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Abstract. Deep neural networks (DNNs) and decision trees (DTs) are
both state-of-the-art classifiers. DNNs perform well due to their repre-
sentational learning capabilities, while DTs are computationally efficient
as they perform inference along one route (root-to-leaf) that is depen-
dent on the input data. In this paper, we present DecisioNet (DN), a
binary-tree structured neural network. We propose a systematic way to
convert an existing DNN into a DN to create a lightweight version of the
original model. DecisioNet takes the best of both worlds - it uses neural
modules to perform representational learning and utilizes its tree struc-
ture to perform only a portion of the computations. We evaluate various
DN architectures, along with their corresponding baseline models on the
FashionMNIST, CIFAR10, and CIFAR100 datasets. We show that the
DN variants achieve similar accuracy while significantly reducing the
computational cost of the original network.

Keywords: Neural Network Optimization · Decision Trees.

1 Introduction

Deep neural networks (DNNs) have achieved exceptional performance in various
visual recognition tasks in recent years, such as image classification, object de-
tection, and semantic segmentation. That is mostly due to their representational
learning capabilities. However, deploying DNN models in an industrial environ-
ment is challenging - especially when the computational resources are low (which
is the case for many mobile device applications) or where the model’s inference
time has to be fast enough (e.g ., real-time applications). In addition, a DNN is
seen in many cases as a ”black box” - one cannot easily figure out why a final
prediction is made.

Another powerful machine learning model is the Decision Tree (DT). A DT
model learns a routing function, where each node of the tree routes the data
to one of its children until it reaches a leaf with the final output. This condi-
tional computation means that only part of the DT is visited for each input thus
achieving high efficiency. Moreover, DTs provide an interpretable structure, al-
lowing the user to understand why a decision was made. On the downside, DTs
usually require hand-engineered data features, and they cannot be trained with
gradient-based optimization methods, which limits their expressiveness.
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In this paper, we propose a novel general model with the benefits of both
DNNs and DTs - the DecisioNet (DN). This is a binary-tree structured DNN,
derived from any other DNN that we wish to reduce its computational cost. It
can be trained end-to-end using backpropagation [18] just like any other DNN.
In addition, the DN has routing modules which play the role of the DT within
this model, routing the input through the tree. The outcome is a lighter model
- in terms of parameters and even more in terms of computational cost - whose
performance is at par with the baseline model. We evaluate and compare full
baseline models against their DN variants on the FashionMNIST [22], CIFAR10,
and CIFAR100 [14] datasets. In this paper, we examine DN only for image
classification tasks but this method can be used for other types of tasks as well.

Contributions the contributions of this paper are: i) we propose a systematic
way of transforming an existing DNN into a tree-structured version of it (its
DecisioNet), yielding a lightweight model with comparable performance. ii) we
propose a way of training the DN end-to-end, despite the explicit data rout-
ing functions within the DN (which involves non-differentiable operations) using
Improved Semantic Hashing. iii) we provide an open-source PyTorch [16] imple-
mentation of DecisioNet, available at https://github.com/noamgot/DecisioNet.

2 Related Work

Soft Decision Trees The Soft Decision Tree (SDT) mechanism has been stud-
ied in various works, including [20,10,17,5]. SDT is a DT with neural routing
nodes sending the data to a sub-tree, multiplied by a probabilistic factor in the
range [0, 1]. The final prediction of the tree is the weighted sum of all leaves,
where the weight of each leaf is the probability of arriving at it.

This method differs from traditional DTs, whose decisions are binary and de-
terministic. Another SDT-like method is the Neural Decision Forest (NDF), pro-
posed in [13]. This method achieved great performance on the Imagenet dataset
[4], replacing the last fully-connect layer of a neural network with decision forest
nodes. These nodes yield a prediction which is a weighted sum of all the trees’
predictions. The major drawback of SDTs is that all paths of the tree must be
executed to get a prediction. These methods lack the advantage of traditional de-
cision trees using only a single computational path, and therefore their efficiency
is limited. In this work, we focus on hard decision trees only, which perform only
one path of the tree.

