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Abstract

We present a novel method for automatic vectorized
avatar generation from a single portrait image. Most exist-
ing approaches that create avatars rely on image-to-image
translation methods, which present some limitations when
applied to 3D rendering, animation, or video. Instead, we
leverage modality-specific autoencoders trained on large-
scale unpaired portraits and parametric avatars, and then
learn a mapping between both modalities via an align-
ment module trained on a significantly smaller amount of
data. The resulting cross-modal latent space preserves fa-
cial identity, producing more visually appealing and higher
fidelity avatars than previous methods, as supported by our
quantitative and qualitative evaluations. Moreover, our
method’s virtue of being resolution-independent makes it
highly versatile and applicable in a wide range of settings.

1. Introduction
An avatar can be defined as a digital representation or

virtual character by which people represent themselves and
other beings in a virtual platform or community [4]. Such a
representation has been ubiquitous in our daily life, from
personal use on social media to marketing strategies by
companies [23]. Given an image and a style, the task is
to generate a new representation that successfully conveys a
given style and content while preserving the person’s iden-
tity as much as possible.

Nowadays, avatars are typically created in two ways.
First, it can be created by skilled artists. To streamline
the avatar creation, many artists use predefined facial pre-
sets from a library and combine them part by part to obtain
the final avatar (e.g., the “manual” results from [33]). This
scheme is commonly used for messaging and video games
avatars. However, it can be a tedious process that frequently

Figure 1. Examples images from a test set (a), parametric avatars
generated by our method (b).

alters the subject’s identity due to the limited predefined
assets. In contrast, automatic image generation has been

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

520



employed as a time-efficient and large-scale alternative for
this task. Those methods typically focus on caricature gen-
eration [3, 29, 7, 17, 11, 35]. While such methods could
translate real photography to an avatar or caricature, they
all operate in image space, which poses some limitations
when used in virtual environments or for animations.

Parametric vector graphics propose a solution that over-
comes the drawbacks of static images to some extent. In
particular, Wolf et al. [33] propose a tied output synthesis
network to infer parameters from generated image avatars,
but their method works with very simple datasets like face
emoji [31], which avoids the matter of stylization. Hu et
al. [9] and Shi et al. [27, 28] focus on 3D photorealistic-
looking avatars. However, these works do not focus on cap-
turing a specific style, nor producing 2D parametric avatars.

In this paper, we propose an alternative to image-based
avatars that enables animations and video compositing
without losing quality or resolution. To do so, we utilize a
parametric representation to depict avatars; that is, we em-
ploy a set of parameters that define each facial attribute.
To train such an approach in a supervised way requires
a dataset of paired portraits and their respective avatars,
which is prohibitively expensive to obtain. To address this,
we present a weakly-supervised novel cross-modal align-
ment framework that translates rich representations from
the portrait domain to the parametric avatar domain. To alle-
viate the lack of paired data, we first learn modality-specific
latent spaces from large-scale unpaired data. Once such la-
tent spaces are learned, we match their latent representa-
tions by a cross-modal module trained on a small amount
of paired data, which preserves the facial identity from the
portrait and the style of the parametric avatar. As a result,
our framework is able to translate identity features in image
space to parametric space, and at the same time, apply style
features from the original vector-based parametric space.

The goal of this work is to propose a proficient approach
for converting individual images into parametric avatar rep-
resentations that accurately preserve the individual’s iden-
tity. In summary, our contributions are two-fold:

• A flexible parametric representation that encodes fa-
cial attributes, enabling the representation of a wide
range of human appearances.

• A novel cross-modal framework that, when provided
an input image, generates higher quality avatars with
better preservation of the individual’s identity than pre-
vious methods.

2. Related Work
Handcrafted priors. Early caricature and avatar methods
were procedural algorithms where hand-designed rules pro-
duced an exaggerated representation of a portrait, either by
displacing the facial vertices by a constant factor from the

average face [2], exaggerating the size of the facial compo-
nents [24], using facial feature nodes [20], or using an inter-
active feature grid for caricaturization [8]. The use of key
anthropomorphic measurements was proposed by Varshney
et al. [32], and later Le et al. [16] use exaggerated an-
thropometric rations between facial components to manipu-
late a given image. These methods present some limitations
in style variation and identity preservation, mainly due to
their predesigned rules. This led to an early work using K-
Nearest Neighbors [19] where a shape exaggeration module
is trained on a small paired dataset of facial keypoints on
both original and caricature images.

