers three se-
mantic classes: water, sky and obstacle. The first two are di-
rectly obtained from the ground truth panoptic labels, while
the last is obtained by combining all dynamic and static ob-
stacle annotations. In addition to MODS domain-specific
primary measures, we also compute the mean intersection-
over-union (mIoU), a commonly used measure in general
semantic segmentation [29, 18, 21].

The MODS primary performance measures are (i) water-
edge estimation accuracy computed from boundary be-
tween water and static obstacles and (ii) dynamic obstacle
detection accuracy. The ground truth panoptic labels sim-
plify the water-edge estimation accuracy measure, which
we define as per-pixel classification accuracy evaluated
within a d pixels thick region around the ground-truth water
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edge, Gd, i.e.,

µ =
1

|Gd|
∑

(p,g)∈Gd

[p = g], (1)

where p and g are predicted and ground-truth labels of pix-
els in Gd.

The MODS dynamic obstacle detection accuracy is de-
termined by precision (Pr), recall (Re) and F1 score calcu-
lated in correspondence to the practical use of the methods.
The method iterates over all ground truth dynamic obsta-
cles. If the coverage of the predicted obstacle pixels ex-
ceeds θ = 0.7, the dynamic obstacle is counted as a true-
positive, otherwise it counts as a false-negative. The num-
ber of false-positives is estimated as the number of predicted
obstacle segments (computed by connected components) in
the ground-truth water mask. Please see [5] for further de-
tails.

4.2. Panoptic segmentation performance measures

Standard panoptic performance evaluation measures [24]
are used: segmentation quality (SQ), recognition quality
(RQ) and the combined panoptic quality (PQ):

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP|︸ ︷︷ ︸
segmentation quality (SQ)

× |TP|
|TP|+ 1

2 |FP|+ 1
2 |FN|︸ ︷︷ ︸

recognition quality (RQ)

.

(2)
The individual metrics are also reported separately for thing
and stuff classes indicated by superscripts (·)Th and (·)St.

It should be noted that, from the perspective of obstacle
detection, additional instance detections on static obstacles
are not considered false positives. Additionally, misclassi-
fication of an obstacle type is considered less critical than
failing to detect the obstacle altogether. Therefore, we also
report obstacle-class-agnostic variants of the metrics, which
ignore the class label, denoted by (·)Tha .

5. Experimental results
5.1. Semantic segmentation methods

We considered 19 methods. Three single-frame state-
of-the-art maritime-specific obstacle detection methods
(WaSR [2], WODIS [12], IntCatchAI [42]) and several gen-
eral semantic segmentation methods, i.e., four FNC-style
classical methods (FCN [31], UNet [41], DeepLabv3 [10],
DeepLabv3+ [11], PointRend [25], KNet [56]), three mod-
ern lightweight convolutional methods (BiSeNetv1 [53],
BiSeNetv2 [52], STDC [20]) and two transformer-based
methods (SegFormer [50], Segmenter [43]). The selec-
tion also includes two recent temporal semantic segmen-
tation methods from the AGV domain (CSANet [54],
TMANet [47]) and one from maritime domain (WaSR-
T [57]).

Architecture Bbone µ Pr Re F1 mIoU FPS GMacs

UNet [41] S5 75.7 8.6 70.6 15.4 90.1 5.2 1621
FCN [31] RN-50 76.8 50.1 68.7 57.9 92.6 5.2 1582
FCN [31] RN-101 77.4 59.0 68.5 63.4 95.0 3.4 2203
DeepLabv3 [10] RN-101 77.5 61.1 72.0 66.1 95.2 2.4 2779
DeepLabv3+ [11] RN-101 77.8 57.8 71.7 64.0 95.4 3.3 2031
PointRend [25] RN-101 77.5 60.6 71.1 65.4 94.9 8.7 521
BiSeNetv1 [53] RN-50 73.3 31.6 66.3 42.8 92.2 10.1 792
BiSeNetv2 [52] - 73.9 48.2 63.2 54.7 93.5 51.1 98.4
STDC1 [20] - 75.6 58.6 65.3 61.8 93.6 72.9 67.7
STDC2 [20] - 76.5 64.3 64.3 64.3 94.5 56.5 94.1
SegFormer [50] MiT-B2 78.6 63.8 77.5 70.0 96.8 5.6 144
Segmenter [43] ViT-B 72.2 51.6 59.5 55.2 95.1 2.6 556
KNet [56] Swin-T 78.8 67.6 80.4 73.4 97.2 4.2 1973

