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Abstract. Recent advances in deep learning has lead to rapid develop-
ments in the field of image retrieval. However, the best performing archi-
tectures incur significant computational cost. The paper addresses this
issue using knowledge distillation for metric learning problems. Unlike
previous approaches, our proposed method jointly addresses the follow-
ing constraints: i) limited queries to teacher model, ii) black box teacher
model with access to the final output representation, and iii) small frac-
tion of original training data without any ground-truth labels. In addi-
tion, the distillation method does not require the student and teacher to
have same dimensionality. The key idea is to augment the original train-
ing set with additional samples by performing linear interpolation in the
final output representation space. In low training sample settings, our
approach outperforms the fully supervised baseline approach on ROx-
ford5k and RParis6k with the least possible teacher supervision.

1 Introduction

Instance level image retrieval have dramatically improved with the advent of
Convolutional Neural Networks (CNN) [1-3]. The improvement in performance
is particularly driven by deeper networks such as VGG [4], ResNet [5] family of
networks. However, with the increased accuracy also comes higher inference time
and computational burden at test time. There are two main ideas that have been
proposed to address this challenge. One is to quantize(and/or prune) the trained
bigger network to a lighter version with reduced precision and weights but with
the same depth [6]. The other direction is to transfer knowledge from the bigger
network (teacher model) to a different but much smaller and lighter network
(student model). In this paper, we focus on the second direction, popularly
known as Knowledge Distillation (KD)[7,8], although it can be applied to the
former case as well.

The idea of using information from a teacher model(s) to train a student
model was first proposed by Caruana [7], and, was later improved upon by Hin-
ton [8]. Instead of providing a one hot vector as target or ground-truth class
label, KD aims to distill additional information from the teacher to the student
model. Such additional knowledge is usually constituted by the output at various
layers of the teacher model, e.g. logits from the layer before the softmax in the
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teacher constitute softer targets for the student. Traditionally proposed for clas-
sification problem, KD was later extended to the metric learning scenario [9, 10].
However, the knowledge being distilled was addressed differently as traditional
KD methods did not perform well in this setting [9,10]. While [9] proposed
to distill the teacher ranking, [10] proposed to distill the teacher distance for a
given query-database sample(s). In both cases, the student model tries to learn
the relation (rank/distance) between query-database samples instead of learning
the exact input-output mapping. This allows the student network to maintain
its own output dimensionality. We refer to these methods as Metric Knowledge
Distillation (MKD) methods.

In this paper we address MKD from the perspective of data-efficiency. While
existing distillation approaches [9,10] have addressed test time efficiency by
compressing the knowledge from cumbersome models onto compact ones, they
have failed to address training time efficiency. We address this issue by defining
the training time efficiency as i) the number of queries to the teacher model
to obtain teacher knowledge (pseudo ground-truth) in the form of final output
representation or logits, and ii) the number of training samples required to distill
the teacher knowledge onto the student model. In this paper we propose an MKD
method under the above mentioned budget constraints while operating under the
setting of black-box teacher models, preserving student-teacher dimensionality
and achieving comparable performance to the no-budget scenario. Large scale
datasets are costly in terms of memory (storage), computation (training) and
economic (data accumulation /labelling). In addition private data such as trained
teacher models or full training dataset can have limited or partial access due to
privacy concerns. OQur proposed method reduces the dependency on large scale
datasets for learning new models while being efficient also during training.

The key ingredient in our proposed method is the idea of mixup [11,12]. Us-
ing mixup, one can augment a small original training set with large number of
additional samples by convex combination of the training samples. Such idea has
been recently used in [13] to address data-efficient knowledge distillation using
mixup based data augmentations. While the existing mixup based methods have
addressed classification problems, we extend the idea to the problem of metric
learning. In contrast to [11-13], we perform mixup at the global image represen-
tation level. That is, each image is represented by a global representation vector
obtained by spatial encoding of 2D representation maps from a CNN. Thereafter,
augmented representations are obtained by linearly interpolating between repre-
sentations from original samples. We then perform distillation between teacher
and student models in the joint space of original and augmented global represen-
tations. In particular we train the student model to mimic the teacher ranking
for each sample in the joint representation space of respective models using the
recently proposed ranking loss [14]. Representation level mixup requires orders
of magnitude less queries to the teacher model compared to mixup at the input
image level [13]. In the process our proposed method still achieves comparable
performance to fully supervised models trained on the full training dataset.