Learned priors. Many recent methods leverage deep
learning algorithms that aim at an end-to-end image to
avatar generation [3, 17, 29, 7, 11, 35]. Most approaches use
a common image-to-image framework, in which both input
and output exist in image space. Within this framework,
CycleGAN [36], StarGAN and StarGAN v2 [5, 6], UNIT
[21], MUNIT [10] or U-GAT-IT [15] are common strate-
gies to achieve a desired stylized output. However, these
approaches do not explicitly disentangle facial identity from
caricature style, nor explicitly model face exaggerations. To
address this, some approaches use warping modules. Dense
fields are used in [34] to control exaggerated facial shapes
without changing the input style into a caricature. Gong
et al. [7] use flow estimation and differentiable warping to
generate cartoons. Other work uses point-based deviations
to achieve similar results [29, 17].

Generative imaging. More recent techniques leverage
newer models such as StyleGAN [12, 13] to explicitly pre-
serve identity [35] in an unsupervised manner. Toonify [26]
creates caricatures by swapping layers of two StyleGANs
trained on real images and caricatures. Jang et al. [11] ex-
tend this idea by introducing shape exaggeration blocks.

Weak supervision. A recent line of work based on few-
shot and transfer learning is used for caricature generation
by Li et al. [18], where they achieve successful face trans-
lations by adapting a pretrained GAN via the use of weight
regularization-based losses. Ojha et al. [25] improve on
this work by using a pretrained StyleGAN and introducing
cross-domain correspondence losses.

Parametric methods. There exist very few methods in
the literature that try to resolve a cross-modal image-to-
parametric avatar translation. Tied Output Synthesis (TOS),
introduced by Wolf et al. [33], learns a mapping from a por-
trait to both a vector in parameter space and the correspond-
ing image generated by this vector, handling the issue of
domain adaptation. While this approach can generate emo-
jis, the generated avatars lack identity preservation due to
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Figure 2. Avatar Parameterization (right) and training samples
(left). We encode the avatar as a vector of 629 parameters, which
include point coordinates (represented as dots in the avatar above)
which define spline curves, color, and line-weights of facial fea-
tures. This vector is rendered by a non-differentiable vector graph-
ics engine.

their renderer. Moreover, their method was tested on a sim-
ple face emoji dataset [31], and might need to be adapted to
generate more complex avatars. Shi et al. [27] introduce a
face-to-parameter style-transfer based method to create 3D
realistic avatars. This method, however, is based on a linear
PCA that requires a slow optimization step. In a follow-
up [28], the same authors sidestep the optimization using
face segmentation and recognition. However, they produce
3D realistic-looking models which convey their own artistic
style, probably unamenable to new styles.

Our parametric method borrows ideas from the few-shot
and domain adaptation fields. Unlike previous works, we
focus on a 2D avatar representation that is easily transfer-
able to 3D, and perform latent space translation, avoiding
bottlenecks such as differentiable renderers. Moreover, to
overcome the lack of paired data, we adopt ideas from do-
main adaptation methods, that is, we first leverage larger
amounts of unpaired data to learn “expert” models, to then
perform a cross-modal translation under the guidance of
such models with weakly-supervised data.

3. Data

In the following, we describe our parametric system to
encode facial features and our dataset.

Parametric System. Our avatar representation is charac-
terized by its flexibility and high level of expressiveness,
enabling it to accurately depict the vast diversity of fa-
cial features across different regions of the world. Our
parametric system is specifically designed to capture the
defining characteristics of any face using a minimal num-
ber of parameters. Each avatar is parameterized by a 629-
dimensional vector ȳ ∈ R629, which defines x, y coordi-
nates, color, and line weights for all facial features, includ-
ing lips, teeth, chin, eyes, and skin color, among others.
A detailed breakdown of these parameters can be found
in the supplementary material. The resulting avatar vec-
tor is grouped by parameters of facial components such that
ȳ := {ȳeyes, ȳnose, ȳmouth, ...}, as shown in Fig. 2.