WaSR [2] RN-101 71.0 59.9 63.4 61.6 96.6 16.5 399
WODIS [12] RN-101 63.0 38.8 61.1 47.5 85.7 35.4 61.8
IntCatchAI [42] - 62.4 40.6 50.2 44.9 45.6 6.7 4.7

WaSR-T [57] RN-101 71.1 59.7 64.7 62.1 96.7 11.1 579
CSANet [54] RN-101 63.7 47.2 58.2 52.1 94.2 2.1 3912
TMANet [47] RN-50 77.1 52.5 73.4 61.2 94.1 0.8 5193

Table 3: Performance of single-image state-of-the-art gen-
eral (top), maritime (middle) and temporal (bottom) seman-
tic segmentation methods on LaRS. Gold, silver and bronze
indicate the top three scores in each category.

Figure 4: Segmentation-based obstacle detection rate (left)
and number of false positives (right) w.r.t. the obstacle size.

WaSR [2], WaSR-T [57], CSANet [54], TMANet [47],
WODIS [12] and IntCatchAI [42] were trained using their
official configurations. All other methods were trained us-
ing MMSegmentation [17] with their Cityscapes configura-
tions adapted to LaRS. The methods were trained on 2 x
NVIDIA V100 GPUs with a batch size of 8. Runtimes were
estimated in frames per second (FPS) on a single GPU.

The results are reported in Table 3. KNet [56] achieves
the best water-edge accuracy (78.8 %), followed by Seg-
Former [50] (-0.2%), which implies a very good segmen-
tation accuracy. This is supported by mIoU, which ranks
these two methods at the top. More importantly, these two
methods also outperform all other methods in F1 score by a
large margin, indicating very good dynamic obstacle detec-
tion performance. Specifically, KNet ranks first, followed
by SegFormer (-3.4% F1 score) and DeepLabv3 [10] (-7.3%
F1 score).

Note that the best-performing methods are relatively
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Figure 5: Semantic segmentation detection performance (F1) with respect to global attributes.

Input frame UNet BiSeNetv2 STDC2 WaSR-T SegFormer KNet

Figure 6: Qualitative semantic segmentation results on LaRS. Sky and water classes are shown in purple and blue, respec-
tively. TP, FN and FP obstacle predictions are shown in white, red and yellow, respectively, while black indicates the ignore
region.

slow (∼ 4-5 FPS) even on high-end hardware and may not
be suitable for real-world applications with often limited
compute power. Alternatively, STDC1 and STDC2 [20]
demonstrate exceptional efficiency (∼ 50-70 FPS), while in-
curring a performance drop of 9-10% in terms of F1 score
compared to the top performer KNet.

To further probe the performance of the best-performing
and fastest methods, we analyze the detection rate (Re) and
the number of FP detections with respect to the obstacle
size in Figure 4. The largest performance variance between
methods is observed for small obstacles. This is where
KNet and SegFormer most substantially stand out from the
rest, which is also confirmed by qualitative examples in Fig-
ure 6, particularly on thin (third row) and compact small

obstacles (fourth row).

Interestingly, compared to single-frame methods, the
temporal methods do not appear to benefit from the addi-
tional temporal context. For example, the performance of
temporal WaSR-T [57] is almost on par (+0.5% F1) with
its single-frame counterpart WaSR [2]. Since the prior
work [57] on a smaller training set indicated a clear advan-
tage of WaSR-T over WaSR, we speculate that the observed
reduced difference is due to the increased size and larger
diversity of the LaRS training set.

Figure 5 investigates performance with respect to scene
attributes. Overall, river-like environments are more chal-
lenging compared to sea/lake-like environments, which
may be attributed to a larger quantity of reflections and
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PQ (%) RQ (%) SQ (%)