Efficient Ranking Distillation 3

2 Related Work

We describe the image retrieval and knowledge distillation based related work
in this section

Image Retrieval Before the advent of CNNs, earlier works addressed the im-
age retrieval problem using SIFT [15] based local descriptors [16], and addi-
tionally encoded into global representations [17, 18] followed by geometric veri-
fication [19]. Since then CNN based methods [1,2,20-22, 3] have improved the
performance on challenging benchmarks such as Oxford5k and Paris6k [23]. The
success can be attributed to large datasets [24] , improved global encoding meth-
ods [25-27,22], and robust ranking loss functions [28,29,2,14]. In particular,
the Average Precision (AP) loss [14] has the least training compute overhead by
avoiding hard negative mining with joint ranking supervision over large batches
of images.

Knowledge Distillation Knowledge distillation can be traced back to the work
of Breiman et al. [30] where the knowledge of multiple tree models were distilled
onto a single model. The term knowledge distillation (KD) was itself coined by
Hinton et al. in his work [8]. In addition to the standard supervisory signals, the
student model was additionally trained to match the softmax distribution of a
heavier teacher model. Since then, several works have been proposed that provide
additional information apart from the softmax logits. [31] and [32] propose to
transfer attention maps. Self-distillation where the student and the teacher share
the same network architecture have also been proposed [33, 34].

For image retrieval and metric learning in general, Chen et al. [9] propose to

transfer rank information. Similarly, Park et al. [10] proposed to distill distance
information between teacher and student models. Both these methods show im-
provements over standard KD approaches.
Mixup.Mixup based regularizers were first proposed by [11,35]. Later, mixup
based interpolation was extended to hidden representations of a CNN by several
works [12,36]. Recently, [13] proposed mixup based augmentation for data-
efficient knowledge distillation. For each mixed sample, the above approaches
require a new feed-forward pass through the CNN. Instead our approach per-
forms mixing of the global vector representations requiring just a single feed-
forward pass. Mixed samples can be obtained by simply interpolating between
original global representations.

3 Proposed Method

In this section we propose an algorithm to train a compact student model, S
by distilling the knowledge from a cumbersome teacher model, T. The key idea
of knowledge distillation in classification problem is to use soft labels from T
as targets in addition to ground-truth hard labels. Soft labels encode semantic
similarity by providing inter class similarity information. However, we consider
a general scenario where ground-truth labels are not known apriori. In addition
metric learning involves optimizing the representation space directly without ex-
plicit label prediction as in classification problems. Thus it is not clear how to
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generate and incorporate teacher soft labels for unsupervised knowledge distil-
lation in the domain of metric learning problems.

First we present preliminaries followed by the data augmentation algorithm
to address low training sample complexity. This is followed by teacher label
generation and computing the ranking loss to train the student model. Finally,
we present the algorithm combining the above steps in a single framework.

3.1 Preliminaries

Given a batch of images, B = {Ii,..I;..Ig}, we obtain teacher and student

I2 normalized output representations, fi = {be}Li‘l € RN7xIBl and f5 =

{FE12) € RNsXIBI where fT = eT(T(I,)) € RN | f5 = €5(S(1))) € RYs.
T(.) and S(.) are teacher and student convolutional neural networks respectively,
with N7, Ng being their respective final output dimensionality. As database size
in image retrieval problems tends towards millions, it is common practise to store
global representations per image by encoding the 3D representation map from
the CNNs into 1D vectors. Popular encoding methods from literature include
GeM [37], MAC [1], RMAC [26]. As we consider the teacher model as black-box
with access to the final vector encoded global representation, we represent the
student and teacher encoding functions separately with e and e® respectively.
These encoding functions can represent any of the above mentioned encoding
methods. As the global representations are [2 normalized, a simple dot product
is used to compute similarity values.

