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Abstract

Fine-grained classification often requires recognizing
specific object parts, such as beak shape and wing pat-
terns for birds. Encouraging a fine-grained classification
model to first detect such parts and then using them to
infer the class could help us gauge whether the model is
indeed looking at the right details better than with inter-
pretability methods that provide a single attribution map.
We propose PDiscoNet to discover object parts by using
only image-level class labels along with priors encour-
aging the parts to be: discriminative, compact, distinct
from each other, equivariant to rigid transforms, and ac-
tive in at least some of the images. In addition to us-
ing the appropriate losses to encode these priors, we pro-
pose to use part-dropout, where full part feature vectors are
dropped at once to prevent a single part from dominating
in the classification, and part feature vector modulation,
which makes the information coming from each part distinct
from the perspective of the classifier. Our results on CUB,
CelebA, and PartImageNet show that the proposed method
provides substantially better part discovery performance
than previous methods while not requiring any additional
hyper-parameter tuning and without penalizing the clas-
sification performance. The code is available at https:
//github.com/robertdvdk/part_detection

1. Introduction

Commonly used approaches to inspect a deep learning
model’s inner workings yield a saliency map that indicates
which regions contributed the most to the output [5, 29]. If
the model seems to focus on image regions that are known
to be irrelevant, (e.g. the background or the wrong object),
it becomes clear that the model has picked up on spurious
correlations and cannot be trusted. This observation could

Head: species [C, F]

Neck: species [A, C]

Wing: species [A, C, F]

Belly: species [B, C]

Final species: C

Figure 1. Our PDiscoNet extracts semantically consistent parts,
without any part annotations, and reasons on these parts before
combining the results into a final fine-grained classification output.

then be used to improve future iterations of the model, for
instance, by eliminating or compensating for the detected
spurious correlations. However, this type of approach of-
fers little information when the model provides an incorrect
answer but the saliency map suggests that it is attending to
the correct image regions.

Other approaches aim at modifying the model architec-
ture itself in order to ensure that the provided explanation
actually reflects the decision process of the model [10, 6].
In particular, the saliency map explanation can be en-
riched by dividing it in multiple semantically interpretable
parts, mimicking the traditional approaches of tackling fine-
grained visual categorization (FGVC), in which image-level
part annotations were leveraged [22] in order to help the
model differentiate between similar classes by helping it fo-
cus on the relevant parts. In this manner, we have more in-
formation to judge the adequacy of the model’s reasoning:
even if the correct object is highlighted, we will be suspi-
cious of the result if the part map that the model generally
associated to the head of a bird seems to highlight the feet in
one particular image. We thus posit that a model that clas-
sifies images based on just a few discriminative regions that
are semantically consistent across images would be more
interpretable than one which highlights the whole object, as
one can immediately visualise the parts of the image that
have been attended to and interpret their semantics across
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images. By inspecting a few images and their correspond-
ing detected parts, we can easily assign semantic meaning to
each part (e.g., bird beak, vehicle wheel) and judge whether
the correct parts are being detected in a new image.

Even if the model correctly assigns high saliency to the
object of interest, we will know to mistrust the result in case
the discovered part semantics are not respected. This way
of interpreting the models has an additional advantage over
post-hoc methods in that we can be more certain that the
model only uses information from the indicated regions.
Such models have also been shown to be more robust; ir-
relevant parts are filtered out by only looking at the dis-
covered discriminative regions, which can have a positive
impact on generalization capability and thus robustness to
occlusion [37] and adversarial attacks [30].

Discovering meaningful and discriminative parts using
only image-level class labels requires the use of additional
priors that encode our expectations on the characteristics
of these parts along with a model architecture that allows
for these priors to be implemented. We design a model,
based on a Convolutional Neural Network (CNN) back-
bone, which discovers discriminative parts of objects by be-
ing forced to use the discovered parts as a bottleneck for
fine-grained classification. The fine-grained setting ensures
a high level of similarity between classes, enabling the pos-
sibility of discovering semantic parts that are shared by mul-
tiple classes. In our part bottleneck, class logits are inde-
pendently extracted from each of the discovered parts be-
fore being combined for the final classification, along with
a dropout layer that affects whole parts at a time, ensures
that all discovered parts are relevant to classification.

