
MagGAN: High-Resolution Face Attribute Editing with
Mask-Guided Generative Adversarial Network

Yi Wei1, Zhe Gan2, Wenbo Li3, Siwei Lyu4, Ming-Ching Chang1, Lei Zhang2, Jianfeng Gao2, and
Pengchuan Zhang2

1 University at Albany, State University of New York, USA
2 Microsoft Corporation, Redmond, USA

3 Samsung Research America AI Center, USA
4 University at Buffalo, State University of New York, USA

This supplementary material has 5 sections. Section 1 describes the network architecture of
MagGAN. Section 2 shows some facial editing results on resolution 256×256. Section 3 demonstrates
some visual results on high resolution 512× 512 and 1024× 1024. Section 4 defines the attribute
and facial part relationship matrix AR+, AR−. Section 5 provides formal definition of evaluation
metrics - PSNR and SSIM. We use § to refer the section in our submitted paper.

1 Network Architecture of MagGAN

We present MagGAN network architecture for image generators in Table 2 and the network
architectures for discriminators in Table 3. They are built with basic blocks defined in Table 1. We
reached this architecture design by extensive architecture search based on STGAN, as we present
below.

Architecture optimization based on STGAN We first conduct hyper-parameter tuning for STGAN [3]
on resolution 256 × 256, and compare the attribute editing accuracy and FID to select the best
architecture. First, we apply both cycle-consistency loss [1] Lcycle and the reconstruction loss used
in AttGAN [2] Lrec to train generator, but combine the two losses with a weight C ∈ [0, 1]. Then
the total reconstruction loss LR

G is defined as:

LR
G = C · Lrec + (1− C) · Lcycle

From Figure 3, we find that only applying the reconstruction loss achieves the best accuracy and
FID. From Figure 4, we also find that increasing the layer of discriminator and generator from 5
to 6 improves the attribute editing accuracy and FID. Also, in the original STGAN discriminator,
images are fed into a shared convolution layer, and the feature maps are then used by two separate
branches for adversarial prediction and attribute classification. We observe that applying average
pooling after the shared convolution layer improves the attribute editing accuracy.

Learning rate optimization to stablize training In our experiment setting, we set encoding/decoding
layer of generator to 6. The shared convolution backbone layer of the vanilla discriminator or
PatchGAN discriminators is also set to 6. The illustration of network architecture for generator and
discriminators are shown in Figure 1 and Figure 2. To make generator training stable, the learning
rate of generator is set to 0.0001 according to Figure 5, while learning rate of discriminator is set to
0.0002.
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Fig. 1: Network architecture of MagGAN generator

Fig. 2: Network architecture of MagGAN discriminator

Hyper-parameter for mask-guided reconstruction weight With extensive experiments, we find that to
achieve reasonable visual effects for synthesized images, both mask-guided attribute conditioning
and mask-guided reconstruction loss should be applied. We present the effects of mask-guided
reconstruction weight λ3 in Table 4. To achieve a better balance between editing accuracy and
preserving quality, we choose λ3 = 200 in practice.

Unified architecture for a single discriminator and multi-level patch-wise discriminators We unify
the architecture of vanilla STGAN discriminator and PatchGAN discriminator in Table 3. The
difference is that level-i PatchGAN discriminator works on different resolution, from 256 to 1024,
the adversarial outputs of PatchGAN discriminators (i = 0, 1, 2) are of size (1, 1), (2, 2), (4, 4)
respectively. Each output entry represents a real/fake output corresponding to a 256× 256 patch.
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Table 1: The basic blocks for architecture design. (“-” connects two consecutive layers; “+” means
element-wise addition between two layers, * means element-wise multiplication between two layers.)
Fdec, Fattr, Ftrans denotes decoding feature, spatial attribute feature, transferred feature as shown
in Figure 1

Name Operations / Layers

Concat Concatenate input tensors along the channel dimension.

Downsample Nearest neighbor Downsampling layer

BN Batch normalization layer

IN Instance normalization layer

LN wo/ affine Layer normalization layer without apply affine transformation

Conv(dim, k, s) Convolutional layer with output dimension dim, kernel size k, stride
s

DeConv(dim, k, s) Transposed convolutional layer with output dimension dim, kernel
size k, stride s

STU Selective transfer unit proposed by STGAN [3]

SPADE

Spatially adaptive normalization layer [4]:
β = Concat(Fdec, Downsample(Fattr)) - Conv(d,3,1) - Conv(d,3,1)
γ = Concat(Fdec, Downsample(Fattr)) - Conv(d,3,1) - Conv(d,3,1)
LN wo/ affine (Fdec) - Conv(d, 3, 1) * γ + β

Avgpool (os) Average pooling with output size os.