3.2 Database Augmentation

Acquiring large training datasets and labelling the ground-truth incurs large
computational resources, huge memory footprint and high economic costs. We
address this using knowledge distillation by replacing large datasets with models
trained on them and a small amount of the original training samples. This also
addresses practical scenarios where teacher models have limited access rights, or
the whole training set is not made public. Furthermore, extracting representa-
tions for the whole dataset using both the teacher and student model is inefficient
as it leads to increased training costs.

Given a small amount of training samples, D, we extract both teacher and
student global representations, f7 and f° for a given batch, B. We augment
the representations from each batch using mixup [11],[12]. These works perform
mixup at the local level, while we perform mixup at the global representation
level. In particular, given representations for images, I;,I; € B, we perform
representation mixup as follows:

fig = Afi+ (=N, (1)

where A ~ beta(a, @) is the mixing coefficient. Instead of sampling A per training
sample, we only sample a single value of A per batch. The mixed representations
are further /2 normalized.
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There are several benefits to performing mixup at the global representation
level. It is to be noted that since we consider black-box teacher models, we
can only consider InputMizup [11] and not ManifoldMizup [12] as the later re-
quires access to intermediate representation maps. However, InputMizup which
performs mixup at the input image level, requires a new feed-forward pass of
the mixed input image through the network to obtain representations. This in-
creases the number of queries to the teacher model to be much more than |D].
The same applies for the student network, which in total significantly increase
the training cost. The same costs applies for ManifoldMizup considering white-
box teacher models. In contrast, global representation mixup only requires at
most |D| queries to the teacher model, and large amount additional represen-
tations can be obtained at a marginal overhead cost. To give the reader an
estimate, given a batch of B = 1000 images, mixing each image with R = 10
other images from the batch will result in 10000 samples. For InputMizup this
will require 10000 X ep queries to the teacher model where ep is the number of
training epochs. Our approach will only require 1000 queries.

3.3 Label Generation

Previously, mixup has been addressed in classification domains [11,12,38]. In
such settings, the label of the mixed sample is obtained by linear interpolation
of respective labels of the original samples by A. In this section, we show how to
generate labels for student model using global teacher representations.

Let the joint set of representations be FT = fLJfL, F¥ = f5Uf3,
where f%,,f5, are the augmented teacher and student representations. Let Z =
{1,2,...,(|B|+|B’|)} be the joint sample index set. We are interested in comput-
ing a binary label matrix Y € RIZ*14l  where each row Y, € R¥IZ| represents
the label vector corresponding to the ¢ representation. Before we explain how
the binary values are computed for Y;, we first formally define a positive index
set P, C Z such that Vz € Z

Y,(z) = {1, if 2 € P, @

0, otherwise

The matrix Y is symmetric (Y = Y7) ie. Y,(2) = Y.(q). The binary label
1 signifies the corresponding representations, qu , fT are similar. Consequently,
the corresponding student representations, ff , f2 are trained to be similar. The
measure of similarity is defined next where we present methods to compute the
elements of F,.

Similarity Labelling (SL). The first measure of similarity is based on cosine
similarity in the representation space. We first compute the teacher and student
similarity matrices, ST = (FT)T(FT), §% = (F5)T(F?) € RI4IXIZ]_ The positive
set P, constitutes the Euclidean Nearest Neighbors (ENN) and is computed as
P, ={z| 8] (z) > 7}Vz € Z, where 7 € [0,1] is a similarity threshold. We call
this similarity based labelling Similarity Labelling (SL). If 7 is too high, P, will
only contain near duplicate representations, while keeping it too low will include
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too many false positives. We experiment with different values of 7 and found
that optimal performance is achieved with moderate values of 7 (c.f. Sec. 6).
Mixup Labelling. As observed the positive set, P, under similarity labelling
is constituted by the ENN. Thus for representations falling in low density re-
gions, the positive sets will be empty or have low cardinality. Empty positive
sets means zero loss and thus no gradient to train the model. This becomes
an issue if most of the samples fall in such low density regions (c.f. Sec. 7).
To address this issue we introduce mixup labelling (ML) based on the follow-
ing assumption: the global representations contain semantic concepts, so mixed
representation will be closer to the positive sets of representations being mixed,
than the other representations. Formally, if representations, fI, f! are mixed
resulting in the corresponding mixed representation, fi indexed at kr € Z, and
the corresponding positive sets obtained from similarity labelling be Py, P, and
Py, respectively. Then Py, = Py, U P U P,.. Thereafter, using Eq. 2 the label
matrix, Y is computed while maintaining matrix symmetry.