2. Related work

Fine-grained recognition FGVC is a classification setting
in which objects of multiple sub-classes of the same super-
class are present, thus constituting a challenging task where
subtle intra-class and large inter-class variation need to be
simultaneously addressed [33]. Solving fine-grained tasks
usually requires one to closely inspect the object for the tell-
tale differences between closely related classes. Traditional
methods exploit shared keypoints [21, 22], parts [16, 35],
attributes [25, 24], or a pre-segmentation of the object of in-
terest [4] in order to effectively discriminate between sim-
ilar sub-classes, although deep learning approaches using
large quantities of data have since also proved effective [23].
Our PDiscoNet belongs to a family of approaches that fa-
cilitate injecting some of the structure provided by part-
based [14, 17] or attribute-based [13] reasoning via weakly-
supervised learning without part or attribute annotations.

Interpretability via attribution maps In saliency-based
attribution methods, the goal is to highlight important re-
gions of the image that are used by the network to form

its decision. Examples include perturbation-based [27, 28],
activation-based [20, 39], and gradient-based [29, 31] ex-
planations methods. Despite their popularity, these model-
agnostic methods often cannot guarantee that their expla-
nations are faithful to the model [2]. In contrast, inher-
ently interpretable models aim to directly expose the de-
cision process of the network [7, 10]. In this work, we fo-
cus on incorporating interpretable components into the net-
work architecture to reveal the learned structure transpar-
ently. Attention rollout [1, 9] is a popular way to under-
stand whether attention modules can provide such expla-
nations [19, 34]. However, deep transformer architectures
model complex functions such that reliable interpretation is
often limited to inspecting single self-attention layers [8, 3].
Based on this observation we employ a shallow attention
structure into our network that allows to directly explain the
attention maps with the correspondence to object parts.

Unsupervised part discovery Some previous works dis-
cover parts by using image reconstruction [36, 11], where a
landmark bottleneck is used to discover object parts. How-
ever, the model having no learning signal indicating which
parts of the image may represent an object of interest lim-
its the applicability of these approaches to cases where the
objects of interest are either dominating the image and de-
picted in similar poses [36] or are endowed with foreground
segmentation masks that can be used as an additional train-
ing signal [11]. On datasets where most parts are common
to all images, pre-trained Vision Transformer [3] is typically
able to find the parts of the most relevant object in a seman-
tically consistent manner. However, it breaks down when
the assumption that salient parts occur in almost all images
does not hold, since parts tend to become polysemous in
such a setting. Unlike these approaches, PDiscoNet is able
to leverage the class labels, requiring no additional anno-
tations in fine-grained classification datasets, to learn parts
that are specific to similar classes, making them more se-
mantically consistent and suitable for interpretation.

Weakly-supervised part discovery via FGVC MA-
CNN [38] and ProtoPNet [10] propose to directly enforce
that the CNN activation maps develop a part-like behaviour,
showing that an architecture with enhanced interpretability
does not result in a loss of performance. However, their fo-
cus is more on downstream fine-grained classification than
on evaluating the discovered parts. SCOPS [18], a model
for part co-segmentation, puts more emphasis on the qual-
ity of the discovered parts by adding several losses on the
part maps that encourage them to be compact and distinct,
the latter via decorrelation of the learned part prototypes. It
also encourages part maps to be equivariant under geomet-
ric transforms of the image. Taken together, these incentives
ensure that the discovered parts are semantically consis-
tent across images. This method assumes that all the parts
should be active in every image of the dataset. Huang and
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Figure 2. Diagram of the proposed method. The part discovery process is driven by the fine-grained classification loss and the losses that
applied on the part attention maps (red boxes).