The parameters described in our work can be rendered at
any resolution without any loss of quality or clarity. This
is achieved by utilizing a vector graphics engine that cre-
ates images using mathematical equations to generate lines,
curves, and shapes, instead of pixels. Our work also demon-
strates the potential for using these parameters in animated
graphics and 3D environments. However, we acknowledge
that these applications are beyond the scope of our current
work and are discussed further in the supplemental material.

Dataset. We asked 393 volunteers of various ages and
ethnicities to provide us with selfies. Subsequently, an adept
artist was tasked with crafting avatars of the participants
through our parametric vector engine that accurately por-
trayed their identities. This results in 393 pairs of real cap-
tured portraits and their corresponding avatar parameters as
determined by the artist.

Due to the limited number of paired samples, devel-
oping a reliable avatar translation method directly on this
dataset is presently infeasible. To address this challenge,
we augment the number of paired samples using both syn-
thetic faces generated by StyleGAN and automatic augmen-
tations, such as warping, on real portraits. Specifics regard-
ing these augmentations are provided in the supplementary
material. With these augmentations, our dataset comprises
a total of 9970 paired samples.

4. Method
Our goal is to learn a cross-modality mapping between a

real image and a vector of parameters that define an avatar
version of the input image in a given style. Typically,
paired data in the form of image portrait and avatar pa-
rameters (X, Ȳ ) is limited due to their prohibitive time and
cost to obtain, and directly training this mapping leads to
overfitting issues. Moreover, to successfully learn such a
mapping, we need to overcome some challenges surround-
ing multimodal approaches, such as domain shift or align-
ment between domains [1]. To address both problems, we
first leverage larger amounts of unpaired data to learn rich
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Figure 3. Model overview. (a) Unpaired training stage: we train modality-specific networks to learn rich latent spaces. (b) Paired training
stage: we introduce our cross-modal alignment module to translate between different latent spaces to transfer key facial features to a
parametric domain.

modality-specific latent spaces, and then use a small amount
of paired data to learn a mapping F : S −→ T over lower-
dimensional latent spaces, which helps to preserve the iden-
tity of an image x and the style of a vector of parameters ȳ.

By design, we disentangle hair and accessory parameters
from the rest of the face parameters. Inspired by [9], we
allow the model to focus solely on facial structures. A sep-
arate pipeline that leverages pretrained face attributes auto-
matically retrieves the best hair and accessory parameters.

4.1. Unpaired Modality-Specific Representations

Let {xi}Ni=1 be the set of training images where x ∈ X
are images in the domain of portrait photos and {ȳi}Mj=1

the set of training avatar vectors where ȳ ∈ Y is a vector
of parameters that define an avatar. We want to find rich
lower-dimensional representations of each modality. For
this, we learn encoder-decoder networks per modality such
that a portrait encoder Es : X ∈ R3×h×w −→ S ∈ Ru,
and a vector encoder Et : Y ∈ Rv −→ T ∈ Ru take
their respective input modalities, and output latent vectors
with the same dimensionality Ru. Both, the portrait decoder
Ds : S −→ X and the vector decoder Dt : T −→ Y are
tasked to reconstruct the original, and both encoder-decoder
functions satisfy:

argmin
E,D

E[Lrec(x,D ◦ E(x)] (1)

For image modality, the reconstruction loss becomes

Lrec = |x−D ◦ E(x)|+ λpLperc, (2)

Lperc =
1

Kij

K∑
k

∑
ij

||V k
ij −W k

ij ||22 (3)

where i, j index the spatial dimensions of the feature maps
V and W , and K the extracted layers from VGG19 trained

on ImageNet [30]. For parameter vector modality, the re-
construction loss is simply Lrec = (x−D ◦ E(x))2. Both
encoder-decoder networks are trained independently in par-
allel. After training, we discard the image decoder Ds. The
image encoder is modeled by a convolutional neural net-
work, and the image decoder uses transpose convolutions to
generate an image from a latent vector. The parameter vec-
tor encoder-decoder network is defined by multilayer per-
ceptrons with non-linearity activation functions. Refer to
the supplementary material for details about the networks.

