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Abstract

LiDAR-based 3D object detection plays a crucial role

in modern autonomous driving systems. LiDAR data of-

ten exhibit severe changes in properties across different ob-

servation ranges. In this paper, we explore cross-range

adaptation for 3D object detection using LiDAR, i.e., far-

range observations are adapted to near-range. This way,

far-range detection is optimized for similar performance

to near-range one. We adopt a bird-eyes view (BEV) de-

tection framework to perform the proposed model adap-

tation. Our model adaptation consists of an adversarial

global adaptation, and a fine-grained local adaptation. The

proposed cross-range adaptation framework is validated

on three state-of-the-art LiDAR based object detection net-

works, and we consistently observe performance improve-

ment on the far-range objects, without adding any auxil-

iary parameters to the model. To the best of our knowledge,

this paper is the first attempt to study cross-range LiDAR

adaptation for object detection in point clouds. To demon-

strate the generality of the proposed adaptation framework,

experiments on more challenging cross-device adaptation

are further conducted, and a new LiDAR dataset with high-

quality annotated point clouds is released to promote future

research.

1. Introduction

Modern autonomous driving systems rely heavily on ac-

curate and robust perception, where LiDAR-based 3D ob-

ject detection plays an indispensable role. Object detection

in point clouds has appealing advantages such as accurate

distance encoded in points and scale consistency in a 3D

space. Several recent 3D object detection methods report

promising results on public LiDAR datasets [?, ?]. How-

ever, within a point cloud, the density of points degrades

significantly with the distance to the sensor, leading to in-

ferior performance for far-range objects. Perception of ob-

jects in long ranges is crucial for planning ahead while driv-

ing, in particular in highways, and new LiDAR technology

is being developed to measure far away objects.

In this paper, addressing object detection in point clouds,

we propose to perform cross-range adaptation for deep

model learning, obtaining for far-range objects similar per-

formance to near-range detection While domain adaptation

on optical images has been widely studied, it is still a highly

challenging task to perform adaptation on point clouds.

First, the un-ordered and irregular structure of point clouds

differs significantly from the gridded structure of optical

images, which prevents methods in the image space, e.g.,

cGAN based methods, from being directly utilized on point

clouds. Second, certain unique properties of point clouds,

e.g., the scale consistency, bring appealing advantages over

optical images, and they need to be fully exploited.

Instead of directly performing adaptation on raw point

cloud, we propose model adaptation to be applied on the

intermediate layer of a deep network for point cloud object

detection. In the proposed framework, a key step is to align

cross-range gridded features at an intermediate layer of a

deep network, so that the parameters in the preceding lay-

ers are tuned at a low cost to handle range shifts, while the

subsequent layers remain shared. Specifically, we use near-

range areas as the source domain, and improve the feature

and the detection accuracy of far-range areas which serve as

the target domain.

We adopt combinations of local and global adaptation.

For the global adaptation, we adopt adversarial learning to

align the feature in the network feature space. Such methods

have delivered outstanding performances on image-based

object classification and segmentation. However, as ob-

served for images, adaptation results depend heavily on how

complicated the task is. For example, satisfactory results

are obtained for adapting digit images, while limited per-



formance is observed for sophisticated scenarios like image

segmentation. These observations motivate us to explore

beyond adversarial learning and exploit the properties of

point cloud for fine-grained adaptation as detailed next.

Beyond the global adaptation, we should note that while

the size of an object varies with distance in optical images,

it stays constant in a point cloud. By exploiting such scale

consistency property of point clouds, we propose to mine

in the point cloud space for matched local regions across

the source and target ranges, and then perform fine-grained

local adaptation in the corresponding feature space.

We perform extensive experiments on public 3D object

detection datasets and methods. The obtained results val-

idate the proposed framework as an effective method for

point cloud range adaptation, including more challenging

cross-device adaptation. Beside the superiority on perfor-

mance, our method does not introduce any auxiliary net-

work layers for the detection model, which enables the

adapted object detector to run at the same speed and mem-

ory consumption as the original model but with significantly

superior detection accuracy.