Li[17] aim to solve this issue by encouraging the presence
of each part across a batch of images to follow a beta dis-
tribution with manually defined parameters. Depending on
the chosen parameters, this encourages a pre-defined pro-
portion of images in a batch to display the part, while it is
discouraged in the rest of the images in the batch.

3. PDiscoNet Method
We design an approach to discover K discriminative

parts that are relevant to a fine-grained classification task,
based solely on the image-level class labels. Let X ∈
R3×A×B denote an image in the dataset, and let y ∈
{1, 2, ..., C} be its corresponding label. Using a CNN base
model fθ we obtain a feature tensor Z = fθ(X) with
Z ∈ RD×H×W . Following [18] and [17], from this tensor
we compute K + 1 (K parts plus one background element)
attention maps Ak = [0, 1]H×W , k ∈ {1, . . . ,K + 1} by
applying a negative squared Euclidean distance function be-
tween feature vectors zij (with zij ∈ RD, i ∈ {1, ...,H},
j ∈ {1, ...,W}) and K part prototypes pk ∈ RD in a
1 × 1 convolutional manner, followed by a softmax across
the K + 1 channels:

akij =
exp(−∥zij − pk∥2)∑
k exp(−∥zij − pk∥2)

, (1)

Each attention map is then used to compute its correspond-
ing part vector vk ∈ RD by using the attention values to
calculate a weighted average over the feature vectors in Z:

vk =

∑
i

∑
j zija

k
ij

HW
(2)

Each of these part vectors could then be used to obtain a
vector of class scores sk ∈ RC calculated as

sk = Wclassv
k

by applying the same linear classifier Wclass ∈ RC×D

to all part feature vectors, but we use the modification in
Eq. (3). The scores are then averaged into a single score
vector s = 1

K

∑
k s

k on which a softmax is applied to ob-
tain the final classification probabilities ŷ.
Part vector modulation In the above formulation, all parts
share the same classifier weights Wclass. This poses the
problem that, from the perspective of the classifier, all parts
are equivalent, meaning that the classifier could be encour-
aging all parts of the same object to result in the similar fea-
ture representation. The classifier can also profit from part
misdetection, since a wrongly detected part would still pro-
vide a useful feature vector. Although it would, in principle,
be possible to learn part-specific classifiers, this would not
scale well to fine-grained classification scenarios where the
classification head already contains the majority of learn-
able weights. As an alternative, we propose to keep a
modulation vector mk ∈ RD per landmark that multiplies
element-wise each part vector before classification:

sk = Wclass · (mk ⊙ vk). (3)

Part dropout We would like the learned parts to be as dis-
criminative as possible. In order to prevent the most dis-
criminative parts (such as the head in birds) to discour-
age other parts from becoming discriminative by render-
ing them unnecessary, we propose to randomly drop out a
proportion of all parts during training. This encourages the
model to find a variety of discriminative parts.
Loss functions The main learning signal for our model
comes from fine-grained classification, for which we use
cross-entropy on the output classification probabilities
Lclass(y, ŷ). Although this signal itself would suffice for
the model to perform well in the classification task, it does
not guarantee that the learned attention maps will be inter-
pretable as parts. There are several desirable properties we
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wish to enforce in the learned parts. First, parts must be
discriminative. This is taken care of by the classification as
described previously. However, we also wish parts to be:
Compact (Lconc): We would like each detected part to con-
sist of a compact and contiguous image region.
Distinct (Lorth): We want to avoid overlap between parts.
This is encouraged by decorrelating part feature vectors.
Consistent (Lequiv): The same parts should be detected un-
der translation, rotation or scaling of the image. This can be
enforced via a loss that encourages the equivariance of the
attention maps to random rigid transforms.
Present in the dataset (Lpres): All parts should be present
in some of the images of the dataset. For this, we penalize
the absence of a part across a whole batch during training.

To enforce these priors, we use as many loss functions.
Our concentration loss over the attention maps Ak:

Lconc =

∑K
k=1 σ

2
v(A

k) + σ2
h(A

k)

K
, (4)

where σv and σh represent the vertical and horizontal spa-
tial variance respectively.