3.4 Loss Function

In this section we show how to compute the loss given the student similarity
matrix, S° and teacher label matrix, Y. To realize this, we use the listwise loss,
known as Average Precision Loss (AP) [14]. The loss maximizes the distance
between histogram of positive and negative similarity scores. For brevity we
elaborate the loss function below:

The smularlty interval SS [0,1]*%1Z] is divided into C' — 1 bins of width
Ac = #%5. Let ¢y = 1 — (b— 1)Ac, b=1...C represent the center of the b'" bin.
Average Precision is generally computed at each rank, r = 1...|Z|. However, as
rank assignment is non-differentiable, the images are instead assigned to bins
using the soft bin assignment as follows:

p(Sf(i), b) = max (1 - Wﬁ) . (3)

Here, p represents the probability that the i*" image occupies the b*" bin condi-
tioned on its similarity to the query, ¢ based on S;f . The AP is then computed
in each bin as follows:

Yoy p(S5,0)TY,

Zb’:l p(szzs’b/)Tl ’

p(S;. b)Y,
Nq

Pr(S5,Y,,b) =

ARc(S?,Y,,b) = : ()

The AP loss for each ¢ is computed as :

—uZPr (S5,Y,,b) ARc(SS,Yy,,b). (6)
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Algorithm 1 Rank Distillation

REQUIRE: Teacher & Student representation f& = {ff 2.1, fa = {f°}2,
REQUIRE:Labelling functions: SL(.), M L(.)

REQUIRE:Loss function: AP(.)

REQUIRE: 7, R, \

OUTPUT: Loss value

1: Initialize L = {} > store loss values.

2: 55« (fB)"(f3)

3: Py < SL(SZ, 7). > Initial positive set.

4: for r=1,2..., R do

5 Initialize F7 = {}, F¥ = {} > store original & augmented samples.
6 Initialize MIX = {} > store indices of mixing & mixed samples.

T {RTRE TR FPRE < (PR
8: for k=1,2..,|B|do
9: Sample indeX ri from range (1, |B|)
10:

Flgjir < Mi + Q=X F
11: Fox < A+ 0= f5,
12: F |SB‘ 4 i -Tequires_grad = False > Restrict back-propagation.
13: MIX store(k,rk, |B| + k) > Store mixing information.
14:  end for
15: ST « (FOYW(FT), 8° « (F5)T(F®) > Compute teacher & student similarity
matrix.

16:  Ps < SL(ST,7). > Positive set based on SL.

17: Py « ML(P,, MIX) 1> Positive set based on ML.
18: P <+ P; U P,,. > Final positive set based.

19:  Compute Y using P> Eq. 2

20: L, < AP(Y,S%)> Compute Average Precision Loss
21: end for

22: L+ 1/R>% | L, > Total loss

23: return L

The final loss function to be optimized is defined as :

12|

‘Z| ZAP (7)

3.5 Algorithm

Given the training set, D we first extract all the teacher representations,
5= {fr }‘fj‘l Thereafter for each epoch, ep, we sample a batch of B images
from D. We then extract the student representations, f5 = { fgg }LBll and from f
obtain the teacher representations f5 = { fb lB‘
the loss as described in Algorithm 1.

First, we compute the initial positive set, P, based on similarity labelling
(SL) and teacher representations, f&. Next, we introduce the mixing iterator,