Our contributions are summarized as follow:

• We propose cross-range adaptation to significantly im-

prove LiDAR-based far-range object detection.

• We combine fine-grained local adaptation and adver-

sarial global adaptation for 3D object detection mod-

els.

• To the best of our knowledge, this work is the first at-

tempt to study adaptation for 3D object detection in

point clouds.

• We release a new LiDAR dataset with high-quality an-

notated point clouds to promote future research on ob-

ject detection and model adaptation for point clouds.

2. Related Work

2.1. 3D Object Detection

Object detection in point clouds is an intrinsically three

dimensional problem. As such, it is natural to deploy a 3D

convolutional network for detection, which is the paradigm

of several early works [?, ?]. While providing a straight-

forward architecture, these methods are slow; e.g. Engel-

cke et al. [?] require 0.5s for inference on a single point

cloud. Most recent methods improve the runtime by pro-

jecting the 3D point cloud either onto the ground plane

[?, ?] or the image plane [?]. In the most common paradigm

the point cloud is organized in voxels and the set of vox-

els in each vertical column is encoded into a fixed-length,

hand-crafted feature to form a pseudo-image which can be

processed by a standard image detection architecture. Some

notable works here include MV3D [?], AVOD [?], PIXOR

[?], and Complex-YOLO [?], which all use variations on

the same fixed encoding paradigm as the first step of their

architectures. The first two methods additionally fuse the li-

dar features with image features to create a multimodal de-

tector. The fusion step used in MV3D and AVOD forces

them to use two-stage detection pipelines, while PIXOR

and Complex-YOLO use single stage pipelines. Some re-

cent progresses have significantly improved the both the

accuracy and the speed on LiDAR-only object detection.

SECOND [?] adopt sparse convolutional layers that process

3D feature at faster speed with much less memory consump-

tion. PointPillars [?] adopt a novel point cloud encoding

layer that enable a high speed and high quality transforma-

tion from un-ordered points to gridded representations.

2.2. Domain Adaptation

Recently, we have witnessed great progress on domain

adaptation for deep neural networks. The achievements on

deep domain adaptation generally follow two directions.

The first direction is to do domain adaptation in a sin-

gle network, where parameters are shared across domains,

while the network is forced to produce domain-invariant

features by minimizing additional loss functions in the net-

work training [?, ?, ?, ?, ?]. The additional losses are im-

posed to encourage similar features from source and tar-

get domains. The Maximum Mean Discrepancy (MMD)

[?] emerged as a popular metric of domain distance, and

was adopted in [?] as a domain confusion loss to encourage

small distance between the source and the target domain fi-

nal features in a unified network structure and to prevent

the network from overfitting to the source domain. The

MK-MMD [?] is adopted in [?] as the discrepancy metric

between the source and the target domains. Beyond the first

order statistic, second-order statistics are utilized in [?].

In addition to the hand-crafted distribution distance met-

rics, many recent efforts [?, ?] resort to adversarial training

by applying a feature discriminator that is trained alterna-

tively with the main network to do a binary classification

of distinguishing the features from the source and the tar-

get domain. The main network is trained to fool the feature

discriminator so that domain-invariant features contain no

information helping the discriminator to decide which do-

main the features come from.

3. Cross-range Adaptation

The cross-range adaptation is motivated by the fact that

the LiDAR-based detection accuracy degrades significantly

for far-range objects. While training a deep network for

3D detection, we usually have significantly more near-range

training samples, which dominates the training loss. As

shown in Figure 1, near-range objects are represented with

significantly denser points than far-range ones. Thus, the

obtained model usually exhibits superior near-range detec-



tion performance, but poor generalization to far-range de-

tection, which needs to be addressed, as self-driving moves

to highways and as new sensors with far-range capabilities

are being developed.