We calculate an orthogonality loss over the part vectors
by applying the cosine distance between all pairs:

Lorth =
∑
k

∑
l ̸=k

vk · vl

∥vk∥ · ∥vl∥
. (5)

Our equivariance loss creates a transformed image by ap-
plying a random rigid transformation T to the input im-
age. We then pass both the original and the transformed
image through the model and invert the transformation on
the attention maps from the transformed ones. If Ak(X) is
a function that returns the kth attention map for image X,
the equivariance loss is computed using the cosine distance
between the attention maps from the original image and the
transformed image:

Lequiv = 1− 1

K

∑
k

∥∥Ak(X)⊙ T−1(Ak(T (X)))
∥∥

∥Ak(X)∥ · ∥Ak(T (X))∥
. (6)

Lastly, a presence loss encourages each part to be present
at least once per batch. Given a batch {X1, . . . ,XB}:

Lpres = 1− 1

K

∑
k

max
b,i,j

avgpool(akij(Xb)), (7)

where avgpool() is a 2D average pooling with a small ker-
nel size and a stride of 1. This operator is applied to prevent
encouraging single pixel attention maps. A weighted com-
bination of these losses is used as the final loss.

4. Experiments

We compare our method, for different values of K,
against the results obtained by the most closely related
methods in the recent literature [17]. We also compare our
method to a few other methods, among which the most re-
cent method on part discovery [3], which is not aimed at
fine-grained classification but showcases high quality part
discovery by using self-supervised pretraining with a visual
transformer architecture.

Datasets Our aim is to perform part discovery with the
only assumption being that we have image-level class la-
bels where parts are shared by some of the classes, which
is typically the case in FGVC tasks. In order to investigate
this, we have chosen three datasets with a varying propor-
tions of shared parts across images: a face image dataset
where the vast majority of images display all relevant parts
(i.e. facial landmarks), a bird species recognition dataset,
where the assumption of the presence of all parts is lim-
ited due to the effects of pose and occlusion, and a more
challenging dataset in which several fine-grained class cat-
egories (e.g. birds and cars) are mixed together, resulting in
specific parts only being shared by a small subset of the im-
ages in the dataset. To assess the quality of the discovered
parts, we have selected datasets for which semantic part an-
notations are available.

CUB [32] contains 11,788 images of 200 bird species
that include manual part annotations of 15 body parts. The
images are split approximately in half for training and half
for evaluating. During the development phase of this work
we used a 90%-10% split of the training set of CUB in order
to find a good set of hyperparameters for our model and
used the same across all experiments on all datasets.

CelebA [26] is a dataset of face images of 10,177 celebri-
ties. We follow earlier approaches [18, 17] and use the un-
aligned training set of 45,609 images to train our models
and use the 283 MAFL test images to evaluate the part de-
tection, and the 5,379 images of the MAFL training set were
used for training the keypoint regressor. We use identity
classification as the downstream task.

PartImageNet [15] consist of 158 classes split among a
diverse set of categories (e.g., 10 species of fish, 14 of birds,
15 of snakes, 23 types of car). We train all models on 14,876
images of the train set, which is limited to 109 classes, and
test on 1,664 images.

Evaluation metrics The part annotations in CUB and
CelebA are in the form of points, meant to represent part
centroids in CUB and facial landmarks in CelebA. We first
evaluate the quality of the part discovery methods by per-
forming part location regression based on the centroids of
the discovered parts. However, as noted by [11], keypoint
regression may not be a good indicator of overall part qual-
ity. We therefore employ also the Normalized Mutual infor-
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CUB CelebA PartImageNet
Kp.↓ NMI↑ ARI↑ Class.↑ Kp. reg. ↓ NMI↑ ARI↑ NMI↑ ARI↑ Class. ↑