Neural Trees With Hard Routing Another type of neural DT is proposed in
[8,6], where the forward pass utilizes the routing nodes to make a hard decision,
and in this way indeed only the relevant nodes of the tree are visited. [8] introduce
a routing function which outputs binary values at test time only, such that the
tree still performs soft decisions during training, allowing it to train end-to-end.
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[6] on the other hand introduce the Tree Ensemble Layer (TEL), which is capable
of performing hard decisions at test time and even during training, by simply
skipping unreachable nodes (i.e., nodes whose ancestors reach probability is 0).
Notice that the number of reachable leaves is not necessarily limited to 1, hence a
soft routing is still performed. In contrast, our method applies fully hard routing
(with a single output leaf) both at training time (where we also use soft decision
behavior) and at test time.

Tree-Structured Neural Networks Instead of replacing DTs decision nodes
with neural modules, the other direction is also possible: creating a DNN with
a structure of a DT, such that the routing behavior of a DT is present. This
network consists of multiple sub-networks, that are traversed conditionally based
on the routing nodes’ decisions. [23] proposed HD-CNN, where a small CNN
is first activated to classify inputs into coarse categories. This network has a
hierarchical architecture which is essentially an SDT-structured DNN with a
single decision node with k branches. HD-CNN is not trained end-to-end but
in a modular way: there is a common (shared) network for predicting coarse
categories and coarse-category expert networks. Each of these networks is trained
alone (the expert modules are trained only with their corresponding classes;
The coarse-category labels are achieved by clustering similar classes based on
an existing network), and all of them are fined tuned together in the end. [9]
extended the tree-structured net of HD-CNN to conditional networks. These
are DAG-based CNN architectures with data routing. They distinguish between
two types of routing: i) explicit routing - where data is conditionally passed to
a node’s children (one or more) based on a routing function. This method is
similar to DTs. ii) implicit routing - where the data is split into portions that
are sent to the node’s children unconditionally. In the paper. this method is
done using filter groups (i.e., splitting outputs feature maps into groups, where
each group goes to a separate route). Another tree-structured NN is Adaptive
Neural Trees (ANT) [21]. In ANT, the tree structure is learned together with
the model’s weights; This approach is different from tree-structured NNs with a
static architecture that is commonly used (in this work as well).

Differences and Similarities DecisioNet is, to some extent, a combination of
HD-CNN [23] and conditional networks [9]. We create labels for training the
routing modules with a method that’s based on the one proposed in HD-CNN,
but unlike [23], we train deeper, tree-structured DNNs with explicit routing, and
we do the training end-to-end. We use explicit routing, similar to the one that
was suggested for conditional networks. However, we use a different method for
training end-to-end (improved semantic hashing [11]), and more importantly, we
show actual results for explicitly-routed DNN trees (in [9] the main results were
achieved using implicit routing; The only result that contained explicit routing
was a CNN ensemble with a single decision for choosing which models to use
for the final prediction). Finally, the approach used by ANT [21] is building the
tree-structured net from scratch; We aim to optimize the computational cost of
an existing network by transforming its structure into a tree.
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3 DecisioNet

The proposed model is based on any existing deep neural network (DNN) such
as VGG [19], ResNet [7], etc. We’ll denote such a DNN as the ”baseline model”.

3.1 Architecture

The DN architecture is based directly on the baseline model’s architecture. It is a
transformation of the baseline model into a binary decision tree, whose primary
goal is to achieve similar performance with fewer computational operations. We
begin by choosing split points - these are the places the new DN model will
decide to route the data into one of two routes. In our method, after the i-th
split (Starting with i = 1), we split the relevant layers to 2i equal portions,
in terms of the number of filters in convolutional layers, etc. A toy example
of this idea is displayed in figure 1. This way we get a balanced tree whose
number of parameters is fewer than that of the baseline model. Moreover, since
at test time our model chooses a single path from the root to a leaf, traversing
only through a portion of the nodes (just like a DT), the number of multiply-
accumulate (MAC) operations is also smaller. The routing at each split is done
using a trainable routing module (RM). The RM is a small, lightweight network
that makes a binary decision (a detailed explanation is found in section 3.3).

(a) Baseline network (b) DecisioNet

Fig. 1. A toy example of transforming a baseline model (a) into its respective
DecisioNet (b). For the sake of clarity, the baseline model consists of 6 convolu-
tional layers, each with 100 filters. The blue circles represent routing modules. In
the DN model, the layers after the first split (leftmost blue circle) have half the
number of filters compared to their corresponding layers in the baseline model.
Similarly, the layers after the second split(s) have a quarter the number of fil-
ters. This idea can be easily generalized to an arbitrary number of splits. At test
time, each RM picks one of two routes and the data is passed to the next module
through this route only.