4.2. Cross-Modal Alignment

After learning rich latent spaces from our large-scale
data, the goal is to find a mapping between them. The
cross-modal network F : S −→ T takes in a feature la-
tent vector zs = Es(x) and outputs a new latent vector
zm = F (Es(x)) in the translated space, where S, T ∈ Ru.
We model F as a multilayer perceptron with one hidden
layer and non-linearity activation functions. We train F
on a weakly paired dataset in the form {xi, ȳi}Ni=1, where
xi, ȳi is the i-th tuple of paired image and parameter vec-
tor, respectively. We fix the weights of Es and Dt, perform
a forward pass through these networks, and use a recon-
struction loss Lrec = (ŷ − ȳ)2, where ŷ = Dt(F (Es(x))).
While training, F is learning an intermediate latent space
M that wants to be as close to T as possible. This trans-
lation, however, requires further regularization terms to en-
force a closer alignment between such latent spaces.

Cross-Modal Alignment Loss. To enforce an explicit
alignment between the new translated space M and the vec-
tor parameter latent space T , we can use the encoder Et to
extract the learned latent representation zt = Et(ȳ) of the
input parameter vector ȳ, and align the translated vector zm
to zt. Our new cross-modal alignment loss becomes:
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Lcm = λ1 (zm − zt)
2
+ λ2

(
1− zm · zt

||zm||||zt||

)
(4)

Weight Alignment Loss. The mapping network F tries
to project vectors into the same latent space as the target
encoder Et, a network that has been previously pretrained
on larger amounts of data, enough to learn rich representa-
tions of the inputs. Drawing inspiration from few-shot set-
tings [18], the goal of this loss is to impose a strong regular-
ization over the weights of the mapping network by taking
guidance from the weights of Et. To address the difference
in network shape between Et and F , this loss is enforced
only in the last layer F , which shares the same dimension-
ality. In simple terms, Et is treated as the expert network,
and since the last layer of F is responsible for projecting a
hidden vector into the same latent space as Et, we want F
to imitate Et as closely as possible. Our weight alignment
loss is as follows:

Lw = ||θf − θt||22 (5)

where θf and θt represent the weights of the last layer of
the mapping network F and the parameter vector encoder
Et. The final loss becomes:

L = λrLrec + λcLcm + λwLw (6)

4.3. Hair Pipeline

Hair and accessories are variable components of faces
and avatars that can be easily changed or adjusted. As such,
we model this aspect independently from the rest of the
face [9]. Some of these parameters are categorical, making
them unsuitable for regression losses. The diversity of ac-
cessories and hairstyles also yields a distribution with prop-
erties that differs significantly from facial features, posing
problems unifying the training with facial parameters. To
predict hair and accessory attributes, we rely on a pretrained
attribute regressor [14]. This function H(I) → â uses a
ResNet50 backbone to estimate attributes such as age and
hairstyle from input images. Refer to the supplementary
material for more details.

We precompute â vectors of a database of images and
avatar parameters pairs. Let xj be a query of an unseen
portrait image at inference time. To find hair and accessory
parameters, we compute âj = H(xj) and use nearest neigh-
bors to find the closest attribute vector from our database.
We then merge the hair and accessory parameters of the best
match with the facial parameters ŷj generated by our cross-
modal pipeline, as shown in Figure 5. Our hair database has
a total of 470 different hairstyles to query from.

(a) (b) (c)

Figure 4. Our method supports vector graphics formed by (a) cubic
Bezier curves, for contours and outlines, (b) polygons, for high-
lights and shadows, and (c) custom composites, for eyebrows and
hair, with colored strokes and fills.

Figure 5. Inference including hair retrieval pipeline. We use a pre-
trained attribute predictor H to pre-compute attribute vectors a of
our faces from our hair bank. We use the K-nearest neighbors
algorithm to retrieve the closest vector to a query vector â from a
bank of a vectors. d indicates smallest distance in the KNN search.