Choudhury [11]∗ 9.20 43.50 19.60 - - - - - - -
SCOPS [18]∗∗ 12.60 24.40 7.10 - 15.00 - - - - -
DFF [12]∗∗ - 25.90 12.40 - 31.30 - - - - -
Dino [3]∗∗ (K=4) - 31.18 11.21 - 11.36 1.38 0.01 19.17 7.59 -
Dino [3]∗∗ (K=8) - 47.21 19.76 - 10.74 1.12 0.01 31.46 14.16 -
Dino [3]∗∗ (K=16) - 50.57 26.14 - - 3.29 0.06 37.81 16.50 -
Huang [17] (K=4) 11.51 29.74 14.04 87.30 8.75 56.69 34.74 5.88 1.53 74.22
Huang [17] (K=8) 11.60 35.72 15.90 86.05 7.96 54.80 34.74 7.56 1.25 73.56
Huang [17] (K=16) 12.60 43.92 21.10 85.93 7.62 62.22 41.01 10.19 1.05 73.20
PDiscoNet (K=4) 9.12 37.82 15.26 86.17 11.11 75.97 69.53 27.13 8.76 88.58
PDiscoNet (K=8) 8.52 50.08 26.96 86.72 9.82 62.61 51.89 32.41 10.69 89.00
PDiscoNet (K=16) 7.67 56.87 38.05 87.49 9.46 77.43 70.48 41.49 14.17 86.06

Table 1. Part discovery results on CUB, CelebA and PartImageNet. * Methods use foreground masks in training. ** Methods do not use
class supervision. In the case of PartImageNet the number of parts are K = [8, 25, 50] instead of K = [4, 8, 16] used in CUB and CelebA.
A ResNet101 baseline trained in the same setting as our model results in accuracies of 85.35% on CUB and 90.81% on PartImageNet.

mation (NMI) and the Adjusted Rand Index (ARI), metrics
commonly used for evaluating clustering quality. In Par-
tImageNet the part annotations are in the form of semantic
segmentation masks, from which we extract the centroids to
compute NMI and ARI. Note that NMI and ARI are com-
puted on the annotation/prediction correspondences across
the whole datasets, meaning that they capture part seman-
tic consistency (i.e. a perfect score can only be obtained
if the same discovered part matches exactly with the same
annotated part). In CUB and PartImageNet we report, in ad-
dition, the classification score on the same test set used for
part quality evaluation. In the case of CelebA, the classes
on the test set do not overlap with those in the training set.

Implementation details We trained all our models with
Adam, with a starting learning rate of 10−4 for the ResNet-
101 backbone, 10−3 for the new layers, and 10−2 for the
modulation vectors. We apply 5 reductions by 0.5 every 5
epochs for CUB and PartImageNet and every 3 for CelebA.
The loss weights were all set to 1 except for Lconc, where a
weight of 1000 was used because of its much lower magni-
tude. This setting was decided based on the results on the
CUB validation set and kept constant on all experiments af-
terwards. For [17], we used α = 1 on CUB and CelebA and
α = 0.002 on PartImageNet.

4.1. Quantitative results

The results in Table 1 show that, on CUB with K =
4 parts, our method already performs comparably to [11],
with 9.12% keypoint regression error vs. 9.20% in [11],
even though [11] use spatially explicit foreground masks at
train time. Our method obtains better results than all other
methods in all settings and on all metrics, improving over
the second best method [3] from 50.57 to 56.87 NMI and
26.14 to 38.05 ARI for K = 16, all while improving the

classification accuracy over [17] and a ResNet101 trained
in the same setting. Interestingly, increasing the number
of parts not only results in a substantial improvement on
the part quality metrics, but also in classification accuracy,
from 86.17% with K = 4 to 87.49% with K = 16, unlike
for [17], with which the classification accuracy is reduced
as the number of parts increases.

On CelebA, our method obtains the best clustering
scores on all settings, improving for K = 4 over [17] from
56.69 to 75.97 NMI and from 34.74 to 69.53 ARI, thus
doubling the result of the best competing method. How-
ever, [17] does result in lower keypoint regression errors.
We also obtain better keypoint regression errors than [3],
11.11% vs. 11.36%, although this method completely fails
when evaluated in terms of the clustering metrics. As can
be seen in Section 4.4, this is related to the fact that this
method is task agnostic and focuses on elements not related
to facial landmarks, such as clothing and hair, which are not
as useful for locating facial landmarks. With a single part
being assigned to the face, Dino ViT [3] obtains much lower
clustering scores than the other methods.