3.2 Classes Hierarchical Clustering

After deciding the depth of the DecisioNet (i.e., the number of splits), we perform
hierarchical clustering of the dataset’s classes to obtain intermediate labels for
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the routing modules. The goal of this phase is to extract the hierarchical structure
of the data, grouping similar classes into nested clusters. The routing labels are
derived directly from the clustering. The general idea is demonstrated in figure
2.

Fig. 2. Hierarchical clustering example - 10 classes (A-J) are clustered into a
clustering tree of depth 2. The deepest (rightmost) clusters share the same rout-
ing labels, stated to their right. For example, classes E and F labels are 1 for the
first routing, and 0 for the second.

We use a method similar to the one used by [23], extending it to handle
more than just 2 hierarchical levels (coarse and fine), using a different clustering
method. We begin by randomly sampling a balanced subset of images out of the
training set. We evaluate the held-out set using the baseline model to obtain a
confusion matrix F. We define a distance matrix D̂ as follows:

D̂ij =

{
0 i = j

1− Fij i ̸= j
(1)

To obtain a symmetric distance matrix, we define:

D =
1

2

(
D̂+ D̂T

)
(2)

At this point, Dij measures the similarity between classes i and j. Having a
distance matrix, we use it to perform hierarchical agglomerative clustering. This
phase gives us a division of the dataset’s classes into 2 clusters, a division of each
of these clusters into 2 sub-clusters, and so on. This can be seen as a mapping
of a class to its set of clusters Fc : {i}Ci=1 → {0, 1}k, where C is the number of
classes and k is the depth of the DecisioNet tree.

Unlike [23], we do not allow overlap between same-level clusters, i.e., at each
clustering depth, each class can be found in exactly one sub-cluster. The main
problem with this choice is that images that are routed to a wrong branch (at
any level, even in the deepest routing module) end up in the wrong leaf and
are miss-classified. We overcome this problem by allowing each leaf of the DN
to predict all classes - even classes that shouldn’t have been routed to this leaf.
Allowing cluster overlap is possible though, and we leave this for future research.
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3.3 Routing

One of the key questions when dealing with tree-structured neural networks is
which routing method to use. There are 2 main types of routing found in the
literature:

1. Soft routing - in this method, the output of each branch is multiplied by a
real value (usually between 0 and 1) and the final output of some routing
point is the sum of its branches’ outputs.

2. Hard routing - in this method, each branch either passes its input or not.

The main advantage of the hard-routing method (and the disadvantage of
the soft-routing method), is that it allows us to save computational cost by
performing only the chosen path of a given input. To decrease the computational
cost, DN uses the hard-routing approach.1

The Routing Module To choose a route for input, we use a routing module
(RM) - this module is a small efficient neural network which outputs a single
binary value. Inspired by [3,2], we used a similar routing module. These papers
used this module to choose filters of a convolutional layer, hence they needed
multiple outputs; However, we use this module to choose a single branch, so we
use a slightly modified version of it.

Let x ∈ RC×H×W be the output of the last layer before a split in the tree.
Our routing module can be defined as follows:

RM(x) = B (FC (GAP (x))) (3)

Where GAP is a Global Average Pooling operation, defined as:

GAP (x) =
1

HW

H−1∑
i=0

W−1∑
j=0

xij (4)

FC is a linear projection layer (i.e., a fully-connected layer) with C inputs and
a single output and B is a binarization function which will be introduced in the
next paragraph. A schematic diagram of the proposed routing module can be
found in figure 3.

Improved Semantic Hashing We want our module to output a binary value
- either 0 or 1 - to choose the next computational path. Performing simple
binarization using a threshold is not an option, as this operation is almost always
with zero derivative and therefore we will not be able to perform backpropagation
properly. Like [3,2], we adopt the Improved Semantic Hashing method, proposed
by [11].