Table 2: Network architecture of MagGAN generator. Gl
enc and Gl

dec denotes the encoding layer
and decoding layer of generator at layer l respectively. The input feature of DeConv layer is the
concatenation of decoding feature and selective feature. SPADE is applied as normalization layer for
transposed convolution feature

l Gl
enc Gl

dec

1 Conv(64, 4, 2), BN, Leaky ReLU DeConv(3, 4, 2), Tanh

2 Conv(128, 4, 2), BN, Leaky ReLU DeConv(128, 4, 2), SPADE, ReLU

3 Conv(256, 4, 2), BN, Leaky ReLU DeConv(256, 4, 2), SPADE, ReLU

4 Conv(512, 4, 2), BN, Leaky ReLU DeConv(512, 4, 2), SPADE, ReLU

5 Conv(1024, 4, 2), BN, Leaky ReLU DeConv(1024, 4, 2), SPADE, ReLU

6 Conv(1024, 4, 2), BN, Leaky ReLU DeConv(1024, 4, 2), SPADE, ReLU
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Table 3: Network architecture of MagGAN discriminator/PatchGAN discriminator. i denote the
level of PatchGAN discriminator, i = {0, 1, 2} corresponds to resolution 256, 512, 1024 respectively.
When i = 0, PatchGAN discriminator is equal to single vanilla discriminator applied on resolution
256. c denotes the attribute class numbers. Dl

adv and Dl
att denotes the adversarial learning branch

and attribute classification branch respectively, they share the same convolution backbone
l Dl

adv Dl
att

1 Conv(64, 4, 2), IN, Leaky ReLU

2 Conv(128, 4, 2), IN, Leaky ReLU

3 Conv(256, 4, 2), IN, Leaky ReLU

4 Conv(1024, 4, 2), IN, Leaky ReLU

5 Conv(1024, 4, 2), IN, Leaky ReLU

6 Conv(1024, 4, 2), IN, Leaky ReLU

7 Avgpool(2i)

8 Conv(1024, 1, 1), Leaky ReLU Conv(1024, 1, 1), Leaky ReLU

9 Conv(1, 1, 1) Conv(c, 1, 1)

Fig. 3: Attribute editing accuracy and FID comparison for reconstruction weight tuning. ’reconweight’
ranges from 0 to 1, ’reconweight’ = 0 means that only cycle-consistency loss is applied, ’reconweight’
= 1 means that only reconstruction loss is applied

Table 4: Comparison of different mask-guided reconstruction weight λ3 for MagGAN
Methods MRE ↓ FID ↓ Avg Acc PSNR SSIM

λ3 = 0 0.0397 1.22 89.6% 39.35 0.980

λ3 = 100 0.0232 1.39 85.6% 38.57 0.976

λ3 = 200 0.0163 1.10 90.0% 40.25 0.984

λ3 = 400 0.0157 1.33 88.2% 39.34 0.984
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Fig. 4: Attribute editing accuracy and FID comparison for architecture search. ’disarch11’ means that
average pooling is applied after the last shared convolution layer, output size is 1. ’disarch14’ means
no average pooling after the final convolution layer. ’d5’, ’d6’ means that the discriminator has 5 or
6 shared convolution layers. ’genarch54’, ’genarch65’ means that generator has 5 encoding-decoding
layers, 4 STU layers or 6 encoding-decoding layers, 5 STU layers

Fig. 5: Attribute editing accuracy and FID comparison for generator learning rate tuning. We test 3
learning rate: 5× 10−5, 1× 10−4, 2× 10−4
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Fig. 6: Visual results of STGAN, MagGAN, MagGAN w/ blend on resolution 256× 256

2 Face Attribute Editing Results on Resolution 256

In this section, we show more visual results of MagGAN on resolution 256× 256. Figure 6 shows
single-attribute reverse editing, Figure 9 shows multiple-attribute reverse editing, and Figure 10
shows the editing results when attribute intensity varies continuously from 0 to 1.

The blending trick to preserve attribute irrelevant regions In §3.3 of our submission, we propose a
blending trick to help preserve the attribute-irrelevant regions with alpha composition [5]. We adopt
this blending trick to MagGAN(SP) and report the quantitative results in Table 5. Results show that
except MRE reduces significantly, the other metrics are worse than MagGAN when applying the
blending trick. From Figure 6, we can also observe that the blending trick generates sharp images,
but the visual quality decreases as artifacts are obvious at the boundary of attribute-irrelevant
regions.
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Table 5: Comparison of MagGAN with blending trick on resolution 256× 256. The blending trick
does decrease the mask-aware reconstruction error, but incorporates artifacts at borders, which
diminish the visual quality

Methods MRE ↓ FID ↓ Avg Acc PSNR SSIM

MagGAN 0.0163 1.10 90.0% 40.25 0.984

MagGAN w/ blend 0.0015 1.14 83.3% 37.70 0.976

User study We conduct user study on Amazon Mechanical Turk to compare the generation quality
of STGAN and MagGAN. Figure 7 shows the web interface of our user study experiment. 100 input
samples are randomly chosen from test set, 50 samples with hat or scarf and 50 samples without.
For each sample, 5 attribute editing tasks are performed by STGAN and MagGAN (500 comparison
pairs in total). All 5 tasks are randomly chosen from 13 attributes, for subjects with hat, we increase
the chance to select hair related attributes, e.g., “Blonde Hair”, “Bald”. The users are instructed to
choose the best result which changes the attribute more successfully considering image quality and
identity preservation. The user interface also provides a neutral option, which can be selected if the
turker thinks both outputs are equally good. To avoid human bias, each sample pair is evaluated by
3 volunteers, thus we have 1500 comparison pairs in total. Only workers with a task approval rate
greater than 95% can participate the study.

