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Abstract. Visual Relational Reasoning is crucial for many vision-and-
language based tasks, such as Visual Question Answering and Vision
Language Navigation. In this paper, we consider reasoning on complex re-
ferring expression comprehension (c-REF) task that seeks to localise the
target objects in an image guided by complex queries. Such queries often
contain complex logic and thus impose two key challenges for reasoning:
(i) It can be very difficult to comprehend the query since it often refers
to multiple objects and describes complex relationships among them. (ii)
It is non-trivial to reason among multiple objects guided by the query
and localise the target correctly. To address these challenges, we propose
a novel Modular Graph Attention Network (MGA-Net). Specifically, to
comprehend the long queries, we devise a language attention network
to decompose them into four types: basic attributes, absolute location,
visual relationship and relative locations, which mimics the human lan-
guage understanding mechanism. Moreover, to capture the complex logic
in a query, we construct a relational graph to represent the visual ob-
jects and their relationships, and propose a multi-step reasoning method
to progressively understand the complex logic. Extensive experiments
on CLEVR-Ref+, GQA and CLEVR-CoGenT datasets demonstrate the
superior reasoning performance of our MGA-Net.

1 Introduction

Visual relational reasoning often requires a machine to reason about visual
and textual information and the relationships among objects before making
a decision. This problem is crucial for many vision-and-language based tasks,
such as visual question answering (VQA) [1–3] and vision language navigation
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Fig. 1. An example of long-chain visual relational reasoning on CLEVR-Ref+
dataset [7]. The aim is to localise the target “metal sphere” based on the given complex
query. To solve this, we propose to model the multi-step relationships via a relational
graph step by step, and reason to the target.

(VLN) [4–6]. However, reasoning can be very difficult because the visual and
textual contents are often very complex. How to build a model to perform com-
plex visual relational reasoning and how to validate the reasoning ability of such
a model are still unclear.

Fortunately, we find the complex referring expression comprehension (c-
REF) task [7, 8] is a good test bed for visual reasoning methods. Specifically,
c-REF requires a machine to reason over multiple objects and localise the target
object in the image according to a complex natural language query (see Fig. 1).
More critically, the complex visual and textual contents in this task can be a
simulation of the complex real-world scenarios.

This task, however, is very challenging due to the following reasons: a) The
query typically contains multiple types of information, such as the basic at-
tributes, absolute location, visual relationship and relative location (see Fig. 1).
It is non-trivial to understand the contents comprehensively in the complex
query. b) Compared with the general referring expression comprehension (g-
REF) task such as ReferCOCO [9, 10], the query in c-REF often contains lots
of visual relationships for multiple objects. It is very difficult to reason among
multiple objects and localise the target correctly.

Recently, Liu et al. [7] found that state-of-the-art g-REF models like [11,12]
failed to show promising reasoning performance on the c-REF task (e.g., a new
CLEVR-Ref+ dataset [7]), where the reasoning chain was long and complex.
We find some methods [11,13] perform single-step reasoning to model the rela-
tionships between objects. However, the queries in real-world applications often
contain complex logic, making them hard to be understood in such a one-step
manner. For example, in Fig. 1, relational reasoning is a multi-step process:
Step 1, select “the first one of the tiny thing(s) from left”; Step 2, given the
object selected in Step 1, find “the thing that is on the left side of ” them; Step 3,
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find “the thing that is behind” the object selected in Step 2; Step 4, find “the
metal thing that has the same colour as” the object selected in Step 3. Although
some methods [14, 15] attempt to update the object features for more than one
step, it performs reasoning with the whole sentence without distinguishing differ-
ent types of information. In this sense, it cannot handle the complex relationships
in the query very well, thus leading to inferior results.

In this paper, we propose a Modular Graph Attention Network (MGA-Net),
which considers different information in the query and models object relation-
ships for multi-step visual relational reasoning. First, in order to comprehend
the long queries, we propose a language attention network to decompose the
query into four types, including the basic attributes, the absolute location, the
visual relationship and the relative location. Second, based on the language rep-
resentation of the basic attributes and absolute location, we propose an object
attention network to find the object that is more relevant to the query. Third,
to capture the complex logic in a query, we propose a relational inference net-
work. In particular, we build a relational graph to represent the relationships
between objects. Based on the graph, we propose a multi-step reasoning method
based on Gated Graph Neural Networks (GGNNs) [16] to progressively under-
stand the complex logic and localise the target object. We conduct experiments
on CLEVR-Ref+ [7], GQA [8] and CLEVR-CoGenT [7] datasets, which contain
multiple types of information in the queries and require relational reasoning to
localise the target of interest.

Our main contributions are summarised as follows:

– To comprehend the complex natural language query, we decompose the query
into four types and design a functional module for each type of information.