In the case of PartImageNet, a more challenging dataset
in terms of class diversity, Table 1 shows that both our
method and Dino ViT [3] are competitive, with our method
taking the lead in terms of NMI: 41.49 with PDiscoNet vs.
37.81 with Dino ViT, and Dino ViT in terms of ARI: 14.17
with PDiscoNet and 16.50 with Dino ViT. The method by
Huang and Li [17] fails to capture the diversity in terms of
part semantics, resulting in very low NMI and ARI, 10.19
and 1.05, and much lower classification scores, with a max-
imum of 74.22% with K = 4, while our model reaches
89.00% with K = 25, close to the 90.81% obtained by
ResNet101 in the same training settings.
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CUB PartImageNet
Kp. ↓ NMI ↑ ARI ↑ Class. ↑ NMI ↑ ARI ↑ Class. ↑

Full model 7.67 56.87 38.05 87.49 27.13 8.76 88.58
No Lorth 10.29 36.12 19.41 86.17 16.25 4.59 89.12
No Lequiv 10.31 40.22 21.32 86.60 17.55 4.22 89.90
No Lpres 7.72 55.18 35.69 87.21 12.22 3.84 88.52
No Lconc 8.58 52.44 32.17 86.77 19.71 7.39 90.32
No modulation 8.05 53.45 35.90 86.36 19.83 6.02 89.42
No part dropout 8.48 46.37 25.36 86.93 19.97 4.65 89.72

Table 2. Ablation studies on CUB with K = 16 and PartImageNet with K = 8.

4.2. Ablation studies

The ablation results in Table 2 confirm that all ingre-
dients in the method are important to obtain competitive
results on part discovery. On CUB, Lorth, Lequiv and part
dropout seem to individually contribute the most to part
quality in terms of the clustering metrics, while Lconc seems
to play an important role to improve the keypoint regres-
sion results. On the other hand, Lorth and part feature vec-
tor modulation are the elements with the highest impact
on classification performance, which on CUB is positively
impacted by all terms. Lpres seems to only have a very
marginal impact on both part discovery and classification
performance on CUB. However, on PartImageNet it is the
most important of all terms and the only one that does not
hurt the classification accuracy. This is likely to stem from
the very different distribution of parts in each dataset. On
CUB, on the one hand, all parts are shared by all objects in
the dataset, since they are all birds, and a majority of them
is visible in all images. On PartImagenet, on the other hand,
the different categories of classes do not naturally share the
exact same parts (e.g. snakes, vehicles and birds). Forcing
all parts to be present in each batch would prevent one sin-
gle part prototype from dominating and becoming an object
detector rather than a part detector, as happens in PartIma-
geNet with the method of [17], as seen in Fig. 4.

4.3. Sensitivity studies

We have performed a part-dropout rate sensitivity analy-
sis, shown in Table 3. In general, increasing the dropout rate
improves the part discovery performance, with the best re-
sults obtained with the highest tested rate of 0.9, with NMI
going up to 54.42 from 49.22 when a part dropout rate of
0.3 is used. Such a high rate means that every part needs to
capture enough information to be able to classify the image,
since very often all parts except one are dropped-out. This
poses a very strict constraint on the part discovery process
that prevents the appearance of spurious part prototypes.
However, this tends to negatively impact the classification
performance, which drops from 87.31% to 83.34%, prob-
ably due to the fact that, by trying to learn parts that are
able to perform classification on their own, there is a lack

of incentives for the model to learn the complementarities
between parts. A value between 0.3 and 0.7 provides a good
compromise between the two tasks.