. We now proceed to compute
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R. In each iteration, r = 1,2, ... R we iterate over the following steps: 1) Mix each
student and teacher representation, i, f, k = 1,2..|B| with the representation,
fre L, ;qk € fg of a random sample 7. The mixed representations are con-
catenated with the original representations resulting in the joint representation
set, FT € RNt>2Bl S ¢ RNsx2B| where the first N x |B| are the original
representations while the bottom N x | B| are mixed representations respectively.
2) Simultaneously with the previous step we store the index information of mix-
ing samples (k,ry) and the mixed sample (|B|+ k), Vk = 1...|B| in the variable,
MIX.3) Given FT, F¥ we compute the teacher and student similarity matrices,
ST 89, 4) Next we proceed to label generation. Using the similarity threshold,
7 and ST we first compute the positive set, Py = {Pk}i‘fll based on similarity
labelling (SL). Thereafter, using the mixing information in MIX and P, we per-
form mixup labelling (ML) to compute the mixup positive set, P,, = {Pk}i‘j‘Bl.
The final positive set, P is obtained by combining similarity and mixup positive
sets. The label matrix, Y € R2IBI*2IBl is formed using P. 5) Finally, we compute
the Average Precision (AP) loss, L, using teacher label matrix, Y and student
similarity matrix, S¥. After r iterations we have R loss values, {L,}® , which
are then averaged followed by back-propagation. It is to be noted that the mixed
representations are not used to back-propagate gradients (line 12 in Algorithm
1).

We now explain the rationale behind introducing R. Under the current set-
ting, the number of mixed representations used to compute the final loss is | B| R.
If these mixed representations were jointly used in computing the final loss the
size of the similarity and label matrices will be ((|B| + |B|R)?). For values of
| B|=1000, R=10 used in this work, the size will be ~ 100007 . Loss and gradient
computation becomes considerably slow under this setting. Instead, by dividing
the loss computation into R steps, we are still able to leverage | B|R mixed rep-
resentations, while the final similarity matrices are of size (2|B|)? ~ 2000%. This
leads to comparable performance while increasing training efficiency.

4 Implementation details

Training dataset. We use the training dataset used in [1]. The dataset was
initially introduced in [24] and consists of 7.4 million internet photo collections
of popular landmarks around the world. The images are passed through an SfM
pipeline [1] to create clusters of images (class labels). This process results in 163k
images clustered into about 700 classes. Training dataset consists of randomly
selected 550 classes containing 133k images. We refer to this dataset as SfMFr.
Network Training. We used the publicly available trained Resnet101 models
by Radenovic et al. [37] trained on SfMFr as teacher models, T. MobileNetV2
(MVNetV2) and Resnet34 pre-trained on ImageNet [39] are used as the student
models S1 and S2 repsectively. We randomly sample D = 4000 images from
SfMPFr. The network is trained with a batch size, B = 1000 which are randomly
sampled from the training set, D. We used Adam [40] optimizer with an initial
learning rate of Iy = 1 x 10~*, exponential decay I exp(—0.01 X ep) every epoch,
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Table 1: Different networks with the number of respective parameters and time
taken to process 1 image in multi-scale mode.

Method Param Time/Image
ResNet101 42M 60ms
ResNet34 21M 20ms
MVNetV2 1.8M 10ms

ep. Weight decay was set to 1 x 107, Images were rescaled to 362 pixels on the
longest side while maintaining the aspect ratio. Training is done for 30 epochs on
GeForce RTX GPU with 11GB memory. We use generalized mean pooling (GeM)
[37] to obtain global representations for each image. The global descriptors are
subsequently [2 normalized.

We list the hyper-parameters associated with our algorithm are 7 = 0.75, R
= 10. We use the same hyper-parameter settings for both the student networks,
S1 and S2.

Baselines. We train MVNetV2, Resnet34 using contrastive loss (CL) and Aver-
age Precision (AP) loss on SfMFr dataset. For CL, we mine hard negatives every
epoch from a random pool of 22K images, and keep top 5 negatives. Margin is
set to 0.65. Batch size are 5 and 4000 for CL and AP respectively. The learning
rate was set to 5 x 107 for CL and 1 x 10~ for AP.

Test dataset We evaluate our approaches on standard image retrieval bench-
mark datasets, Oxford5k (Oxf) [41],Paris6k (Par) [42], ROxford5k (ROxf) [23],
and RParis (RPar) [23] datasets. The evaluation metric is mean Average Preci-
sion (mAP). The test sets consists of 55 queries and several thousand database
images (Oxf: 5k, Par: 6k), while their revisited counterparts have 70 queries each
with 4k and 6k database images respectively. The revisited datasets also have
3 splits: Easy (E), Medium (M), and Hard (H) defining the difficulty level of
retrieving the corresponding database images in the set. The queries are anno-
tated with a bounding box specifying the landmark of interest. Similar to prior
works, we crop the query images with bounding box.