4.4. Rendering Engine

The rendering engine is responsible for translating avatar
parameters into a corresponding pixel representation. In
our implementation, we use Python, and the PIL library
as our primary drawing library. Our vector representation
is limited to a set of primitives, including cubic Bezier
curves for outlines and contours, polygons for color fill-
ing, highlights and shadows, and composites to create eye-
brows and hair, as shown in Figure 4. The renderer works
by adding layers, ordered according to facial features. For
instance, the facial structure is drawn before the eyes, just
as an artist would draw a face. Each face attribute is en-
coded as a vector of point coordinates in the x and y direc-
tions, lineweights (widths and lengths), and RGB parame-
ters. For instance, the nose of an avatar is represented by a
set of coordinate points, start and end radius, and color val-
ues: ȳnose := {(x, y)N , rs, re, R,G,B}. Our engine then
fits curves through the input x, y coordinates and applies
lineweights and colors. In order to achieve a natural stroke
effect, we taper the end points of the lines.
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4.5. Implementation Details

Unpaired Training. We first train our image and param-
eter vector autoencoders independently and in parallel un-
til convergence. For our image autoencoder, we use FFHQ
dataset [12] and our face dataset for a total of 90000 aligned
256x256 resolution faces. Our parameter vector autoen-
coder is trained on 100000 vector avatars. Note that the two
autoencoders are not related; as explained in Sec. 4.1, we
trained them on an unpaired dataset. We apply several ran-
dom augmentations on images, including Gaussian blur, ro-
tation, horizontal flips, and grayscale images. We use Adam
optimizer with β1 = 0.5 and β2 = 0.99, an initial learning
rate of 0.0002, batch size of 24 and we set λp (Equation (2))
to 0.1. We set the latent spaces to be S, T ∈ R512. All ex-
periments using our method were trained on a single Tesla
V100 GPU.

Paired Training. In this stage, we freeze the weights of
Es, Et, and Dt, and only update the weights of the map-
ping network F . We use the same optimizer configura-
tion as before, but increase the batch size to 48. We use
a learning rate scheduler on loss plateau with patience 1
and factor 0.5. We set lambdas in Equation (6) as follows:
λr = 1, λc = 1, λw = 10. In total, we have 9970 pairs of
portraits and avatar parameters, and 3995 pairs of portraits
and avatar images.

5. Experiments
In this section, we provide a quantitative and qualitative

evaluation of our method, and compare it to several state-of-
the-art methods. We train previous methods on our paired
dataset from scratch using their official implementations,
and use the default parameters. All methods are trained us-
ing a 256x256 image resolution. We then provide ablation
studies to evaluate the performance of different components
of our method, such as the impact of losses, amount of data,
and face encoders. To ensure a fair comparison, we train the
paired stage of our model with the same amount of data that
we train previous methods (3995 image-avatar pairs) when
evaluating against previous methods (Figure 6, Table 1, and
Table 2).

5.1. Comparison to State-of-the-art Methods

We evaluate our method against generic image-to-image
translation methods, a GAN adaptation method, and a re-
cent caricature method. Following [11], we choose U-GAT-
IT [15] and StarGAN-v2 [6] among image-to-image trans-
lation methods as they provide visually good results and
generate fewer artifacts than older methods. We also com-
pare our method to MSGAN-pix2pix [22], as it is designed
specifically for paired datasets. We choose a GAN adapta-
tion method [25] because our paired dataset is based on a

Table 1. Quantitative evaluation on a held-out dataset. All models
are trained on the same dataset containing 3955 avatars.

Method L1 ↓ Llpips ↓
U-GAT-IT [15] 0.3164 0.2803
GAN-Adapt. [25] 0.2558 0.3622
StarGAN-v2 [6] 0.2111 0.2135
MSGAN-pix2pix [22] 0.2059 0.3747
StyleCariGAN [11] 0.2441 0.3530
Ours 0.1864 0.1895

few thousand examples, and these methods generally pre-
vent StyleGAN-2 [13] from overfitting. Lastly, we compare
our method against a recent network specifically designed
to work on caricature generation, StyleCariGAN [11]. This
method requires 2 pre-trained StyleGANs, one trained on
real faces and the other one on caricatures or avatars. Be-
fore training this model, we train a StyleGAN-2 model on
our avatar dataset. At inference, [25, 11] require GAN-
inversion to project an input image to a latent code before
translating to the avatar domain.