Dropout rate 0.1 0.3 0.5 0.7 0.9
NMI ↑ 45.30 49.22 50.08 49.63 54.42
ARI ↑ 22.78 27.27 26.96 29.15 34.56
Class. ↑ 86.90 87.31 86.72 86.26 83.34

Table 3. Part-dropout rate sensitivity on CUB with K = 8.

We also investigate the behaviour of our method with
respect to the presence of noise at test time. The results in
Table 4 show that the classification accuracy of our method
is higher than the most closely related method [17] when
the input images are subjected to Gaussian noise. Apart
from the absolute accuracy of our method being higher, the
percentual decrease between each increase in noise is lower,
suggesting that an improved ability in part localization also
carries advantages in terms of robustness to noise.

Noise SD 0.03 0.07 0.15 0.30 0.75 1.50
Huang [17] 84.2 82.1 78.2 71.4 50.5 22.1
PDiscoNet 85.6 85.6 82.2 77.9 63.3 38.2

Table 4. Class. acc. with Gaussian noise on CUB with K = 16.

4.4. Qualitative results

In Figs. 3 and 4 we showcase the effect of increasing the
number of parts for the compared methods on CUB (K = 4
and K = 16) and PartImageNet (K = 8 and K = 25).
For the method in [17], we show the part assignment maps
for all parts and for those with an assigned attention value
higher than 0.1, in order to highlight only the image regoins
that contribute substantially towards the classification out-
put. We can see that [3] and PDiscoNet are able to correctly
assign most parts to the foreground objects in the shown ex-
amples, even with the increased number of parts (bottom
three rows), with [3] resulting in the best adherence to ob-
ject boundaries. [17], on the other hand, assigns only a few
parts to the foreground objects, even when more parts are
available. In the third column ([17] (all)), we see how the
rest of parts are assigned to the background in ways that do
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Image Dino [3] [17] (all) [17] > 0.1 PDiscoNet

Figure 3. Qualitative results on CUB for our method, [17] w/ and
w/o part map thresholding, and [3]. Top rows: all methods with
k = 4. Bottom rows: K = 16.

not follow any of the objects in the image. When showing
only parts that are actually attended to by the classifier ([17]
> 0.1), we confirm that only two or three parts are used in
CUB (Fig. 3) with both K = 4 and K = 16. In the case
of PartImageNet (Fig. 4), [17] assigns one single part to the
foreground object with K = 8 and none with K = 16,
while again both [3] and PDiscoNet tend to assign a diverse
set of parts to the foreground. Also in this case we observe
that Dino ViT [3] results in better boundary adherence than
PDiscoNet, since we did not explicitly add any element to-
wards this objective.

In Figs. 5 to 6 we show the assignment maps for the three
methods, with an attention threshold of 0.1 for [17], across
ten images for each dataset in order to explore the semantic
consistency of the discovered parts across a diverse set of
examples. As can be seen in Fig. 6, [17] tends to find sym-
metric part assignment maps, while our method finds inde-
pendent parts for the areas around each eye. This figure also
explains why [3] fails in the clustering metrics: the whole
face tends to be assigned to a single part, making all the fa-
cial landmarks indistinguishable from each other. This phe-
nomenon showcases that, although the self-supervised ap-
proach of [3] provides remarkable results in terms of seman-

Image Dino [3] [17] all [17] > 0.1 PDiscoNet

Figure 4. Qualitative results on PartImageNet for our method, [17]
w/ and w/o part map thresholding, and [3]. Top rows: all methods
with k = 8. Bottom rows: K = 25.