– We construct a relational graph among objects and propose a multi-step
reasoning method based on Gated Graph Neural Networks (GGNNs) [16]
to progressively understand the complex logic in the query. In this way,
our method is able to effectively localise the target object especially when
long-chain reasoning is required.

– MGA-Net achieves the best performance on three complex relational reason-
ing datasets, demonstrating the superiority of our proposed method.

2 Related Work

Visual relational reasoning. Many vision-and-language tasks require visual
reasoning to focus on the referred object of the query, such as visual question
answering (VQA) [3, 17, 18], visual language navigation (VLN) [4, 19, 20] and
referring expression comprehension (REF) [11,13]. To well complete these high-
level tasks, the model requires the ability of complex relational reasoning. Rather
than treating the query as a single unit, recent works [21–23] decomposed the
query into components and performed the reasoning with each component. Some
works [11,24] exploited Neural Module Networks (NMNs) [25] to deal with differ-
ent types of information. With clearly decomposing the query, the corresponding
module networks are appropriately designed to achieve better reasoning ability.
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Referring Expression Comprehension (REF). The REF task is to localise
the referent in an image with the guidance of a given referring expression. For
REF, several datasets such as RefCOCO [9], RefCOCO+ [9] and RefCOCOg [10]
were released for research. However, as discussed in [15], the queries in these
datasets did not require resolving relations. Moreover, recent research [26] ar-
gued that RefCOCO datasets were biased, which meant that we could obtain
high accuracy without the queries. 4 To faithfully evaluate the reasoning ability
of the models, Liu et al. [7] released CLEVR-Ref+ dataset which was approx-
imately unbiased. In this paper, we focus on the complex referring expression
comprehension (c-REF) and evaluate our model on CLEVR-Ref+, GQA and
CLEVR-CoGenT datasets, which all reduce the statistical biases within the
datasets. Different from traditional datasets, the above datasets require long-
chain reasoning ability for understanding complex queries.

Graph Neural Networks (GNNs). GNNs [27,28] combine graph and neural
networks to enable communication between the linked nodes and build infor-
mative representations. Many variants of GNNs, such as Graph Convolution
Networks (GCN) [29], Graph Attention Network (GAT) [30] and Gated Graph
Neural Networks (GGNNs) [16], were applied to various tasks [15, 31, 32]. Some
recent works [13–15,33–35] performed relational reasoning using graph networks.
Li et al. [33] constructed three graphs to represent the relations and updated
the node features in the graphs with single-step reasoning. Wang et al. proposed
LGRANs [13], which applied a graph attention network to better aggregate the
information from the neighbourhood to perform the reasoning process. How-
ever, these methods performed single-step reasoning only, while many queries
requiring multi-step reasoning to solve. DGA [34] and CMRIN [35] considered
the relation for each pair of objects with a small relative distance, but they both
ignored the attribute relation (e.g., two objects have the same colour). More-
over, LCGN [15] took the reasoning process into account and built a graph for
multi-step reasoning. However, it encoded the query in a holistic manner without
distinguishing different types of information, which was difficult to comprehend
the complex query. Different from the above methods, our method distinguishes
location relation and attribute relation, which refines the relation representation
and contributes to complex relationship modelling. To perform multi-step rea-
soning, we construct two relational graphs and update the graph representations
for multiple times based on the GGNNs [16].

3 Proposed Method

Our aim is to build a model to perform the relational reasoning guided by a
complex query and then localise the target in an image. We choose the complex
referring expression comprehension (c-REF) task to evaluate our model since

4 Although RefCOCO datasets are biased and do not belong to the c-REF task, we
conduct experiments on them and put the results into the supplementary material.
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both complex reasoning and localisation are required in this task. Formally,
given a natural language query r and its corresponding image I with N objects
O = {oi}

N

i=1, the goal of c-REF is to identify the target object o⋆ by reasoning
over the objects O guided by the query.

Due to the complexity of the queries, how to distinguish different types of
information and how to reason among multiple objects guided by the query are
very challenging. To deal with these challenges, we decompose the query into
different types of information and design a functional module for each type of
information. To capture the complex logic in a query, we construct a relational
graph to represent the objects and their relationships. Moreover, we propose
a multi-step reasoning method based on the relational graph to progressively
understand the complex logic and identify the target object.

Our Modular Graph Attention Network (MGA-Net) composes of three com-
ponents as shown in Fig. 2. First, the language attention network decomposes
the query r into four types: basic attributes, absolute location, visual relationship
and relative location, and obtains the corresponding language representations
satt, sloc, srel vis and srel loc. Second, the object attention network repre-
sents all candidate objects O with their visual features and spatial features, and
obtains the objects that are relevant to r under the guidance of satt and sloc.
Third, the relational inference network constructs a relational graph among
objects, and then updates node representations step by step via Gated Graph
Neural Networks (GGNNs) guided by srel vis and srel loc, respectively. Last,
we match the updated object representations with the corresponding language
representations to obtain the prediction.