In Figure 6, we present a qualitative evaluation of the
performance of several state-of-the-art methods. U-GAT-IT
exhibits a lack of consistency in preserving correct facial
structure, often resulting in squashed or deformed avatars.
This observation is further supported by the results pre-
sented in Table 2. Nevertheless, U-GAT-IT generally per-
forms well in maintaining identity, even when changing
the facial structure. StarGAN-v2, on the other hand, pro-
duces stylistically pleasing outputs with consistently well-
structured faces, but struggles with preserving identity. The
GAN Adaptation method maintains identity to a large ex-
tent, but the quality is compromised with some coloring
artifacts. StyleCariGAN generates good quality avatars,
but it lacks consistency in preserving identity. Results for
MSGAN-pix2pix are available in the supplemental.

In general, our proposed method shows superior perfor-
mance in terms of both quality and identity preservation. As
demonstrated in Figure 6, our method consistently main-
tains identity across various demographic factors, such as
age, gender and ethnicity. Our parametric approach circum-
vents common issues that are often encountered in genera-
tive pixel-based methods, such as lack of structural consis-
tency and generation of artifacts.

To further substantiate our claims, we report evaluation
metrics in Table 1. Specifically, we compare the perfor-
mance of our model against previous methods using pixel
loss (L1) and perceptual loss (LPIPS) metrics to quantify
the difference between the generated output and a ground
truth avatar in a held-out dataset consisting of 30 avatars.
Our method outperforms previous methods in terms of
both pixel and perceptual losses. It is worth noting that
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Figure 6. Comparison with state-of-the-art methods for avatar generation and image-to-image translation. All the methods are trained on
the same dataset with the same amount of data. Our method is able to preserve identity with higher accuracy and more consistently than
previous methods.

StyleGAN2-based methods generally achieve better scores
than other approaches.

5.2. User Study

We conduct a perceptual study to evaluate identity
preservation and avatar quality. We compare our method
against the same previous methods: GAN Adaptation [25],
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Table 2. Quantitative evaluation on user preference. This table
shows a 2-way comparison between our method and previous
methods.

Method Identity Quality

Ours vs. U-GAT-IT [15] 78.76% 99.1%
Ours vs. GAN-Adapt. [25] 74.63% 85.8%
Ours vs. StarGAN-v2 [6] 73.46% 74.30%
Ours vs. MSGAN-pix2pix [22] 81.70% 88.50%
Ours vs. StyleCariGAN [11] 72.83% 87.6%

U-GAT-IT [15], StarGAN-v2 [6], MSGAN-pix2pix [22],
and StyleCariGAN [11]. We structure the study with 2-
way questions, where each question compares our method
against another method chosen randomly. The evaluation of
identity preservation is conducted by presenting users with
a portrait photograph and asking them to select the avatar
that best preserves the identity of the person in the pho-
tograph. The avatars are presented side by side, and their
location is randomized in each question. In the second part
of the study, we evaluated avatar quality. To ensure an un-
biased assessment, participants were instructed to disregard
factors related to image quality, such as resolution, and to
focus solely on the quality of the avatar itself, i.e., how well
the avatar maintains the overall facial structure, facial at-
tribute proportions, relative distances between facial fea-
tures, or consistency of colors as they pertained to facial
features.

We asked 113 users, and each one is asked 15 identity
questions and 5 quality questions. In total, we collect 2260
responses. As shown in Table 2, our method is preferred
over previous methods in all tasks. Overall, 81.17% of
users select our method across all tasks, with 75.28% show-
ing preference for our method on identity preservation and
87.06% for avatar quality.

When evaluating our method on avatar quality, the
strongest competitor is the StyleGAN2-based method,
StarGAN-v2, selected by 25.7% of users. StyleCariGAN,
MSGAN, and GAN-Adaptation obtain similar preference
percentages, 12.4%, 11.5% and 14.2% respectively. U-
GAT-IT is chosen by less than 1% of users. We hypothesize
that this is due to the face deformations shown in Figure 6.