tics and boundary adherence, it may also miss the relevant
partitions due to not making use of the fine-grained recog-
nition signal. This drawback of the Dino ViT approach is
also visible in the CUB results in Fig. 5, where in some
examples some parts either mix with background elements
(first column) or are completely missed (last column), while
our method is consistent across all samples. The method by
Huang and Li [17] also displays a problem with mixing in
background parts in CUB and, even more markedly, in Par-
tImageNet. Fig. 3 shows that a majority of the available
parts tend to be used on background areas that ultimately
receive a low attention weight, leading to only two or three
parts being used even in the case of K = 16. In Fig. 4 we
can see that [17] assigns one single part to foreground ob-
jects with K = 8 and fails to assign any parts to foreground
objects for K = 25, which explains the low part discov-
ery and classification scores in Table 1. Both our method
and [3] are generally able to identify the object of interest in
PartImagenet (Figs. 4 and 7), with [3] often providing bet-
ter boundary adherence, while our method tends to provide
better semantic consistency. For instance, notice how our
method uses the same part (in cyan) for the head of mam-
mals and birds, while another one (in purple) is used for the
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Figure 5. Discovered part segmentation with K = 4 on CUB for [3] (top), [17] (middle) and our method (bottom).
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Figure 6. Discovered part segmentation with K = 4 on CelebA for [3] (top), [17] (middle) and our method (bottom). The ground truth
facial landmarks appear as black dots.

head of reptiles and amphibians.

This better semantic consistency is further reinforced by
Fig. 8, where we show the histograms of part presence
per PartImageNet supercategory for Dino ViT [3] and our
method with K = 8. We omit the results on [17] because
only one part tended to be active in high attention areas (see
Fig. 7). This figure confirms the notion that PDiscoNet dis-
covers parts with strong semantic consitency. We can see
that similar supercategories (such as Aeroplane and Boat,
or Biped and Quadruped) tend to share the same parts, and
parts tend to specialize on only a subset of supercategories.
For instance, we note that the cyan part (number 5) is in-
deed mostly present in Biped, Quadruped and Bird, while
the orange part (number 7), is only present in Fish, Reptile
and Snake. On the other hand, all parts are almost equally

shared by all supercategories in the case of Dino ViT, indi-
cating that parts are less semantically consistent across the
dataset and acquire multiple semantic interpretations.

The quantitative and qualitative results indicate that re-
cent methods for part discovery seem to be tailored to
datasets with specific characteristics: Dino ViT [3] thrives
with a diverse set of natural images belonging to differ-
ent supercategories such as PartImageNet but fails to pro-
vide the sought after results on the more narrow CelebA,
where the parts of interest are restricted to facial landmarks,
and the opposite is true for [17]. Our proposed method,
on the other hand, is able to extract semantically consistent
parts on all tested datasets without the need for any dataset-
specific adjustment, showing its potential for out-of-the-box
application to datasets with different characteristics.
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Figure 7. Discovered part segmentation with K = 8 on PartImageNet for [3] (top), [17] (middle) and our method (bottom).
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Figure 8. Histograms of part presence per PartImageNet supercategory for Dino ViT [3] (top) and our method (bottom), with K = 8. Same
color code as the figure above.

5. Conclusion

We propose a method for fine-grained visual categoriza-
tion that uses part representations as an information bottle-
neck and thus learns to detect semantically consistent parts
that are useful for that task. Our method requires no addi-
tional annotation effort and leverages the fine-grained class
labels as the sole supervision signal. The quantitative and
qualitative comparisons against recent part discovery meth-
ods shows that our approach improves upon the state-of-the-
art in part localization and semantic consistency, with parts
specializing in certain categories and consistently overlap-
ping with the same semantic elements of the objects of inter-
est, without sacrificing accuracy on the down-stream classi-
fication task.

There are several directions in which more work is
needed to improve this approach. The first relates to the
fact that, by applying a mask to a high-level feature map in
a deep model, we have no guarantee that only the underly-
ing regions of the image influence the corresponding part
feature representation. Information from the background or
neighboring parts can leak into the feature representation of
a part due to the large receptive field of most modern ar-

chitectures, limiting the interpretability of the approach. In
addition to this, our results show that PDiscoNet displays
a lower level of contour adherence than a method trained
with a very large dataset with self-supervision. This, in turn,
could affect the interpretability of the part maps and allow
background information to substantially affect the part fea-
ture representation.

We hope that this approach will contribute towards mak-
ing models for fine-grained visual categorization more in-
terpretable by facilitating inspection of some aspects of the
model’s internal reasoning, thus allowing a much richer in-
teraction between the model and its end users.
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