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Power Normalization in Similarity Learning. Relation descriptors between
query-support matrices M* and M are formed by concatenation of M™ with M
along the channel mode e.g. cat(M*, M) € R2XEXK with the goal of similarity
learning by SN. We also note that M may be obtained by for instance the mean
between M, ..., MZ belonging to the same episode and class (Z >1 for few-shot
case).

It is known from [1] that the Power Normalization in Eq. (1) (the main
submission) performs a co-occurrence detection rather than counting. For clas-
sification problems, assume a probability mass function px,; (z) =1/(N+1) if
r=0,...,N, px,, () =0 otherwise, that tells the probability that co-occurrence
between ®;,, and ®;, happened =0, ..., N times in some chosen image region
with N =W H feature vectors. Note that classification often depends on detect-
ing a co-occurrence (e.g., is there a flower co-occurring with a pot?) rather than
counts (e.g., how many flowers and pots co-occur?). Using second-order pooling
without PN requires a classifier to observe N+1 tr. samples of flower and pot oc-
curring in quantities 0, ..., N to memorise all possible occurrence configurations.
For relation learning, we stack pairs of samples to compare, thus a comparator
now has to deal with a probability mass function of R;; = X;;+Y;; depicting
flowers and pots whose support(pr,;) =2N+1>support(px,,) = N+1 if random
variable X =Y (same class). For Z-shot learning, the support equals (Z+1)N+1
and the variance grows further indicating that the comparator has to memorize
more configurations of co-occurrence (i, j) as Z grows.

However, this situation is alleviated by Power Normalization (the SigmE
operator), whose probability mass function can be modeled as pxy, (x)=1/2if
x=1{0,1}, pxy, (x) =0 otherwise, as PN detects a co-occurrence (or its lack).
For Z-shot learning, support(pR?j) = Z+2 < support(pg,;) = (Z+1)N+1. The
following ratio

o support(pr,;)  (Z+1)N+1 (1)
~ support(pgn ) Z+2

shows that the comparator has to memorize many more configurations of co-
occurrence (i,7) for naive pooling compared to PN as Z and/or N grow (N
depends on the width and height H and W of a chosen region). Figure 1a shows
the ratio of required memorization of no-PN case divided by the PN case (in
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Fig. 1: Evaluations of the effect of PN on required memorization for Relation-
ship Descriptors (RD) which in our case are a simple concatenation, and Hyper
Attention (HR) in HARPN.

similarity learning) as a function of Z-shot number given various region sizes
N=WH.If Z=0, the case illustrates regular classification. Clearly, the effect of
required memorization is exacerbated more in FSL than classification especially
for larger Z>>1. For the PN-based variant, reduction in required memorization
is equivalent of limiting the family of functions during similarity learning.

Our modeling assumptions are very basic e.g., the assumption on mass func-
tions with uniform probabilities, the use of the support of mass functions rather
than variances to describe variability of co-occurrence (4, 7). Yet, substituting
these modeling choices with more sophisticated ones does not affect theoretical
conclusions that: (i) PN benefits few-shot learning (Z >1) more than the regular
classification (Z =0) in terms of reducing possible configurations of (7, j), and (ii)
for variable size regions (varying N), PN reduces the number of configurations of
(i,7) irrespective of value of N which is beneficial for forming relations between
query-support ROIs of different sizes. While classifiers and comparators do not
learn exhaustively all configurations of co-occurrence (i,7) as they have some
generalization ability, they should learn quicker if the number of configurations
of (4,7) is limited given the low-sample few-shot learning regime.

Power Normalization in Hyper Attention RPN. Firstly, let us explain the
role of Second-order Self Correlation (SOSC) from Eq. (4) (the main submission)
given by asosc+pN = Gsigme(M-1/K;n). Consider the effect of row-wise aver-

aging: ) N K 1 N
n=1

n=1k=1

K
where @ = [¢q, ..., 05| and p, = > dgn. Eq. (2) captures correlation of each
k=1

feature 7 in ¢;, with itself and other channels, as expressed by p,. Thus, one
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can think of Eq. (2) as capturing self-correlation of feature ¢ together with its
spread to other channels.