1 To the best of our knowledge, popular deep learning frameworks, such as PyTorch
[16] and TensorFlow [1], do not support tree-structured neural nets when using
batches of inputs. It means that in practice, during training and evaluating the data
passes through all the nodes of the tree where we zero out the ”untraversed” ones
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Fig. 3. A schematic diagram of the proposed routing module. FC-1 is a fully-
connected layer with a single output neuron. Full details are in sec. 3.3

During training, we draw a random noise ϵ with mean 0 and standard devi-
ation 1. We define the following values:

gϵ(z) = z + ϵ

gr(z) = σ′ (gϵ (z))

gb(z) = 1 (gϵ (z) > 0)

(5)

1(z) is an indicator function (evaluated to 1 when z is true and 0 otherwise);
σ′ is the saturating sigmoid function from [12]:

σ′(z) = max (0,min (1, 1.2σ (z)− 0.1)) (6)

where σ is the well-known sigmoid function. Notice that gr is a real-valued
number in the range [0, 1] while gb is a binary value; Moreover, the gradient of
gr is well defined w.r.t gϵ, while the gradient of gb w.r.t gϵ is 0.

Finally, we can define our binarization function B as follows:

B(z) = gb/r(z) (7)

The term gb/r denotes that in the forward pass we use either gr or gb, and
that is eventually the output of the RM. The choice is done at random with a
50% chance for each. In the backward pass, we always use the gradients of gr to
backpropagate meaningful gradients2. To allow this dual behavior, we sum the
branches’ outputs in the following way:

f(x) = (1− (RM (x))) fL (x) +RM (x) fR (x) (8)

Where fL, fR are the functions applied to x by the left and right branches. Notice
that if RM outputs a binary value, only one of the branches is used, while in the
real-valued case the branches’ outputs are mixed (i.e., soft routing is applied).

During evaluation and inference, we perform the same procedure with 2
changes: first, there is no additive noise (ϵ = 0); second, the routing module
only outputs binary values, so in this phase, we only use gb as an output of RM .

To conclude, the Improved Semantic Hashing method allows us to train the
DecisioNet model in an end-to-end manner and to apply hard decisions at infer-
ence time.
2 In PyTorch, this operation can be performed like this:
out = g b + g r - g r.detach()
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3.4 Loss Function

DecisioNet is trained with 2 sets of labels - classification labels and routing
labels (extracted in the clustering phase). During training, we want our model
to classify inputs correctly while passing classes to their desired routes, based
on the routing labels. Therefore, we design a loss function that balances these 2
demands. This loss is described as follows:

L = Lcls + βLσ (9)

Where Lcls is a classification loss (e.g ., cross-entropy loss) and Lσ is a MSE loss
for the routing labels. β is a hyper-parameter for balancing the classification
accuracy and the routing accuracy. We also tried to use a MSE variant which
penalizes routing mistakes with different weights depending on the RM depth.
The assumption was that it would make sense to give a higher weight to routing
mistakes that happen earlier. However, we did not find evidence that this method
gives a significant improvement, hence we use the vanilla MSE instead.

4 Experiments

4.1 FashionMNIST & CIFAR10

Fashion-MNIST [22] consists of a training set of 60K examples and a test set
of 10K examples. Each example is a 28×28 grayscale image, associated with a
label from 10 classes. The CIFAR10 dataset [14] consists of 60K 32×32 color
images in 10 classes, with 6000 images per class. There are 5000 training images
and 1000 test images per class. Both datasets were trained using their training
images and evaluated on the test images.

Model We used Network-In-Network (NiN) [15] as our baseline model. The
architecture we used is displayed in figure 4a. We treat it as a stack of 3 small
networks (which we refer to as ”blocks”). The DecisioNet variants of this model
are generated using the method described in section 3. We experimented with 4
varieties of DecisioNets:

1. DN2 - A basic version with 2 splits, located in-between the baseline NiN
model blocks. An example of a single DN2 computational path is displayed
in figure 4b. Since there are 2 splits in the DN2 tree, there are 4 different
computational paths (from root to leaf).

2. DN1-early - this version contains a single split point, between the first and
second NiN blocks. It is equivalent to the DN2 without the deeper routing
modules.

3. DN1-late - this version contains a single split point, between the second
and third NiN blocks. It is equivalent to the DN2 without the first routing
module and replacing the 2 deeper RMs with a single one.
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4. DN2-slim - A slimmer version of DN2, where we ”push” the routing modules
to earlier stages compared to DN2. It results in an even lighter version of DN2
(fewer parameters and MAC operations). An example of a single DN2-slim
computational path is displayed in figure 4c.

In all cases, the last layer of the DN model outputs 10 values. It means that
classes that reached the wrong leaf can still be predicted correctly. This way we
overcome the aforementioned choice of not allowing overlapping between clusters.