A point cloud is usually represented by a set of unordered

points with continuous values (x, y, z) denoting the carte-

sian coordinates in 3D space, and optional additional values

carrying other physical properties, e.g., reflection value r

in the KITTI dataset [?]. Directly processing point clouds

using off-the-shelf image-based object detection methods is

sub-optimal since point clouds are essentially irregular and

unordered, which are not suitable to be processed directly

using convolutional neural networks designed for gridded

features. Transforming point clouds to an evenly spaced

grid representation is usually adopted for object detection

in LiDAR [?, ?, ?].

In a gridded feature space, our proposed objective is to

align features across different ranges, at a chosen interme-

diate layer of a 3D object detection network. Such chosen

layer is referred to as the aligned layer. Layers preceding

such aligned layer, addressed as adapted layers, are tuned to

encourage far-range observed objects to produce consistent

features as similar objects observed at a near range. Layers

after the aligned layer, address as shared layers, determine

detection results based on the aligned features.

To improve the generalization to far-range object detec-

tion, we apply both adversarial global adaptation and fine-

grained local adaptation. For global adaptation, as shown

in Figure 2, we set the source domain and the target do-

main to be near-range features and far-range features of the

adapted layer, and use a feature discriminator to promote

consistent feature appearance across domains as discussed

in Sec. 3.1. we then apply an attention mechanism to fur-

ther align far-range features to near-range features of simi-

lar objects, exploiting the unique invariance of point clouds,

which is detailed in Section 3.2. The loss of both the global

and local adaptations are jointly propagated back to all the

layers preceding to the adapted layer. Note that the pro-

posed framework introduces no additional auxiliary param-

eters to a deep model.

3.1. Adversarial Global Adaptation

After transforming point clouds to an evenly spaced

grid representation, adversarial training can be adopted for

cross-range adaptation. Specifically, a feature discrimina-

tor is imposed at the aligned layer to tune parameters at

all preceding layers, so that features from far-range objects

become as if they come from near-range ones. The fea-

ture discriminator is implemented as a classifier C, which

takes both near-range and far-range features as inputs, and

is trained to identify which range each feature comes from.

(a) Original image.

(b) Image with projected points.

(c) Distance: 8m Num-

ber of points: 1305

(d) Distance: 13m

Number of points: 606

(e) Distance: 26m Num-

ber of points: 167

Figure 1. Illustration of the point density. (b) is generated by

projecting the point cloud onto the image, which clearly shows

that far-range objects are only covered by a very small amount of

points. We further select three objects in different distances and

plot the points in the corresponding 3D boxes in (c) (d) and (e).

The loss function of the discriminator is expressed as

LC(yn) = −
1

N

1∑

N

[yn log(ŷn) + (1− yn) log(1− ŷn)],

where N is the total number of features. yn ∈ [0, 1] indi-

cates a range label with ‘0’ for far-range and ‘1’ for near-

range, and ŷn is the predication from the feature discrim-

inator. The parameters of adapted layers and the feature

discriminator are updated alternatively. The loss of the de-

tection network becomes from LD to LD(1 − yn), which

encourages the adapted layers to produce unified features

to fool the feature discriminator. Following [?], we adopt

a patch-based discriminator, which only penalizes structure

at the scale of feature patches.

3.2. Fine-grained Local Adaptation

The above adversarial adaptation provides a global fea-

ture alignment, a fine-grained local adaptation is proposed

to further improve far-range performance. In point clouds,

an object has a consistent scale, regardless of viewing an-

gles and positions. In other words, LiDAR observation

patterns in the far-range areas repeat in near-range areas

for similar objects but with much denser points. Thus, we

can mine region pairs of similar patterns to further perform
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Figure 2. Illustration of the global adaptation for cross-range. The

source and the target domain are the near-range feature and the

far-range feature, respectively. A feature discriminator is applied

to promote range-invariant features. Note that we leave out the

area too close to the sensor where unique patterns exist, e.g., the

shadow of the data collecting car, that can lead to a quick overfit-

ting to the feature discriminator.

region-based feature adaptation. Note that similar tasks be-

come significantly harder for images, as we need to simul-

taneously handle changes in scales, viewing angles, illumi-

nation, etc. This is therefore a unique characteristic of point

clouds in general, and LiDAR in particular, we here explic-

itly exploit.