Architecture Backbone All Th Tha St All Th Tha St All Th Tha St FPS GMacs

Panoptic Deeplab [13] ResNet-50 34.7 13.4 33.0 91.4 40.3 19.3 46.3 96.2 69.5 60.0 71.3 94.9 6.0 339.3
Panoptic FPN [23] ResNet-50 40.1 21.7 35.5 89.3 46.9 28.6 45.9 95.8 73.5 66.1 77.3 93.1 21.7 471.4
Panoptic FPN [23] ResNet-101 38.7 19.7 35.5 89.4 45.0 26.1 46.0 95.5 73.6 66.1 77.1 93.5 16.7 627.2
MaX-DeepLab [49] MaX-S 31.9 9.5 19.2 91.7 36.1 13.4 26.0 96.6 71.3 62.5 73.7 94.8 3.7 -
Mask2Former [14] ResNet-50 37.6 17.0 27.9 92.4 43.7 23.6 37.6 97.3 71.3 62.4 74.2 95.0 10.6 464.2
Mask2Former [14] ResNet-101 37.2 16.3 29.2 92.8 43.0 22.7 38.9 97.1 71.4 62.3 75.0 95.5 5.7 620.0
Mask2Former [14] Swin-T 39.2 18.8 34.0 93.7 45.5 25.8 45.2 98.1 72.2 63.5 75.2 95.4 5.4 470.7
Mask2Former [14] Swin-B 41.7 21.8 33.6 94.7 48.5 29.7 44.6 98.5 78.2 71.5 75.3 96.2 4.8 948.0

Table 4: Panoptic quality (PQ), recognition quality (RQ) and segmentation quality (SQ) reported overall (All) and with
respect to stuff (St) and things (Th), with Tha denoting class-agnostic score. The inference speed is reported in FPS.

Architecture Backbone µ F1 mIoU

Panoptic Deeplab [13] ResNet-50 73.5 64.6 95.4
Panoptic FPN [23] ResNet-50 67.2 58.9 93.5
Panoptic FPN [23] ResNet-101 66.9 58.1 93.3
MaX-DeepLab [49] MaX-S 72.7 60.2 95.4
Mask2Former [14] ResNet-50 75.1 54.9 95.4
Mask2Former [14] ResNet-101 75.8 53.2 95.6
Mask2Former [14] Swin-T 76.2 56.7 96.8
Mask2Former [14] Swin-B 77.4 71.1 97.6

Table 5: Performance of panoptic methods under the se-
mantic segmentation setup.

background variety of the former. The methods are fairly
robust to dusk scenes, with a moderate performance in-
crease compared to daytime scenes. However, the perfor-
mance substantially drops on night-time scenes. Interest-
ingly, a performance advantage of the temporal WaSR-T
is observed over the single-frame counterparts, which indi-
cates the potential for exploiting temporal context in situa-
tions with significant visual ambiguity. Moreover, all meth-
ods are fairly robust to moderate reflections, while strong
reflections lead to substantial performance drops. Of the
different scene conditions, the methods perform best on sun
glitter, fog, and wakes, while the worst performance is ob-
served in the presence of rain, dirty lenses, and plants/de-
bris.

5.2. Panoptic segmentation methods

Several panoptic methods with various backbones are
considered: Panoptic Deeplab [13] and Panoptic FPN [23]
as members of conv-net family with strong baseline per-
formance on ground-vehicle-related tasks, and two state-of-
the-art representatives of transformer-based mask classifi-
cation methods MaX-Deeplab [49] and Mask2Former [14].
The methods were trained on 2 x NVIDIA V100 GPUs with
a batch size of 4.

Results in Table 4 indicate that the top PQ performance
is achieved by Swin-B-based Mask2Former [14] (41.7 %),
followed by Panoptic FPN [23] (-1.6 %) and Swin-T-based
Mask2Former (-2.5 %). Overall, the methods achieve rel-
atively low PQ scores. Comparing PQTh and PQSt, we ob-
serve that the static obstacles (i.e., stuff class) are well de-
tected (PQSt = 94.7% for the best method) but methods
struggle the detection of dynamic obstacles (i.e., things).

Specifically, the recognition quality for dynamic obsta-
cles of the best method is only RQTh = 27.7%. High RQTh

requires accurate detection obstacles as well as correct clas-
sification. Ignoring the classification errors (RQTha ) sub-
stantially increases this score (to 44.6 %), which confirms
that a major source of errors is obstacle misclassification.
We thus plot the confusion matrix between predicted and
GT instance classes for the top performing method (Swin-
B-based Mask2Former [14]) in Figure 8 and observe signif-
icant confusion between boat/ship, row boats, paddle board
and float categories. The objects from the rarer classes are
often predicted as the more common boat/ship category. In
addition, similarly to what we observed in semantic seg-
mentation methods, small obstacles such as buoys, swim-
mers and animals are often missed and segmented as water.
It should be noted that modern panoptic methods use a void
label for regions without sufficiently confident segment pre-
dictions. Void labels account for approximately 24% of all
predictions on dynamic obstacles.

Another source of errors is the grouping of objects into
a single detection and the decomposition of a single in-
stance into several detections. The qualitative examples
in Figure 7 show that incorrect object grouping/splitting is
particularly acute in dense scenes (row 3). Interestingly,
the best-performing method Mask2Former sometimes in-
correctly groups even well-separated instances (rows 2 and
3).