3.1 Language Attention Network

A query in c-REF often describes multiple objects with their relationships and
contains four types of information, including (1) basic attributes, which contain
object category name, size, colour and material; (2) absolute location, which
describes the position of the object in the image; (3) visual relationship, which
represents the relationships (the same attribute or the inter-action) between
objects; (4) relative location, which describes the displacement between objects.

To comprehend the query, some methods [25] adopted off-the-shelf language
parser [36] to parse the query. However, as mentioned in [11], the external parser
could raise parsing error, which affected the performance of REF. Therefore,
instead of relying on the off-the-shelf language parser, we adopt self-attention
mechanism to parse the query automatically.

To distinguish different types of information, we design a functional module
for each type of information. Specifically, we represent a query with L words r =
{wl}

L

l=1 using the word embeddings {el}
L

l=1, which can be obtained by using a
non-linear mapping function or pre-trained word embeddings, such as GloVe [37].
With the word embeddings being the input of a Bi-LSTM model [38], we obtain

the hidden state representations h = {hl}
L

l=1, which are the concatenation of the
forward and backward hidden vectors of the words. To calculate the attention
score of each word in each module, we apply a fully connected layer to the hidden
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Fig. 2.Overview of Modular Graph Attention Network (MGA-Net) for visual relational
reasoning. Our method contains three components. The language attention network de-
composes the query into four types with an attention mechanism. The object attention
network selects the related objects with their basic attributes and absolute locations.
Based on the relational graph, the relational inference network models the complex re-
lationships by a multi-step reasoning method. The final score is obtained by matching
four object representations with their corresponding language representations.

state representations h, and normalise the scores with a softmax function. In
particular, for each word wl, we calculate basic attributes attention aattl , absolute
location attention alocl , visual relationship attention arel vis

l and relative location
attention arel loc

l as follows:

a
type

l =
exp

(

wtype
a

⊤
hl

)

∑L

k=1 exp
(

w
type
a

⊤
hk

) , (1)

where type ∈ {att, loc, rel vis, rel loc} and wtype
a ∈ R

dw denotes the parameters
of each module and dw is the dimension of the word embeddings. With the atten-
tion scores aatt, aloc, arel vis, arel loc ∈ R

L at hand, we obtain the representation
for each type of information as follows:

stype =

L
∑

l=1

a
type
l · el. (2)

With the help of the attention mechanism, we are able to learn the language
representations w.r.t. the basic attributes, absolute location, relative location
and visual relationship.

3.2 Object Attention Network

To localise the object with its properties (i.e., the basic attributes and absolute
location), we propose an object attention network. In particular, we represent
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each object with its attribute feature and location feature. Then, we calculate
attention scores for the objects with the guidance of the language representations
satt and sloc. Last, we update the object representations based on their basic
attributes and absolute locations.

Basic attributes representation. The basic attributes module describes the
object category, shape, colour, size and material of the object, which is relative
to the visual features. The visual feature ui for each object can be obtained by
using some certain pre-trained feature extractor (e.g., ResNet101 [39]). Then,
we use a multi-layer perception (MLP) fu with two hidden layers to obtain the
basic attributes representation as xatt

i = fu (ui).

Absolute location representation. The absolute location module describes
the location information of the object. Supposing the width and height of the
image are represented as [W,H], and the top-left coordinate, bottom-right coor-
dinate, width and height of object i are represented as [xtli , ytli , xbri , ybri , wi, hi],
then the spatial feature of object i is represented as a 5-dimensional vector
li =

[xtli

W
,
ytli

H
,
xbri

W
,
ybri

H
, wi·hi

W ·H

]

. It denotes the top left and bottom right corner
coordinates of the object region (normalised between 0 and 1) and its relative
area (i.e., the ratio of the bounding box area to the image area). Since the visual
features may also indicate the object location from its background context, we
also combine the visual features with the spatial feature, leading to the object
location representation of object i as xloc

i =
[

fu (ui) , f
l (li)

]

, where f l is an
MLP and [·, ·] denotes for concatenation.