Below we show that not using PN in HARPN has a detrimental effect on
learning in RPN due to larger number of feature variations which require more
memorization capacity from network and thus a larger set of functions a classifier
realizes. Increasing the set of functions while keeping the fixed number of training
samples is a conceptually bad idea. Assume that each feature in the support and
query maps of HARP can take a value in {0,1} (to simplify assumptions). To
describe the support feature 4 (spatial positions are factored out by the average
pooling), let a probability mass function px,(z) = 1/(N+1) if x =0,..., N,
px, () =0 otherwise, that tells the probability of co-occurrence between @;,, and
(Pint . +Pxn)/ K= pn, Vne{l, ..., N}. Note that we just assume here naively
that u, € {0,1} for simplicity. To describe the query feature i (at some spatial
location), assume py;(x) = 1/2 as € {0,1}. Then, each spatial location in the
cross-correlated attention map is described by a probability mass function of
A; =X, -Y; which results in support(pa,)=support(px,)=N+1.

However, using PN on Eq. (2) turns this equation into a feature detector with
px/(z)=1/2 as x€{0, 1} (co-occurrence detection or lack of it). Then, each spa-
tial location in the cross-correlated attention map is described by a probability
mass function of Aj=X/-Y; which results in support(pa;)=support(px/)=1/2.

Finally, assume that the cross-correlated query against the support feature
map is convolved with a filter of side size r which can take values in {—1,0,1}
(also to simplify the argumentation) before being passed through a non-linearity
(the form of an intermediate decision boundary) to take some intermediate de-
cision regarding a region proposal. Each location of the filter can be described
by pr,(z) =1/3 for z € {—1,0,1} and support(pr,) = 1/3. Not surprisingly, a
probability mass function of D; :Ai""ZieITQ F; yields support(pp,) =2Nr?+1
while for D :AH‘ZieITQ F;, we have support(pp ) =2r2+1. The following ratio

, support(pp,) 2Nr?+1
R = =
support(pp:)  2r?+1

3)

shows that the covolutional comparator with a filter of side size r has to memorize
many more configurations if PN is not used by the Hyper Attention. Figure 1b
shows the ratio of required memorization of no-PN case divided by the PN case
(for RPN learning for a single conolution) as a function of filter side size r and
support crop sizes N = WH. Clearly, the effect of required memorization is
exacerbated for typical filter sizes r = 3. For the PN-based variant, reduction
in the required memorization is equivalent of limiting the family of functions
during learning region proposals which has a regularization effect on the learner.

Furthermore, to describe the support feature ¢, one may consider that each
tn in fact may have a probability mass function pz(x) = 1/(K +1) if z =
0,..., K, pz(z) = 0 otherwise. Therefore, the probability mass X; = X;-Z has
support(p Xi’) = NK+1 which is a more realistic modeling of set support for co-
occurrence between @, and (P1,+ ... + Prn)/K = pin, ¥n€{1,..., N}. Having
Af=X["Y; and D} = A7+, , Fi, we get support(ppy) =2NKr*+1 which
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yields the following ratio
, support(ppr) 2NKr?+1
K = - =
support(ppr) 2241

(4)

which shows that as k>>1, not using PN in HARPN would result in even more
need for memorization than Eq. (3) suggests.

HARPN network/difference with ARPN. HARPN/ARPN use RPN from
the Faster R-CNN detector. As Fig. 3 and 4 (main paper) show, Hyper Atten-
tion uses our SOSD or SOSC to form attention-modified Query Feature Map
(QFM). SOSC acts as ‘feature detector’ that also captures the feature spread
between channels (operation M-1). ARPN uses average pooling—a mere ‘feature
counter’ that increases learning uncertainty. Eq. (1) and (3) show that SOSC
limits uncertainty of cross-correlating support against query, thus improving the
quality of QFM and region proposals.
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