During evaluation, we extract multi-scale global representations with the
scales: 1, 1/v/2, and 1/2. The resulting descriptors are combined using GeM
pooling. The resulting vector is /2 normalized. Furthermore, due to low sam-
ple complexity we do not use any validation data during training. Instead, we
perform weight averaging [43] to combine model performances from different
epochs. In particular, the final student network used for evaluation is obtained
by averaging the weights of the trained student models from the 20** and 30"
epoch.

The number of parameters and average multi-scale inference time during
evaluation are presented in Tab. 1 for teacher and student models.
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Table 2: Performance comparison of compact student networks MobileNetV2
(S1,MVnetV2) and Resnet34 (S2,ResNet34) trained using our method, and base-
line methods : without augmentation (no -aug), Average Precision (AP), con-
trastive loss (CL). Evaluation is done on image retrieval datasets : Oxford (Oxf),
Paris (Par), ROxford (ROxf), RParis (RPar). The revisited datasets, ROxf, RPar
are evaluated using Easy (E), Medium (M) and Hard (H) splits. Evaluation met-
ric is mAP. T/S denotes the teacher /student role of the model. Our method
does not require training labels.

ROxf RPar
Method |D| | Oxf E‘M‘H Par E‘M‘H
Resnet101 (T,CL) | 120k [81.2]73.8]55.8[27.4[87.8]86.5]70.0[44.8
Compact student networks
MVnetV2 (CL) 120k |74.5]66.5|48.9(20.8|85.7(84.6|66.2|39.0
MVnetV?2 (AP) 120k |74.2|67.2|51.0|24.3|85.0|83.7|65.6 |39.5
MVNetV2 (S1, no-aug) 4k |76.1]67.0|51.0|25.8|84.6|84.0|66.1|40.4
MVnetV2 (S1) 4k  |78.7|70.8/53.8/26.9|84.0|82.1(65.0(39.4
ResNet34 (CL) 120k |77.9/70.7|51.9]23.1|86.5(85.9/69.5|44.0
ResNet34 (AP) 120k |79.6]70.5|53.3124.9|86.3(86.4|69.2(43.1
ResNet34 (S2,no-aug) 4k 77.3170.7150.822.5{84.9|83.8|68.0(42.8
ResNet34 (S2) 4k |78.1|74.1|55.1|25.9(85.4|84.2|68.6 43.8
5 Results

In this section we compare our proposed algorithms on the standard retrieval
datasets. In addition we also compare with baseline methods and perform de-
tailed ablation study.
Baseline comparison. We compare the performance of the student models, S1:
MVNetV2, S2: ResNet34 trained using our proposed method with the teacher
model, T: ResNet1l01 and the same student models trained without the pro-
posed augmentation. In addition we also consider student models trained with
ground-truth labels on the full dataset with loss functions: contrastive loss (CL)
and average precision (AP). Results are presented in Tab. 2. Results show that
student models using our proposed method are able to match the performance of
the supervised counterparts. It is to be noted that our method was only trained
on 4k images. Compared to it, the supervised models based on CL and AP losses
were trained using the full dataset of 120k images. Among the student models,
ResNet34 outperforms MVNetV2 by 2-3% on ROxford and RParis datasets. This
can be attributed to the higher capacity of ResNet34 model (c.f. Tab. 1).
Furthermore, student models trained without the proposed global represen-
tation augmentation performs poorly compared to our proposed method with
augmentation. Baseline student models trained only on D = 4k dataset with
AP loss and full ground-truth label supervision has similar performance to the
no-augmentations setting. The decrease in performance in low sample setting
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Table 3: Comparison of different mixup methods in terms of performance and
computational costs. Mixed indicates the number of mixed samples generated.
Cost represents the number of feed-forward pass required through the teacher
model. Similar costs also extend to student model. The number of original train-
ing samples is 4k.