Object attention module. Under the guidance of language representation
satt and sloc, the object attention module aims at finding the objects that are
relevant to the given query. With the object representations xatt

i and xloc
i , the

attention weights of object i is calculated as follows,

ã
o,obj
i = w

obj
o

⊤
tanh

(

W
obj
o,s s

obj +W
obj
o,xx

obj
i

)

,

a
o,obj
i =

exp
(

ã
o,obj
i

)

∑N

j=1 exp
(

ã
o,obj
j

) ,
(3)

where obj ∈ {att, loc}. Wobj
o,s ∈ R

de×dw and Wobj
o,x ∈ R

de×do are the parameters

of two fully connected layers, which transform the language representations sobj

and the object representation xobj
i into an embedding space, respectively. de is

the dimension of the embedding space and do is the dimension of the object
representation. wobj

o ∈ R
de is the parameters of the object attention module.

With the object attention weights a
o,att
i and a

o,loc
i at hand, we update the

object representations by calculating

x̂
obj
i = a

o,obj
i x

obj
i , obj ∈ {att, loc}. (4)
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In this way, the object representations are encoded with the language represen-
tations about basic attributes and the absolute location, respectively.

3.3 Relational Inference Network

To capture the complex logic in a query, we represent the input image as a graph,
where nodes are objects and edges represent their relationships. Then, we adopt
Gated Graph Neural Networks (GGNNs) to update the node representations
by aggregating the information from neighbourhoods. However, for each node,
a single-step updating cannot guarantee to capture the multi-step relationships
between other nodes, making it hard to understand the complex logic in the
query for reasoning. In this paper, we propose a multi-step updating method
to progressively aggregate relational information for each node guided by the
language representations srel vis and srel loc. This updating method helps to
understand the logic in the query and localise the object of interest correctly.

Graph construction. We build a directed graph G= {V, E} over the object set

O, where V = {vi}
N

i=1 is the node set and E = {eij}
N

i,j=1 is the edge set. Each

node vi corresponds to an object oi ∈ {O} and each edge eij denotes the edge
connecting objects oi and oj , which represents the relationships between the two
objects.

Visual relationship representation. The visual relationship module describes
the relationships between objects, referring to the attributes of two objects (e.g.
A and B are in the same colour, size) or the interaction between objects (e.g. A
holds B). To represent the visual relationship, we obtain the feature of object i
by concatenating its visual feature and spatial feature xvis

i = [ui, li]. Then, we
use an MLP frel vis to encode the features of two objects. The edge represen-
tation of the visual relationship between object i and object j is calculated as
follows,

e
rel vis
ij = f

rel vis
([

x
vis
i ,x

vis
j

])

. (5)

Relative location representation. The relative location module describes
the displacement between two objects which reflects the spatial correlation of
objects. Here, we represent the spatial relation between two objects vi and vj

as ẽij =[
xtlj

−xci

wi
,

ytlj
−yci

hi
,
xbrj

−xci

wi
,
ybrj

−yci

hi
,

wj ·hj

wi·hi
], where [xci , yci , wi, hi] is the

centre coordinate, width and height of object i, and
[

xtlj , ytlj , xbrj , ybrj , wj , hj

]

is the top-left coordinate, bottom-right coordinate, width and height of the j-th
object, respectively. Considering the query like “A is to the left of B”, the related
object “B” plays an important role in location relationship understanding. We
include the visual feature and spatial feature of object j for relative location
representations. We obtain the edge representation of the relative location by
calculating

e
rel loc
ij = f

rel loc
([

ẽij ,x
vis
j

])

, (6)
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where frel loc is an MLP. After learning the edge representation, we obtain the
visual relational graph.

Multi-step reasoning. Based on the constructed graph, we introduce Gated
Graph Neural Networks (GGNNs) to iteratively update the node representations
by aggregating the relational information and achieve the multi-step reasoning.
GGNNs contain a propagation model learned with a gated recurrent update
mechanism, which is similar to recurrent neural networks. For each object node
in the graph, the propagation process of the t-th step is defined as follows:

z
rel,(t)
i = tanh

(

a
rel
i

⊤
[

h
rel,(t−1)
1 ; . . . ;h

rel,(t−1)
N

])

,

h
rel,(t)
i = GRUCell

(

z
rel,(t)
i ,h

rel,(t−1)
i

)

,
(7)

where rel ∈ {rel vis, rel loc} and areli is the i-th row of a propagation matrix
Arel ∈ R

N×N that represents the propagation weights. GRUCell is the GRU

update mechanism [40]. h
rel,(t)
i is the hidden state of the i-th object at step t.