Given object annotations, during training, we divide ob-

jects in each mini-batch into two groups based on the range

associated, i.e., a far-range group F for objects beyond

a range threshold, and a near-range group N for objects

within the range threshold. To further encourage a far-range

object to share consistent features, at the aligned layer, as

similar objects at a near range, we compute the targeted fea-

ture of a far-range object as a weighted average of all object

features in the near-range group. The weight is determined

based on the object similarity in the original point cloud

space. Specifically, each object is represented as {oi, fi},

where oi denotes its representation in a point cloud space

parametrized by the width w, height h, and yaw-angle r;

and fi denotes its feature at the aligned layer of a deep net-

work. Given a far-range object {ot, ft}, its targeted feature

f̂t is determined as,

f̂t =
∑

i∈N

witfi, (1)

and the weight wit is computed as,

wit =
e|oi−ot|

∑
j∈N e|oj−ot|

. (2)

The final optimization loss then becomes

Ll =
∑

t∈F

||ft − f̂t||
2, (3)

which minimizes the distance to the corresponding target

feature for each far-range object. Note that we cut off the

gradient propagates through f̂t to prevent the network from

aligning cross-range features by degrading near-range fea-

tures.

4. Experiments

In this section, we present experiments to validate the

effectiveness of the proposed framework.

4.1. 3D Object Detection Methods

We evaluate the proposed adaptation methods on sev-

eral state-of-the-art BEV object detection frameworks. De-

spite significantly different network architectures adopted in

these frameworks, each can be briefly described as a two-

stage network as shown in Figure 3, where the first stage

is to transfer the un-ordered and irregular structure into a

pseudo-image representation, and a standard object detec-

tion head is then applied for 3D box prediction as the second

stage. Note that the first stage does not have to be a para-

metric network, e.g., for Complex-YOLO [?], the pseudo-

image is generated using predefined rules without learning.

We select three network architectures as baseline models

in the experiments, and demonstrate that the detection per-

formance of all three models can be significantly improved

with the proposed adaptation method, without any addi-

tional parameters to the models. Complex-YOLO [?] is se-

lected as it is an effective method that uses hand-craft rules

to generate the pseudo-image. VoxelNet [?] is selected as

it is a powerful network architecture that motivated several

follow-up methods. SECOND [?] is selected as it reports

at the moment the best detection performance. These three

network architectures share a similar detection pipeline as

shown in Figure 3. In the encoder stage, Complex-YOLO

generates a pseudo-image using predefined rules, SECOND

and VoxelNet adopt operations on local regions, e.g., the

VFE layers and the sparse convolutional layers. Such oper-

ations are not suitable for performing adaptation since they

are all local operations that operate on a small region on the

feature map. Therefore, we propose to apply the adapta-

tion on the intermediate layer of the decoder stage as shown

in Figure 3, since the corresponding layer has both strong

semantic encoded and compact feature size.

4.2. Quantitative Results

We apply the proposed adaptation framework on the

above three network models, and report the quantitative re-

sults for fair comparisons.

Dataset. The experiments for cross-range adaptation are

performed on the KITTI benchmark [?]. We follow the

standard settings as in [?] to split the provided 7,481 sam-

ples into a training set of 3,712 samples and an evaluation

set of 3,769 samples. The evaluation of a detector for KITTI

3D object detection is performed on three levels of diffi-

culty: easy, moderate, and hard. The difficulty assessment

is based on the object heights, occlusion, and truncation.
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Raw Point Cloud

Pseudo-image

Adaptation

Figure 3. Overview of the two-stage BEV object detection pipeline. Different methods apply different techniques to transfer un-ordered

point clouds to pseudo-images in either parametric or non-parametric ways. A decoder which is usually formed as a variant of classic

detection networks is then applied to generate the final prediction. Our adaptation methods are performed at an intermediate layer of the

decoder stage.