. ROxf RPar
Method Mixed Cost B ‘ N ‘ 1 & ‘ Vi ‘ i
Ours,no-aug 0k 4k 70.7(50.8(22.5|83.8|68.0|42.8
Inp Mix 1k 5k 71.9]52.3(24.4(83.1|67.1|40.5
Inp Mix 8k 12k 72.6(52.7124.9(82.2|64.7|37.1
Inp Mix 32k 36k 73.4153.1(24.5|81.7|65.0|38.2
Ours, with-aug 600k 4k 74.1/55.1(25.9|84.2|68.6(43.8

can be attributed to the fact that in a randomly selected training set D, large
number of samples, ¢ € D have empty or very small sized positive set P,. Thus,
without any positives there is no error signal that can lead to learning repre-
sentations from these images. Augmentation addresses this issue by generating
positives from the mixed samples.

The computational gains of the proposed global mixup over the baseline in-
put mixup approach is shown in Tab. 3. Generating more samples using input
mixup leads to improvement in ROxford dataset while it decreases on RParis
dataset. We hypothesize this is due to limited number of mixed samples. How-
ever, increasing the number of input mixup augmentations incurs significant
computational costs.

Table 4: mAP performance on ROxford (ROxf) and RParis (RPar) datasets.
We present alongside each method, the model architecture (R:ResNetl101,
V:VGG16,A:AlexNet,R34:ResNet34 and M:MobileNetV2). In addition we also
show the dimension of the final global representation from each model. It is to be
noted that our proposed method only requires a fraction of the full supervised
dataset and a trained teacher.

ROxf RPar

Method Nw Dim M H M H

mAP (mP@Q10) mAP mP@Q1() mAP [mP@1() mAP |mP@1
GeM [37] R101 | 2048 [64.7|84.7|38.5|53.0|76.9[98.1|55.4(89.1
AP [14] R101 | 2048 |67.5| - |42.8| - |80.1] - |60.5| -
GeM [37] \% 512 [60.9|82.7(32.9(51.0(69.3|97.9|44.2|83.7
NetVLAD [22] \% 512 |37.1|56.5[13.8(23.3|59.8/94.0|35.0|73.7
Ours R34 512 [55.4|79.9]29.1|46.3(68.7|96.6|43.7|83.4
Ours M 320 [51.1(74.0(24.9|38.6(67.3|96.1|41.1|80.0
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State-of-the-art. State-of-the-art methods are compared in Tab. 4. Whitening
is a standard post-processing step in all standard image retrieval methods as
it reduces the impact of correlated features. While some [14] use unsupervised
whitening based on PCA, others [37] use supervised whitening. We use PCA
based whitening. In particular we use the square rooted PCA [44]. Similar to
traditional practices, we learn PCA on Paris6k for evaluating the network on
Oxford5k and vice-versa. In addition to mAP, we also report mean precision @10
(mP@10). In RPar PCA does not bring any improvement. However, in ROxf,
PCA brings significant improvement both in terms of mAP : ResNet34 (ROxf,M
:55.1 — 55.4, ROxf,H : 25.9 — 29.1), and mP@10 : ResNet34 (ROxf,M : 76.6 —
79.9, ROxf,H : 39.8 — 46.3). However, there is an increase in the performance
gap with the teacher model (GeM [37]). The performance difference can be
attributed to the supervision in the whitening process. Compared to supervised
models with similar dimensionality such as (GeM [37], V) that uses a VGG16
architecture, the performance gap is much smaller. Overall, the difference in
student performance is well compensated by the reduced number of parameters
and computation time for processing a single image in current multi-scale mode
as shown in Tab. 1.

6 Hyper-parameter Ablation

In this section, we analyze and present detailed analysis on the impact of different
hyper-parameters in retrieval performance. This is done by varying the concerned
hyper-parameter while keeping the rest same as detailed in Sec. 4.

First we analyze the image retrieval performance by varying the size of the
training set, D. In Fig. 1 we observe that our method consistently outperforms
the baseline method trained without the representation augmentations. As the
sample size increases, both the methods converge in performance.

mAP

Fig. 1: Figure shows the impact of sample size, |D| on (a)Roxford and (b)RParis
datasets for methods with and without the proposed augmentation based global
mixup method.
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Fig. 2: Figure shows the impact of different hyper-parameters 7 (a) and R (b) in
retrieval performance.