At each time step, we update the node representations by aggregating the
information from the neighbourhoods according to the propagation matrix Arel.
However, updating for only one step fails to capture the multi-step relationships
between other nodes. Thus, we propose a multi-step updating method, enabling
each object to aggregate the relational information in the complex query and
progressively understand the complex logic. After T time steps for propagation,
the final representation for the i-th node can be obtained by:

x̂
rel
i = h

rel,(T )
i . (8)

Propagation matrix. In Eq. (7), we need to compute the propagation matrix

Arel and the initial hidden state h
rel,(0)
i for each node. To this end, we devise

an edge attention mechanism. Specifically, with the edge representation erel vis
ij

and erel loc
ij in Eqs. (5) and (6), the edge attention for the visual relationship and

relative location are calculated as follows,

ã
rel
ij = w

rel
e

⊤
tanh

(

W
rel
e,ss

rel +W
rel
e,xe

rel
ij

)

,

a
rel
ij =

exp
(

ãrel
ij

)

∑

k 6=i
exp

(

ãrel
ik

) , a
rel
ii = 0,

(9)

where rel ∈ {rel vis, rel loc}. Wrel
e,s ∈ R

de×dw and Wrel
e,x ∈ R

de×dr are the

parameters of two fully connected layers, which transform the expression srel

and the edge representation erelij into an embedding space , respectively. de is
the dimension of the embedding space and dr is the dimension of the edge
representation. wrel

e ∈ R
de are the parameters of the fully connected layers.

With the edge attention mechanism, we obtain arel vis
ij and arel loc

ij to construct
the propagation matrices. Then, the initial hidden state of the i-th object can be

obtained by calculating h
rel,(0)
i =

∑N

j=1 a
rel
ij erelij , where rel ∈ {rel vis, rel loc}

and N is the number of nodes.
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3.4 Matching Function and Loss Function

Matching function. To find the target object, we need to compute a match-
ing score for each object. Specifically, we devise a matching function to predict
the final scores by matching the language representations and the correspond-
ing object representations, which encode with the properties (in Eq. (4)) and
relationships with other objects (in Eq. (8)). The matching score p

type
i between

the language representation stype and the object representation x̂type
i can be

calculated as follows:

p
type
i = tanh

(

W
type
m,s s

type
)⊤

tanh
(

W
type
m,x x̂

type
i

)

, (10)

where type ∈ {att, loc, rel vis, rel loc}, Wtype
m,s ∈ R

de×dw and Wtype
m,x ∈ R

de×de

are learnable parameters. Similar to the previous studies [11, 13], we calculate
four weights [watt, wloc, wrel vis, wrel loc] to represent the contributions of dif-

ferent modules. We apply a fully connected layer to the vector e =
∑L

l=1 el. The
calculation of the weights are as follows,

[

watt, wloc, wrel vis, wrel loc
]

= softmax (Wse) , (11)

where Ws ∈ R
4×dw is the parameter of the fully connected layer, and dw is the

dimension of the word embedding. For object i, the final matching score pi is
calculated by weighted summing up of the p

type
i with the four weights:

pi =
∑

type

wtypep
type
i . (12)

Loss function. To localise the referent among all objects in the image, we
regard it as a multi-class classification task. The probability for object i being

the referent is calculated as p̃i =
exp (pi)∑

N
j=1

exp (pj)
, where N is the number of object

candidates in the image. We choose the cross-entropy loss as the loss function:

L = −

N
∑

i=1

yi · log (p̃i) , (13)

where yi is 1 when object i is the ground truth referent and 0 otherwise. We use
the Adam [41] method to minimise the loss.5

4 Experiments

In this section, we evaluate the proposed method on a complex referring ex-
pression comprehension dataset (i.e., CLEVR-Ref+ [7]). To evaluate the gen-
eralisation ability of our method, we further conduct experiments on CLEVR-
CoGenT [7]. We also evaluate our method on a question answering dataset (i.e.,
GQA [8]). Last, we perform ablation studies and visualisation analysis to verify
the contributions of each module in our method. 6

5 We put the training algorithm into the supplementary material.
6 We put the Implementation Details into the supplementary material.
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4.1 Datasets

CLEVR-Ref+ [7] is a synthetic dataset whose images and queries are generated
automatically. This dataset is approximately unbiased by employing a uniform
sampling strategy. Moreover, it provides complex expressions that require strong
visual reasoning ability to be comprehended.
GQA [8] is a real-world VQA dataset with compositional questions over images
from Visual Genome data [42]. Like CLEVR-Ref+, GQA mitigates language pri-
ors and conditional biases for evaluating the visual reasoning capacity of models.
Moreover, the questions in GQA include complex visual relationships among ob-
jects. In the GQA dataset, the grounding score is designed to check whether the
model focuses on question and answer relevant regions within the images. Since
MGA-Net focuses on visual reasoning (such as VQA and REF), the grounding
scores of GQA is suitable for evaluating the performance of visual reasoning.
CLEVR-CoGenT [7] is a synthetic dataset, augmented from CLEVR [43]
dataset. The queries are also complex, which require resolving relations. More-
over, it has two different conditions, such as Condition A and Condition B, which
contain different object attributes.