Methods
Near-range (0-40m) Full-range (0-70m)

Easy Moderate Hard Easy Moderate Hard

3
D

A
P

Complex-YOLO (w/o) 85.42 76.33 69.12 85.24 73.51 68.33

Complex-YOLO (w) 85.90 77.01 72.98 85.89 77.02 71.43

VoxelNet (w/o) 88.12 77.12 75.42 87.98 76.12 74.42

VoxelNet (w) 89.04 78.12 76.01 89.02 77.98 75.82

SECOND (w/o) 88.28 85.21 77.57 88.07 77.12 75.27

SECOND (w) 88.81 85.84 78.01 88.80 78.31 76.16

2
D

A
P

Complex-YOLO (w/o) 90.62 88.89 87.12 90.48 88.48 86.76

Complex-YOLO (w) 90.62 88.91 87.12 90.61 88.82 88.24

VoxelNet (w/o) 90.25 89.98 89.15 89.46 87.90 87.72

VoxelNet (w) 90.28 90.02 89.65 90.07 89.19 88.42

SECOND (w/o) 90.77 90.32 89.15 90.26 89.19 88.08

SECOND (w) 90.78 90.40 89.94 90.78 89.69 88.83

B
E

V
A

P

Complex-YOLO (w/o) 89.72 88.99 87.66 89.45 80.90 79.49

Complex-YOLO (w) 89.92 89.05 88.08 89.64 82.01 81.85

VoxelNet (w/o) 89.72 88.99 87.66 89.72 87.37 79.23

VoxelNet (w) 89.74 89.12 88.18 89.72 88.17 80.02

SECOND (w/o) 88.62 87.81 86.39 88.62 86.25 86.21

SECOND (w) 90.34 89.37 87.67 90.32 87.82 87.51

Table 1. Average precisions. Three metrics including 3D bounding box, 3D bounding box, and BEV are reported. Best results are marked

in bold.

Metrics. Following the official KITII evaluation detec-

tion metrics, we report average precision (AP) on 2D box,

bird’s eye view (BEV), and 3D box. The results on 2D box

are computed by projecting the 3D boxes on to the image

planes, and calculating the average precision in 2D space.

Note that the 3D box precision is the primary metric in our

work.

Implementations. Since there is no official implemen-

tation for Complex-YOLO [?] and VoxelNet [?], we fol-

low the descriptions in the papers and reimplement the net-

works. For the implementation of SECOND, we directly

use the authors’ publicly available implementation for a fair

comparison.1 All the experiments are implemented in Py-

Torch [?], and are trained on a single GTX 1080Ti graphic

1https://github.com/traveller59/second.pytorch



Methods
3D AP 2D AP BEV AP

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND (w/o) 0.0 5.52 5.52 0.0 9.09 12.30 0.0 10.91 11.76

SECOND (w) 0.0 7.02 7.02 0.0 13.64 13.64 0.0 13.22 13.22

Table 2. Far-range (60-70m) only comparisons. Note the for the easy level, the AP is always 0 since there is no easy object in this area.

Figure 4. Histograms for the distance of cars to the sensor for all

the three datasets. We choose the car class for illustration.

card.

Since all these three networks we select use different

configurations for object categories, we only report detec-

tion results on cars, as cars are the object with a signifi-

cantly dominant amount in the dataset for a reliable com-

parison. Following [?], we set the full scale detection range

to be [−3, 1] × [−40, 40] × [0, 70.4] meters along the Z, Y,

X axis, respectively. Note that as clearly indicated in [?],

Complex-YOLO neglects the objects that are farther than

40m for the sake of efficiency. We use the same range of

[0, 70.4] meters along the X axis across all the experiments

for a fair comparison. Based on the distribution presented

in Figure 4, we set the range threshold to be 40m. We report

detection accuracies on near-range 0-40m and full-range 0-

90m with and without adaptation, to demonstrate that the

proposed framework can improve the far-range detection

accuracy without any compromise on the near-range per-

formance. The qualitative results performed on the three

networks with and without adaptation are presented in Ta-

ble 1. We observe from the results that the proposed adap-

tation framework not only boosts the far-range performance

as shown in Table 2, but also increase the near-range per-

formance at the same time, thus we achieve a superior full-

range detection accuracy in Table 1.