5.3. Ablation Study

Effect of Proposed Loss Functions. In this ablation
study, we examine the performance of our mapping func-
tion F under various objectives, and keep the other net-
works fixed. Our reconstruction loss, and cross-modal
alignment loss compare the predicted latent code produced
by the image encoder and mapping network, represented as
zm = F (Es(x)), with the output of a pretrained parameter
encoder, denoted as Et and referred to as the expert net-

Figure 7. Model variations without proposed losses. Readers
are encouraged to zoom in to observe how details affect identity
preservation. (b) uses only Lrec between generated and ground
truth parameters. (c) only uses weight alignment loss. (d) uses all
proposed losses.

Table 3. Quantitative evaluation on the effect of each loss function.

Method L1 ↓ Llpips ↓
Ours w/o alig 0.1856 0.1876
Ours w/o mse alig 0.1841 0.1864
Ours w/o csim alig 0.1834 0.1869
Ours w/o weight alig 0.1833 0.1852
Ours 0.1832 0.1835

work, given by zt = Et(ȳ).
The weight regularization term is designed to impose

constraints on the weights of the last layer of the mapping
function F . This is based on the hypothesis that the weights
in the final layer of F should closely resemble those in the
final layer of Et, as both networks are designed to be a 2-
layer MLP and aim to project vectors into the same latent
space.

Figure 7 shows the effect of the proposed losses during
cross-modal training. When optimizing with a parameter
reconstruction loss Lrec without using any alignment loss
(column b), the model preserves overall identity but fails
to capture smaller details that enhance identity preservation
such as the relative position of facial features or a correct
size (see the mouth size in the middle row). Similar re-
sults are observed when training without Equation (4) (col-
umn c). However, using all proposed losses results in better
positioning and sizing of key facial features like eyes and
mouth (see distance between eyes and nose in the example
shown in the upper row). A detailed analysis of the effect of
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(a) Input (b) OursL (c) OursM (d) OursS (e) OursXS

Figure 8. Effect of paired dataset size. (b) Our model trained on
9970 paired images. (c) Our model trained on 3995 pairs. (d)
Our model trained on 1000 image-avatar parameter pairs. (e) Our
model trained on 500 samples.

the different loss functions is provided in the supplementary
material.

Effect of Paired Data Size. The impact of the size of
paired data on our model is examined in this section. As
obtaining paired data is an expensive process, we investi-
gate the effect of reducing the amount of paired data in the
training of our mapping network F . We compare the per-
formance of our model trained on different sizes of paired
data: OursL, trained on 9970 pairs Figure 8 (b), OursM ,
trained on 3395 pairs Figure 8 (c), OursS , trained on 1000
pairs Figure 8 (d), and OursXS , trained on 500 pairs Fig-
ure 8 (e). While models L and M are capable of preserving
identity, using fewer than 3000 image-avatar pairs leads to
degradation in both identity preservation and avatar qual-
ity, specifically in maintaining facial structure and relative
positioning of facial features.

6. Conclusion

We propose a method that generates parametric avatars
directly from a single portrait image. Our framework,
which utilizes a cross-modal mapping between two previ-
ously trained latent spaces, has allowed us to capture the
vast diversity of human appearance and preserve identity
in the generated avatars. Through our alignment losses,
we have successfully guided the translation process and
demonstrated that our approach outperforms previous meth-
ods both qualitatively and quantitatively. One key ad-
vantage of our approach is the use of parametric avatars,
which obviate the resolution constraints often encountered
in image-based approaches. This also facilitates an easily
transferable solution that is readily compatible with anima-
tion or 3D software applications. Our contributions offer
a step forward in the development of avatar representation,
which have the potential to impact a wide range of fields,
from gaming to virtual reality.

Limitations and Future Work. Our method generates a
diverse set of avatars, but limitations still exist. The use of
a hair and accessory databank limits matching for complex
hairstyles and accessories, such as hats. Additionally, our
parametric avatars are restricted to front-view only. Future
work includes integrating hair and accessories within the
generative pipeline and allowing for pose variance.
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