4.2 Evaluation on CLEVR-Ref+

Comparison with state-of-the-arts. We compare our MGA-Net with several
state-of-the-art methods, including Stack-NMN [44], SLR [12], MAttNet [11],
GroundeR [45] and LCGN [15]. From Table 1, our method outperforms all base-
lines. Specifically, MAttNet decomposes the queries into three parts (visual sub-
ject, location and relationship), but it ignores the issue of long-chain reasoning.
Thus, MAttNet only achieves the accuracy of 60.9%. Beneficial from the multi-
step reasoning based on the graph, LCGN leads to 14% improvement by using
the graph network to get the context-aware representation. However, LCGN ig-
nores to distinguish different types of information in the queries and encodes
them in a holistic manner. Different from them, our MGA-Net considers the
different information in the query and performs multi-step reasoning on the re-
lational graph via GGNNs. With the detected bounding boxes as input, our
proposed method achieves the accuracy of 80.1%. Moreover, using ground truth
bounding boxes further improves the accuracy to 80.8%.

Effectiveness of four modules. MGA-Net decomposes queries into four parts,
such as the basic attributes (att), absolute location (loc), relative location (rel loc)
and visual relationship (rel vis). To evaluate the effect of each module, we con-
duct the ablation studies on CLEVR-Ref+ dataset. We use the ground truth
bounding boxes as input and set the updating step of GGNNs to 3.

Quantitative results. From Table 2, when only using basic attributes to localise
the object (Row 1), the model achieves the accuracy of 62.10%. Row 2 shows the
benefits brought by the absolute location module. By combining the visual rela-
tionship (Row 3) or the relative location module (Row 4), the accuracy improves
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Table 1. Comparisons with state-of-the-
arts on CLEVR-Ref+ in Accuracy.

Method Accuracy (%)

Stack-NMN [44] 56.5
SLR [12] 57.7
MAttNet [11] 60.9
GroundeR [45] 61.7
LCGN [15] 74.8

MGA-Net (with detected bbox) 80.1
MGA-Net (with ground truth bbox) 80.8

Table 2. Impact of the four modules on
CLEVR-Ref+.

Module Accuracy (%)

att 62.10
att + loc 65.83
att + loc + rel vis 72.81
att + loc + rel loc 76.86
att + loc + rel vis + rel loc 80.87

Table 3. Comparisons of different models
on GQA in terms of Grounding scores.

Method Grounding score (%)

MAttNet [11] 56.73
LGRANs [13] 84.73

MGA-Net 87.03

Table 4. Comparisons with baselines on
CLEVR-CoGenT (valA & B) in Accuracy.

Method valA valB

SLR [12] 0.63 0.59
MAttNet [11] 0.64 0.63

MGA-Net (with detected bbox) 0.82 0.76
MGA-Net (with ground truth bbox) 0.83 0.78

significantly, showing the benefit of the relational reasoning modules. Moreover,
our MGA-Net with four modules achieves the best performance. These results
demonstrate that distinguishing different types of information in the query is
important for relational reasoning.

Visualisation. We visualise the four modules in the query in Fig. 3. We highlight
the words which are correctly indicated by the corresponding modules according
to the weight of each word. These results demonstrate that our proposed four
modules have the ability to capture the corresponding phrases.

4.3 Evaluation on GQA

We evaluate MAttNet [11], LGRANs [13] and our MGA-Net on GQA. During
training, we regard the mentioned object in the answer as the ground truth and
train the models with the balanced training questions. In inference, all balanced
validation questions are fed into the model to calculate the grounding scores.
Such a score evaluates whether the model focuses on the regions of the image
that are relevant to the questions and answers. Since the ground truth bounding
boxes of the mentioned objects in the question and answer are not provided on
the test-dev and test sets, we evaluate the methods on the validation set.

From Table 3, our MGA-Net outperforms the baselines. For LGRANs [13],it
only introduces single-step reasoning, which is unsuitable for long-chain reason-
ing. Moreover, LGRANs considers the location relation only, and ignores the
visual relations in the query. In contrast to the LGRANs, we first construct re-
lational graphs among the objects regarding to the location and visual relations.
Based on the relational graphs, we are able to conduct multi-step reasoning via
GGNNs guided by language representations and thus achieves higher perfor-
mance than LGRANs. Note that the excellent performance of MAttNet [11] in
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Table 5. Impact of the updating step T . We report the accuracy (%) of our method
with different values of T on CLEVR-Ref+ and CLEVR-CoGenT (valA & valB). We
provide the grounding score (%) of our method with different values of T on GQA.