We further plot the AP-distance curves in different train-

ing stages in Figure 5. Our framework significantly accel-

erates the training speed in the early stage as shown in Fig-

ure 5(a), and helps the network converge with a better per-

formance (30000 iterations) as shown in Figure 5(d). In the

entire training procedure, the proposed framework consis-

tently improves the performance in both the near-range and

the far-range areas. We further present a comparison per-

formed on SECOND to validate the performance growth in

the far-range only area, the results are presented in Table 2.

4.3. Qualitative Results

Qualitative results are presented in Figure 6. We present

paired samples that are generated by SECOND [?] with and

without the proposed adaptation framework, respectively.

We consistently observe that the proposed framework im-

proves the quality in the far-range area, e.g., the false pos-

itives are reduced, and hard positive objects are detected.

Meanwhile, the performance in the near-range area remain

robust without any degradation. Note that the networks for

presenting the paired examples are trained using exact the

same initialization and mini-batches by fixing the random

seed for a fair comparison.

4.4. Ablation Studies

We further provide more experiment details and self-

comparisons. All the experiments presented in the abla-

tion studies are conducted on SECOND [?]. We select

SECOND since it reports the best results among the three

networks we adopt, and the experiments are implemented

based on the publicly available source code online. Specif-

ically, we validate the contributions of the proposed global

and local adaptation by imposing each adaptation method

individually on the training of SECOND, and compare the

final performances. The results are presented in Table 3.

4.5. Cross-device Adaptation

The proposed framework on cross-range feature adapta-

tion makes the first step on studying the adaptation in point

clouds. Here we take one further step by showing the frame-

work can be extended to, for example, a more challenging

cross-device scenario. The experiment is conducted by in-

troducing other datasets, i.e., nuScenes [?] 3D object detec-

tion dataset and our own dataset,2 which are collected using

different devices. As we see from Figure 4, our dataset has a

significantly larger range, and adapting to it without heavily

re-labeling is critical for its full exploitation.

Sensor parameters for each dataset are presented in Ta-

ble 4. Our dataset provides the densest point clouds with

128 channels, and farther range with an effective range of

2The dataset will be publicly available.



(a) Comparion at 6,000 iterations. (b) Comparion at 12,000 iterations. (c) Comparion at 21,000 iterations. (d) Comparion at 30,000 iterations.

Figure 5. 3D bbox AP at different iterations. The cures are obtained by training SECOND with and without the proposed adaptation

framework. Training with adaptation gives a significant improvement on AP at the initial stage. It’s clearly demonstrated that the proposed

adaptation delivers not only a performance improvement on far-range objects, but also a improvement at the near-range objects.

(a) Reducing false positive. (b) Reducing false positive.

(c) Improving far-range recall. (d) Improving far-range recall.

Figure 6. Qualitative results (please zoom in for details). We present paired samples where in each pair, the left image is the result trained

on the original network, while the right image is the result with the proposed adaptation framework. We use red and blue boxes to denote

detections and ground truth boxes, respectively. It’s clearly shown that the proposed framework increases the recall on far-range objects

and reduces the false positive in the far-range area.

250m. The significant gap among the parameters of the

above sensors makes them a set of perfect comparisons

for performing cross-sensor experiments. The significant

cross-device gap can be observed in Figure 7. Although

nuScenes provides annotations on all directions, here we

only considerate objects that can be seen in the front camera

for a fair comparison with KITTI. There are totally 28,742

cars in the 7,481 frames in KITTI training set, and totally

8,426 cars in the 3,977 frames in nuScenes V0.1. In our

dataset, there are totally 8,550 cars annotated in 898 frames.