Preprocessing For each dataset we calculate its training set mean and standard
deviation values (per channel) and use them to normalize the images before
feeding them into the model. We also created the routing labels using the method
described in 3.2. For CIFAR10, we conduct 2 sets of experiments - one with data
augmentation (which includes random flips and crops, zero-padded by 4 pixels
from each side) and one without it. The data-augmented experiments are marked
in the tables with a ”+” sign.

Training We apply a similar training method to the one used in [15]: we used
stochastic gradient descent with mini-batches of 128 samples, momentum of 0.9,
and weight decay of 0.0005. The initial learning rates of FashionMNIST and
CIFAR10 were 0.01 and 0.05, respectively. We decrease the learning rate by a
factor of 10 when there are 10 epochs without training accuracy improvement.
We repeat this process twice during the training period. The training stops if
either we reach 300 epochs, or the test loss stops improving for 30 epochs (the
latter is to prevent overfitting).

The DecisioNet training process is identical and has the additional hyperpa-
rameter β for the loss function (eq. 9). The value of β varies between datasets
and models. The specific value that was used for every experiment appears next
to the results (table 2).

We initialize the weights of the convolutional layers from a zero-centered
Gaussian distribution with a standard deviation of 0.05.

Clustering Interpretability Aside from the performance of the different mod-
els, we show that the clustering method partitions the data in an intuitive way.
For example, the CIFAR10 first partition is into 2 clusters containing animals
and vehicles. The vehicle cluster is then separated into land vehicles (car, truck)
and non-land vehicles (plane, ship). In FashionMNIST the first division is into
footwear (sandal, snicker, ankle-boot) and non-footwear. The latter is then par-
titioned into legwear (a singleton cluster with only pants) and non-legwear (T-
shirt, dress, bag, etc.). The full hierarchical clustering (for 2 decision levels) is
displayed in table 1.

Results and Comparison The results, containing the test accuracy, number of
parameters, and number of MACs are presented in table 2. For each experiment
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(a)

(b)

(c)

Fig. 4. In (a) we display the Network-in-Network (NiN) baseline model architec-
ture. For convolutional layer blocks, the kernel size is stated below each block,
and the number of filters is written on the side. We always add zero-padding
such that the output and input spatial dimensions are the same (only pooling
layers reduce the spatial dimensions). N is the number of output classes (in our
case N = 10). In (b) and (c) we display a computational path of 2 DecisioNet
variants of the NiN model - DN2 and DN2-slim, respectively. The routing mod-
ule (RM) is the one that is described in sec. 3.3. Notice that the first block after
the RM has convolutional layers with half the amount of filters compared to
the baseline model; After the second RM, the corresponding block contains a
quarter of the filters in the convolutional layers.
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Table 1. Hierarchical clustering results (better viewed in color).

Class 1st level 2nd level

plane 0 0
ship 0 0
car 0 1

truck 0 1
bird 1 0
cat 1 0
deer 1 0
dog 1 0
frog 1 0

horse 1 1

(a) CIFAR10 clustering

Class 1st level 2nd level

T-shirt 0 0
Pullover 0 0

Dress 0 0
Coat 0 0
Shirt 0 0
Bag 0 0

Trouser 0 1
Sneaker 1 0

Ankle-boot 1 0
Sandal 1 1

(b) FashionMNIST clustering

(row in the table) we measured the average accuracy based on 10 runs with an
identical setup (except for the initial weights, of course). For the DN variants,
the β values of eq. 9 that were used also appear in the table. The parameters
and MAC count were calculated for a single input image forward pass using
torchinfo [24]. A ”+” stands for data augmentation. The DN architectures are
described in sec. 4.1.

Analysis: The results (table 2) show that our method works well for these
datasets. The performance of the different DN variants is at par with the base-
line NiN model (and sometimes even slightly outperforms it). Depending on the
exact architecture, we save up to roughly 60% of the computational cost and
memory with a negligible decrease in the model’s performance.

Comparing DN models whose routing module is placed earlier in the net
(DN1-early and DN2-slim) with their similar alternatives (DN1-late and DN2,
respectively), we can see a cost-performance tradeoff: when we put the routing
module earlier, the model’s performance decreases, along with its cost. This
phenomenon is another testimony to the well common belief that shallow layers
extract features that are important for all classes.