Dataset CLEVR-Ref+ CLEVR-CoGenT (valA) CLEVR-CoGenT (valB) GQA

Setting detected bbox gt bbox detected bbox gt bbox detected bbox gt bbox -

T=0 75.81 76.51 76.00 76.24 71.37 72.32 86.01
T=1 79.52 80.25 79.01 79.15 74.26 74.53 86.89
T=3 80.18 80.87 82.02 82.90 76.60 78.15 87.03
T=5 79.05 79.65 79.95 80.36 74.69 76.00 87.93

previous study relies on the attribute features and the phrase-guided “in-box” at-
tention. However, these features cannot be provided by GQA. Besides, MAttNet
only decomposes expressions into three modular components that are without
multi-step reasoning, which makes it hard to perform the complex compositional
reasoning. Thus, the performance of MAttNet degrades significantly on GQA.

4.4 Evaluation on CLEVR-CoGenT

To evaluate the generalisation ability, we train the model on the training set of
Condition A and evaluate it on the validation set of Condition A and Condi-
tion B (i.e., valA and valB). From Table 4, our MGA-Net outperforms SLR [12]
and MAttNet [11] by a large margin. Specifically, in the “detection” setting, our
method achieves the accuracy of 0.82 on valA and the accuracy of 0.76 on valB.
When using ground truth bounding boxes, the performance of our method is
further improved (0.83 on valA and 0.78 on valB). These results further demon-
strate the superior generalisation ability of our proposed method.

Note that on the CLEVR-Ref+ and CLEVR-CoGenT datasets, our method
achieves comparable performance between using ground truth bounding box
and detected bounding box. The reason is that the scene of the image in these
datasets is simple, and the objects in the scene are able to be detected accurately
and easily.

4.5 Effectiveness of Multi-step Reasoning

Quantitative results. To evaluate the multi-step reasoning, we verify it on
our MGA-Net by setting different updating steps T in GGNNs. From Table 5,
on all datasets, the models with GGNNs (T > 1) outperform the model without
GGNNs (T = 0) significantly, which demonstrates the necessity and superiority
of the relational reasoning.

Moreover, with the increasing of the updating steps (from T = 1 to T = 3),
the performance of the MGA-Net further improves on all the datasets, which
demonstrates the superiority of the multi-step reasoning. But MGA-Net with
GGNNs T = 3 performs better than that with GGNNs T = 5 on CLEVR-
Ref+ and CLEVR-CoGenT datasets. This implies that an appropriate number
of updating steps helps to obtain the best performance on MGA-Net.



14 Zheng et al.

Target 

object

Attention 

map

Absolute Location Visual Relationship Relative LocationBasic Attributes

T=0 T=1 T=2 T=3

Query: The third one of the object(s) from left that are to the right of the gray metal sphere that is 

on the right side of the gray shiny sphere that is behind the second one of the big ball(s) from left.

Fig. 3. An example of 3-step reasoning on complex referring expression comprehension.
We visualise the attention maps of GGNNs and mark the target object by a bounding
box for each step. With the guidance of the expression, the attentive image region
changes over updating and the highlighted object corresponds to the ground truth.

Visualisation. To further illustrate the effectiveness of our method on dealing
with long-chain reasoning, we visualise the intermediate results of the model.
We set the updating step T = 3 in GGNNs, and train the model with the
ground truth bounding boxes as inputs on CLEVR-Ref+. Then, we obtain the
initial nodes representations (T = 0) and the updated node representations in
different updating steps (T = 1, 2, 3). To predict the score for each node, we
match the node representations and the language representations. As shown
in the visualisation results in Fig. 3, the attentive image region changes over
updating and the highlighted object corresponds to the ground truth.

5 Conclusion

In this paper, we have proposed a new Modular Graph Attention Network
(MGA-Net) for complex visual relational reasoning. To cover and represent the
textual information, we decompose the complex query into four types and design
a module for each type. Meanwhile, we construct the relational graphs among
objects. Based on the relational graphs, we devise a graph inference network
with GGNNs to update the graph representations step by step. Our method en-
codes the multi-step relationships among objects and then reasons to the target.
Promising results demonstrate the effectiveness and the superior visual relational
reasoning ability of our method.

Acknowledgement. This work was partially supported by the Key-Area Re-
search and Development Program of Guangdong Province 2019B010155002, Pro-
gram for Guangdong Introducing Innovative and Entrepreneurial Teams 2017ZT-
07X183, Fundamental Research Funds for the Central Universities D2191240.