In Fig. 2a we study the impact of size of similarity threshold 7 on the retrieval
performance. As mentioned earlier, 7 controls the amount of semantic informa-
tion that is distilled from teacher onto student model. From Fig. 2a we observe
that retrieval performance increases as 7 is decreased. As explained earlier, high
values of 7 selects easy positives in the positive set, P. As we decrease this
threshold, the hardness of positives increases. However, decreasing 7 too much
will allow false positives to get included in P which will be detrimental to the
learning process. This is evident by the sharp decrease in retrieval performance
for 7 = 0.65.

Finally in Fig. 2b we study the impact of R. We notice a marginal but
consistent improvement in retrieval performance across both datasets as R is
increased. In particular for the Hard (H) setting, the performance improves by
2-3 % as R increases from 1 to 10. Beyond R = 10 there is a marginal drop in
performance.

The above experiments are in line with our motivation to apply the given
hyper-parameters and also shows that beyond certain values, our proposed meth-
ods are not sensitive to the choice of hyper-parameter values.

7 Training Ablation

In this section we study some of the key components in the training algorithm. In
our experiments, the teacher model uses GeM encoding method. Both encoding
methods GeM/MAC produce comparable performance on ROxf,M : 55.1/55.0,
ROxf,H : 25.9/25.4, RPar,M : 68.6/67.1, and RPar,H : 43.8/42.2. This demon-
strates that our algorithm is robust to the selected global encoding method.

Next, we analyze the retrieval performance of models trained on a dataset of
size, |D| = 2000 with/without back-propagating gradients beyond the level of
mixed global representations : ROxf,M : 54.3/49.7, ROx{,H : 25.2/21.8, RPar,M
: 66.4/65.5, and RPar,H : 40.5/37.6. Back-propagating beyond mixed represen-
tations results in over-fitting and decrease in retrieval performance.

Thirdly, we analyze the scenario where the original teacher representations
are sparesely conncected. As such the mixed samples are located in low den-
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Table 5: mAP performance with and without mixup labelling (ML). Note that
for this experiment, D was set to 2000.

ROxf RPar
E[M|H|E[MJ[H
ResNet34 (7 = 0.75) 71.5(50.9/21.9/83.6/64.6|37.6
ResNet34 (no-ML,7 = 0.75 )  [66.7[47.2]18.5]82.8(63.9(37.8
ResNet34 (no-ML,m = 0.65)  |64.2|46.3|17.7(78.0{59.5 | 30.4
(
(

Method

ResNet34 (no-ML,m = 0.5) 57.1139.5[13.9|73.0|56.0|26.5
ResNet34 (no-aug,7 = 0.65) 64.4146.8(20.9|79.6|62.4|36.1

sity regions resulting in most samples having empty positive sets from similarity
labels (SL) alone. In such settings we expect the mixup labeling (ML) to pro-
vide training signals that can drive the learning process. Results are shown in
Tab. 5. For this setting, we sample 2000 images from the full dataset such that
each sample has atmost 3 Euclidean Nearest Neighbors. Results demonstrate
that the mixup labelling significantly improves the retrieval performance across
all settings in ROxford5k dataset. On RParis6k, both methods have compara-
ble performance. No ML setting is compared under different teacher similarity
thresholds to demonstrate that simply decreasing 7 to increase occupancy of
positive set, P does not lead to improvement in performance. In addition, our
method also outperforms the baseline setting without the proposed augmenta-
tions across both datasets.

8 Conclusion

We have presented a knowledge distillation approach based on ranking distil-
lation. The proposed approach transfers the ranking knowledge of a list of im-
ages from a cumbersome teacher onto a compact student model. The proposed
method introduces key algorithmic design choices that make the approach data-
efficient under budget constraints w.r.t access to black-box teacher model and
the number of training samples.

Our results are comparable or better than the standard supervised methods
with the same network architecture that are trained using full dataset. Under
the training budget constraints, the proposed method clearly outperforms the
baseline methods on challenging image retrieval datasets. Our approach finds
use case in settings where teacher models are hosted as public APIs with limited
access.
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