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Power Normalization in Similarity Learning. Relation descriptors between
query-support matrices M∗ andM are formed by concatenation ofM∗ withM
along the channel mode e.g. cat(M∗,M) ∈ R2×K×K with the goal of similarity
learning by SN. We also note that M may be obtained by for instance the mean
between M1, ...,MZ belonging to the same episode and class (Z>1 for few-shot
case).

It is known from [1] that the Power Normalization in Eq. (1) (the main
submission) performs a co-occurrence detection rather than counting. For clas-
sification problems, assume a probability mass function pXij (x) = 1/(N+1) if
x= 0, ..., N , pXij (x) = 0 otherwise, that tells the probability that co-occurrence
between Φin and Φjn happened x= 0, ..., N times in some chosen image region
with N=WH feature vectors. Note that classification often depends on detect-
ing a co-occurrence (e.g., is there a flower co-occurring with a pot?) rather than
counts (e.g., how many flowers and pots co-occur?). Using second-order pooling
without PN requires a classifier to observe N+1 tr. samples of flower and pot oc-
curring in quantities 0, ..., N to memorise all possible occurrence configurations.
For relation learning, we stack pairs of samples to compare, thus a comparator
now has to deal with a probability mass function of Rij = Xij +Yij depicting
flowers and pots whose support(pRij )=2N+1>support(pXij )=N+1 if random
variable X=Y (same class). For Z-shot learning, the support equals (Z+1)N+1
and the variance grows further indicating that the comparator has to memorize
more configurations of co-occurrence (i, j) as Z grows.

However, this situation is alleviated by Power Normalization (the SigmE
operator), whose probability mass function can be modeled as pXη

ij
(x) = 1/2 if

x = {0, 1}, pXη
ij

(x) = 0 otherwise, as PN detects a co-occurrence (or its lack).

For Z-shot learning, support(pRηij ) =Z+2� support(pRij ) = (Z+1)N+1. The

following ratio

κ=
support(pRij )

support(pRηij )
=

(Z+1)N+1

Z+2
(1)

shows that the comparator has to memorize many more configurations of co-
occurrence (i, j) for naive pooling compared to PN as Z and/or N grow (N
depends on the width and height H and W of a chosen region). Figure 1a shows
the ratio of required memorization of no-PN case divided by the PN case (in
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Fig. 1: Evaluations of the effect of PN on required memorization for Relation-
ship Descriptors (RD) which in our case are a simple concatenation, and Hyper
Attention (HR) in HARPN.

similarity learning) as a function of Z-shot number given various region sizes
N=WH. If Z=0, the case illustrates regular classification. Clearly, the effect of
required memorization is exacerbated more in FSL than classification especially
for larger Z�1. For the PN-based variant, reduction in required memorization
is equivalent of limiting the family of functions during similarity learning.

Our modeling assumptions are very basic e.g., the assumption on mass func-
tions with uniform probabilities, the use of the support of mass functions rather
than variances to describe variability of co-occurrence (i, j). Yet, substituting
these modeling choices with more sophisticated ones does not affect theoretical
conclusions that: (i) PN benefits few-shot learning (Z≥1) more than the regular
classification (Z=0) in terms of reducing possible configurations of (i, j), and (ii)
for variable size regions (varying N), PN reduces the number of configurations of
(i, j) irrespective of value of N which is beneficial for forming relations between
query-support ROIs of different sizes. While classifiers and comparators do not
learn exhaustively all configurations of co-occurrence (i, j) as they have some
generalization ability, they should learn quicker if the number of configurations
of (i, j) is limited given the low-sample few-shot learning regime.

Power Normalization in Hyper Attention RPN. Firstly, let us explain the
role of Second-order Self Correlation (SOSC) from Eq. (4) (the main submission)
given by aSOSC+PN = GSigmE(M·1/K; η). Consider the effect of row-wise aver-
aging:

M·1/K =
1

NK

N∑
n=1

K∑
k=1

φnφkn =
1

N

N∑
n=1

φnµn, (2)

where Φ = [φ1, ...,φN ] and µn =
K∑

k=1

φkn. Eq. (2) captures correlation of each

feature i in φin with itself and other channels, as expressed by µn. Thus, one
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can think of Eq. (2) as capturing self-correlation of feature i together with its
spread to other channels.