MGA-Net for Complex Visual Relational Reasoning 15

References

1. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: Visual
reasoning with a general conditioning layer. In: AAAI Conference on Artificial
Intelligence (AAAI). (2018)

2. Hudson, D.A., Manning, C.D.: Compositional attention networks for machine rea-
soning. In: International Conference on Learning Representations (ICLR). (2018)

3. Mao, J., Gan, C., Kohli, P., Tenenbaum, J.B., Wu, J.: The neuro-symbolic concept
learner: Interpreting scenes, words, and sentences from natural supervision. In:
International Conference on Learning Representations (ICLR). (2019)

4. Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf, N., Reid,
I., Gould, S., van den Hengel, A.: Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(2018) 3674–3683

5. Wang, X., Huang, Q., Çelikyilmaz, A., Gao, J., Shen, D., Wang, Y., Wang, W.Y.,
Zhang, L.: Reinforced cross-modal matching and self-supervised imitation learn-
ing for vision-language navigation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2019) 6629–6638

6. Nguyen, K., Dey, D., Brockett, C., Dolan, B.: Vision-based navigation with
language-based assistance via imitation learning with indirect intervention. In:
Proceedings of the of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). (2019) 12527–12537

7. Liu, R., Liu, C., Bai, Y., Yuille, A.L.: Clevr-ref+: Diagnosing visual reasoning with
referring expressions. In: Proceedings of the of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2019) 4185–4194

8. Hudson, D.A., Manning, C.D.: GQA: A new dataset for real-world visual reasoning
and compositional question answering. In: Proceedings of the of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). (2019) 6700–6709

9. Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.L.: Referitgame: Referring to
objects in photographs of natural scenes. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP). (2014) 787–798

10. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation
and comprehension of unambiguous object descriptions. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2016)
11–20

11. Yu, L., Lin, Z., Shen, X., Yang, J., Lu, X., Bansal, M., Berg, T.L.: Mattnet:
Modular attention network for referring expression comprehension. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(2018) 1307–1315

12. Yu, L., Tan, H., Bansal, M., Berg, T.L.: A joint speaker-listener-reinforcer model
for referring expressions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2017) 3521–3529

13. Wang, P., Wu, Q., Cao, J., Shen, C., Gao, L., Hengel, A.v.d.: Neighbourhood
watch: Referring expression comprehension via language-guided graph attention
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2019) 1960–1968

14. Bajaj, M., Wang, L., Sigal, L.: G3raphground: Graph-based language grounding.
In: Proceedings of the IEEE International Conference on Computer Vision (ICCV).
(2019) 4281–4290



16 Zheng et al.

15. Hu, R., Rohrbach, A., Darrell, T., Saenko, K.: Language-conditioned graph net-
works for relational reasoning. In: Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV). (2019) 10294–10303

16. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neu-
ral networks. In: International Conference on Learning Representations (ICLR).
(2016)

17. Norcliffe-Brown, W., Vafeias, S., Parisot, S.: Learning conditioned graph structures
for interpretable visual question answering. In: Advances in Neural Information
Processing Systems (NeurIPS). (2018) 8334–8343

18. Chang, S., Yang, J., Park, S., Kwak, N.: Broadcasting convolutional network
for visual relational reasoning. In: Proceedings of the European Conference on
Computer Vision (ECCV). (2018) 754–769

19. Huang, H., Jain, V., Mehta, H., Ku, A., Magalhaes, G., Baldridge, J., Ie, E.: Trans-
ferable representation learning in vision-and-language navigation. In: Proceedings
of the IEEE International Conference on Computer Vision (ICCV). (2019) 7404–
7413

20. Ke, L., Li, X., Bisk, Y., Holtzman, A., Gan, Z., Liu, J., Gao, J., Choi, Y., Srinivasa,
S.S.: Tactical rewind: Self-correction via backtracking in vision-and-language nav-
igation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2019) 6741–6749

21. Johnson, J., Hariharan, B., Van Der Maaten, L., Hoffman, J., Fei-Fei, L.,
Lawrence Zitnick, C., Girshick, R.: Inferring and executing programs for visual
reasoning. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV). (2017) 2989–2998

22. Hu, R., Andreas, J., Rohrbach, M., Darrell, T., Saenko, K.: Learning to reason:
End-to-end module networks for visual question answering. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV). (2017) 804–813

23. Cao, Q., Liang, X., Li, B., Li, G., Lin, L.: Visual question reasoning on general
dependency tree. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (2018) 7249–7257

24. Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships
in referential expressions with compositional modular networks. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(2017) 1115–1124

25. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Neural module networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2016) 39–48

26. Cirik, V., Morency, L., Berg-Kirkpatrick, T.: Visual referring expression recogni-
tion: What do systems actually learn? In: Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT). (2018) 781–787

27. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains.
In: Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN). Volume 2., IEEE (2005) 729–734

28. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks 20 (2008) 61–80

29. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR).
(2017)

30. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
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