Note that labeling several small water regions as static
obstacles substantially affects robotic navigation in prac-
tice, since the USV might frequently stop to avoid a possible
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Figure 7: Qualitative panoptic segmentation results. Individual instance detections are outlined with different colors. Void
predictions are colored black. Common errors are indicated with white text.
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Figure 8: Confusion matrix of ground-truth dynamic obsta-
cles for Mask2Former with the Swin-B backbone.

collision. This is not properly reflected in panoptic perfor-
mance measures, which would decrease only slightly. Sim-
ilarly, joining two nearby obstacles into a single instance is
not detrimental from a practical obstacle avoidance stand-
point, but can significantly reduce the panoptic measures.

We thus also evaluate the methods with semantic seg-
mentation measures from Section 4.1, by assigning all de-
tected static and dynamic obstacles and void predictions to

the obstacle class. Results in Table 5 reveal that the best
panoptic methods perform on par with state-of-the-art se-
mantic segmentation methods under this setup. For exam-
ple, the best panoptic method (Mask2Former with Swin-
B backbone) lags behind the best semantic segmentation
method (Table 3) by only -2.3 % in F1 score. This presents a
clear opportunity for panoptic methods, whose performance
would greatly improve also at the panoptic level by properly
addressing the instance detection and separation capability.

5.3. Difficulty level of LaRS

We conduct an experiment to demonstrate the difficulty
level of the LaRS benchmark. We train the best performing
semantic segmentation method KNet on some of the largest
and most diverse existing maritime segmentation datasets
MaSTr1325 [4], MaSTr1478 [57] and ROSEBUD [28] and
evaluate them on the LaRS test set. Results are presented in
Table 6.

We observe a severe performance drop when training on
previously available datasets. These datasets are limited
in nature and lack the variety required to tackle the LaRS
benchmark. For example MaSTr1325 only contains mar-
itime scenes, while ROSEBUD only contains fluvial scenes.
Furthermore, even combining all the examples from related
datasets for training the network is not enough and leads
to subpar performance compared to LaRS training (F1 drop

20311



Train dataset µ Pr Re F1 mIoU

MaSTr1325 62.2 28.2 69.9 40.2 87.5
MaSTr1478 72.5 52.1 67.0 58.6 93.6
ROSEBUD 64.5 30.1 57.2 39.5 81.6
MaSTr1478 + ROSEBUD 72.2 55.0 67.5 60.6 92.9

LaRS 78.8 67.6 80.4 73.4 97.2

Table 6: Performance of KNet semantic segmentation on
the LaRS test set, when trained with different existing mar-
itime segmentation datasets.

of 12.8 %). This suggest that the current datasets are just
not representative enough for general maritime perception
and outlines the need for large, diverse datasets like LaRS
to move the field forward.

6. Conclusion
We presented the first maritime panoptic obstacle detec-

tion benchmark LaRS, containing scenes from lakes, rivers,
and seas. LaRS is the largest dataset of its kind and ex-
ceeds other maritime obstacle detection datasets in terms of
the diversity of recording locations, acquisition conditions,
obstacle appearances, number of categories and annotation
detail. Each key frame is annotated by panoptic segmenta-
tion labels, 19 global attributes and additionally equipped
with several preceding frames to enable the development of
methods exploiting temporal context.

Results for 27 semantic- and panoptic-segmentation-
based detection methods reveal that semantic-segmentation
methods slightly outperform the panoptic counterparts in
overall segmentation quality. We identify several opportuni-
ties for improvement of the methods, notably improving the
instance separation of panoptic methods and better exploita-
tion of the temporal context in scenes with significant am-
biguity. The dataset, tookit and the online evaluation server
will be publicly released to foster further advancements in
maritime obstacle detection.

Acknowledgments
This work was supported by the Slovenian Research

Agency programs P2-0214 and P2-0095, and project J2-
2506.

References
[1] Ola Benderius, Christian Berger, and Krister Blanch. Are we

ready for beyond-application high-volume data? The Reeds
robot perception benchmark dataset, Sept. 2021. 2

[2] Borja Bovcon and Matej Kristan. WaSR–A Water Segmenta-
tion and Refinement Maritime Obstacle Detection Network.
IEEE Transactions on Cybernetics, pages 1–14, July 2021.
1, 2, 3, 5, 6

[3] Borja Bovcon, Rok Mandeljc, Janez Perš, and Matej Kris-
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