Below we show that not using PN in HARPN has a detrimental effect on
learning in RPN due to larger number of feature variations which require more
memorization capacity from network and thus a larger set of functions a classifier
realizes. Increasing the set of functions while keeping the fixed number of training
samples is a conceptually bad idea. Assume that each feature in the support and
query maps of HARP can take a value in {0, 1} (to simplify assumptions). To
describe the support feature i (spatial positions are factored out by the average
pooling), let a probability mass function pXi(x) = 1/(N + 1) if x = 0, ..., N ,
pXi(x)=0 otherwise, that tells the probability of co-occurrence between Φin and
(Φ1n+ ...+ΦKn)/K= µn, ∀n∈{1, ..., N}. Note that we just assume here naively
that µn ∈ {0, 1} for simplicity. To describe the query feature i (at some spatial
location), assume pYi(x) = 1/2 as x∈{0, 1}. Then, each spatial location in the
cross-correlated attention map is described by a probability mass function of
Ai =Xi · Yi which results in support(pAi)=support(pXi)=N+1.

However, using PN on Eq. (2) turns this equation into a feature detector with
pX′

i
(x)= 1/2 as x∈{0, 1} (co-occurrence detection or lack of it). Then, each spa-

tial location in the cross-correlated attention map is described by a probability
mass function of A′i =X ′i ·Yi which results in support(pA′

i
)=support(pX′

i
)=1/2.

Finally, assume that the cross-correlated query against the support feature
map is convolved with a filter of side size r which can take values in {−1, 0, 1}
(also to simplify the argumentation) before being passed through a non-linearity
(the form of an intermediate decision boundary) to take some intermediate de-
cision regarding a region proposal. Each location of the filter can be described
by pFi(x) = 1/3 for x ∈ {−1, 0, 1} and support(pFi) = 1/3. Not surprisingly, a
probability mass function of Di =Ai+

∑
i∈Ir2 Fi yields support(pDi)=2Nr2+1

while for D′i =A′i+
∑

i∈Ir2 Fi, we have support(pD′
i
)=2r2+1. The following ratio

κ′=
support(pDi)

support(pD′
i
)

=
2Nr2+1

2r2+1
(3)

shows that the covolutional comparator with a filter of side size r has to memorize
many more configurations if PN is not used by the Hyper Attention. Figure 1b
shows the ratio of required memorization of no-PN case divided by the PN case
(for RPN learning for a single conolution) as a function of filter side size r and
support crop sizes N = WH. Clearly, the effect of required memorization is
exacerbated for typical filter sizes r = 3. For the PN-based variant, reduction
in the required memorization is equivalent of limiting the family of functions
during learning region proposals which has a regularization effect on the learner.

Furthermore, to describe the support feature i, one may consider that each
µn in fact may have a probability mass function pZ(x) = 1/(K + 1) if x =
0, ...,K, pZ(x) = 0 otherwise. Therefore, the probability mass X ′′i = Xi ·Z has
support(pX′′

i
)=NK+1 which is a more realistic modeling of set support for co-

occurrence between Φin and (Φ1n+ ... + ΦKn)/K= µn, ∀n∈{1, ..., N}. Having
A′′i =X ′′i ·Yi and D′′i =A′′i +

∑
i∈Ir2 Fi, we get support(pD′′

i
) = 2NKr2+1 which
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yields the following ratio

κ′′=
support(pD′′

i
)

support(pD′
i
)

=
2NKr2+1

2r2+1
, (4)

which shows that as k�1, not using PN in HARPN would result in even more
need for memorization than Eq. (3) suggests.

HARPN network/difference with ARPN. HARPN/ARPN use RPN from
the Faster R-CNN detector. As Fig. 3 and 4 (main paper) show, Hyper Atten-
tion uses our SOSD or SOSC to form attention-modified Query Feature Map
(QFM). SOSC acts as ‘feature detector’ that also captures the feature spread
between channels (operation M·1). ARPN uses average pooling–a mere ‘feature
counter’ that increases learning uncertainty. Eq. (1) and (3) show that SOSC
limits uncertainty of cross-correlating support against query, thus improving the
quality of QFM and region proposals.
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