For both KITTI and nuScenes datasets, it is clearly shown

in Figure 4 that the objects in about 50m have a dominant

number and only a small number of objects are more than

70m away from the sensor. Our dataset has a clearly more

average distribution, and a considerably large amount of ob-

jects in the far range (up to 250m).

We use only the initial released proportion of nuScenes

V0.1 dataset which contains 3977 frames with annotations.

We split the 3977 frame into a training set with the first 2000

frames, and a testing set with the rest 1977 frames. For our

proposed new dataset, there are totally 898 frames in the ini-

tial release, and we use the first 600 frames for training, and

the rest for testing. We use KITTI as the source domain, and

conduct two experiments using nuScenes and our dataset as

the target domain, respective. The proposed global and lo-

cal adaptations are imposed to promote objects in the tar-



Methods
Near-range (0-40m) Full-range (0-70m)

Easy Moderate Hard Easy Moderate Hard

SECOND (w/o) 88.28 85.21 77.57 88.07 77.12 75.27

SECOND (w L) 88.29 85.41 77.58 88.23 77.88 75.74

SECOND (w G) 88.62 85.51 77.99 88.60 78.02 75.57

SECOND (w L+G) 88.81 85.84 78.01 88.80 78.31 76.16

Table 3. Ablation study. 3D bounding box average precision. L and G denote local adaptation and global adaptation respectively. The

results are obtained by running five rounds of comparisons, where an identical random seed is used in each round for each experiment.

The presented result is the average of the five round results. The proposed adaptation further improves the best detection model without

introducing additional parameters or computation.

(a) Sample for KITTI. (b) Sample for nuScenes.

(c) Sample for our dataset.

Figure 7. A side-by-side comparison on the point density of sam-

ples from KITTI, nuScenes, and our dataset (please zoom in for

details). We clearly observe that the nuScenes data has the low-

est density, and our data has densest points and longest effective

range.

Dataset # of channels Effective range

nuScenes 32 70m

KITTI 64 120m

Our dataset 64 250m

Table 4. Sensors that used for the collection of different dataset.

High density and far effective range make our dataset a strong

benchmark for evaluating cross-device adaptation.

get dataset to have consistent feature with objects in KITTI.

The experiment is also conducted on the car (‘vehicle.car’

for nuScenes) class only. We compare our results with two

baselines, training using target dataset only, and training

both source and target datasets jointly without adaptation.

Method AP

nuScenes only 36.2

Joint 44.3

Joint + Adaptation (w L+G) 47.4

Our data only 31.7

Joint 34.9

Joint + Adaptation (w L+G) 37.7

Table 5. Cross-device adaptation. Experiments are performed on

two datasets. Joint training with proposed adaptation methods

consistently improve the performance on target datasets.

We report 3D box AP across the entire range only with no

subsets of different difficulties. The results are presented in

Table 5. Joint training the samples from two datasets with

the proposed adaptations delivers the best performance. We

hypothesize that the small amount of samples in nuScenes

is not enough for training a robust detector. Massive data in

KITTI dataset and the promoted consistent features improve

the robustness for the training on nuScenes and our dataset,

so that higher performances are observed on the test sets.

5. Conclusion and Future Work

We proposed for the first time a model adaptation for

object detection in 3D point clouds. Specifically, we ad-

dressed cross-range and cross-device adaptation using ad-

versarial global adaptation and fine-grained local adapta-

tion. We evaluated our adaptation method on various BEV-

based object detection methods, and demonstrated that the

combinations of the global and local adaptation can signif-

icantly improve model detection accuracy without adding

any auxiliary parameters to the model. Beyond the range

and device adaptations here studied, we will further investi-

gate adaptations under other settings, e.g., adaptation across

point clouds collected with different scanning patterns (i.e.,

Gaussian pattern and uniform pattern), and developing fur-

ther adaptation methods that deliver better adaptation re-

sults with fewer or even no annotations on target domain.
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