Figure 8 shows some example visual results for MagGAN and STGAN. Top 3 rows are samples
wearing hat or scarf, the last 3 rows are samples without hat. From our observation, MagGAN
works better on preserving hat or background regions for with-hat samples, the editing quality
also improves for without-hat samples due to the help of mask information. In Table 2 of our
submission, we find the gap between MagGAN and STGAN on with-hat samples is not significantly
large. We made a meticulous investigation on the collected user study results. We find that the user
may misunderstand our instructions by choosing the model with more obvious editing results. For
example, the 3rd row in Figure 8, STGAN achieve more obvious change on “To Bald” and “To
Blonde Hair” attributes, but in fact, STGAN changes the hat regions which should stay intact.
In that situation, MagGAN should be considered as the better model. Thus, such “failure cases”
decrease the votes to MagGAN.
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Fig. 7: Amazon Mechanical Turk interface of user study. Users are asked to choose the better edited
image considering desired attribute
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Fig. 8: Visual examples of MagGAN and STGAN for user study
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Fig. 9: Visual results of MagGAN for multiple facial attribute editing on resolution 256× 256
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Fig. 10: Illustration of attribute intensity control of MagGAN on resolution 256 × 256. The first
column is the input image



12 Y. Wei et al.

3 Face Attribute Editing on High Resolution

We provide more visual results of high-resolution image editing in Figure 11 and Figure 12, for
resolution 1024 × 1024 and 512 × 512 respectively. Fine details of hair and skin can be well
reconstructed with the help of PatchGAN discriminator.

4 Definition of attribute-facial part relationship matrix

We find that facial attributes have strong semantic relationship with specific facial parts. For example,
the attribute of ”blonde hair” is highly related to the hair regions which should be modified in the
edited image if this attribute changes. That leads to a pre-defined attribute-facial part relationship
matrix AR that denotes the relevant regions of each attribute changes. With the help of AR, the
preserved mask M to the attribute difference attdiff can be obtained to computed the mask-guided
reconstruction loss (in §3.2) and mask-guided condition attribute feature (in §3.3).

We define two binary attribute-part relation matrices AR+,AR− ∈ [0, 1]13×19 in our setting (13
modified attributes and 19 facial parts). We separate the attribute changes to two scenarios: attribute
strengthen (0→ 1) or attribute weaken (1→ 0). The i-th row of matrix AR+ or AR− indicates
which facial parts should be modified when the i-th attribute is strengthened, i.e., attdiff,i > 0, or
weakened, i.e., attdiff,i < 0. The detailed definition is in Figure 13.

5 Quantitative Evaluation Metric

In §4, we apply PSNR (Peak signal-to-noise ratio) and SSIM (Structural Similarity Index) to evaluate
the quality of reconstructed images.

PSNR is most commonly used to measure the quality of reconstruction of lossy compression
codecs. In our experiment, we denote the original image as I, the reconstructed image as R, which
takes its original attribute as target attribute. In theory, the input image I and reconstructed image
R should be as similar as possible. PSNR (in dB) is defined as:

PSNR = 10 · log10(
MAX2

I

MSE
),

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−R(i, j)]2
(1)

MAXI is the maximum pixel value of input image I. In general, the larger PSNR value, the better
quality the reconstructed image is.

SSIM (Structural Similarity Index) [6] is another metric to measure the similarity of image I
and image R. The SSIM is defined as:

SSIM(I,R) =
(2µIµR + c1)(2σIR + c2)

(µ2
I + µ2

R + c1)(σ2
I + σ2

R + c2)
(2)

where µI , µR denotes the average of I and R, σ2
I , σ

2
R are the variance of I and R, σ2

IR denotes the
covariance of I and R, c1, c2 are small constants to avoid division instability. Also the larger SSIM
value denotes better image quality for reconstructed image.
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Fig. 11: Visual results of MagGAN (using PatchGAN discriminator) on resolution 1024× 1024. We
show the specific sub-regions for better visualization
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Fig. 12: Visual results of MagGAN (using PatchGAN discriminator) on resolution 512× 512
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Fig. 13: Definition of attribute-part relationship matrices AR+,AR−. Value 1 represents the attribute
and facial part are related, 0 represents that they are irrelevant
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