We also would like to emphasize the significance of choosing an appropriate
β: when setting β = 0, we essentially encourage the DN to only optimize the
classification loss, ignoring the routing loss. We found that the performance in
this case, is similar to a random choice (i.e., DN outputs a constant prediction).
This is surprising because in some cases the DN ignored the routing labels at
some point, while still improving its classification accuracy.

4.2 CIFAR100

The CIFAR100 dataset [14] is like the CIFAR10, except that it has 100 classes
containing 600 images each (500 training images and 100 test images per class).
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Table 2. Accuracy results, along with parameters and MACs count. For exper-
iments with augmented data (marked with ”+”) we ommit the parameters and
MACs count, as they are identical to those of the non-augmented experiments.
More details in sec. 4.1.

Dataset Architecture β Acc. (%) Acc. Change (%) Params (K) Params change (%) MACs (M) MACs change (%)

F
as
h
io
n
M
N
IS
T

Baseline - 92.7 - 957.386 - 163.3

DN1-early 3.0 92.9 ↑ 0.2 736.309 ↓23.1 93.64 ↓42.7

DN1-late 3.0 93.4 ↑ 0.7 939.157 ↓1.9 153.76 ↓5.8

DN2 3.0 92.8 ↑ 0.1 727.307 ↓24.0 91.24 ↓44.1

DN2-slim 3.0 92.7 0.0 414.027 ↓56.8 60.68 ↓62.8

C
IF
A
R
10

Baseline - 87.0 - 966.986 - 223.12 -

DN1-early 3.0 86.6 ↓ 0.4 745.909 ↓22.9 132.14 ↓40.8

DN1-late 3.0 88.2 ↑1.2 948.757 ↓1.9 210.66 ↓5.6

DN2 0.5 86.8 ↓ 0.2 736.907 ↓23.8 129.00 ↓42.2

DN2-slim 1.0 86.2 ↓ 0.8 423.627 ↓56.2 89.08 ↓60.1

C
IF
A
R
10
+

Baseline - 88.4 - - - - -

DN1-early 3.0 87.8 ↓ 0.6 - - - -

DN1-late 3.0 89.4 ↑ 1.0 - - - -

DN2 0.5 87.6 ↓ 0.8 - - - -

DN2-slim 1.0 86.3 ↓ 2.1 - - - -

For this dataset, we experimented with Wide ResNet (WRN) [25] as our
baseline network. We used the version with 28 layers and a depth factor of
k = 10 (denoted as WRN-28-10 in the original paper). We created 3 DN variants
out of this network: DN2, whose splits are in between the residual blocks (2
splits), along with DN1-early and DN1-late - each of them with a single split
point, positioned at the first or last DN2 split point position. A diagram of the
baseline model and the DN2 variant are displayed in figure 5, and the results of
our experiments are in table 3.

Training We train the network using the same method as in [25]. That is, we
use SGD with Nesterov momentum of 0.9 and a weight decay of 0.0005. The
initial learning rate is set to 0.1 and is decreased by a factor of 5 when we reach
60, 120 and 160 epochs. The training is stopped after 200 epochs. The batch size
used for training is 128. We augmented the dataset with the same method as we
did with CIFAR10, except padding crops with reflections instead of zeros (that
is done to follow the training procedure from the original paper).

Analysis: we see similar behavior to the former experiments. The top1 accuracy
drop is larger than in the former experiments. One possible explanation to this
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(a) Baseline WRN-n-k architec-
ture with n = 28. The dashed ar-
rows are 1x1 convolutions for di-
mensions matching

(b) Residual block architecture. In
some cases, the first convolution
has a stride of size 2 (In (a) these
blocks has the additional ”/2” text)

(c) WRN-DN2 single computa-
tional branch (we group the resid-
ual blocks from (a) into a single
block for clarity; Generally, N =
(n − 4)/6, so in our case N = 4).
RM is the routing module.

Fig. 5. Wide-ResNet-n-k architectures - in this paper we only use n = 28
and k = 10.

1687



14 N. Gottlieb, M. Werman

Table 3. CIFAR100 results

Architecture β Top-1 Acc. (%) Top-5 Acc. (%) Params (M) MACs (G)

WRN Baseline - 80.7 95.4 36.537 5.24

WRN-DN1-early 3.0 77.6 (↓ 3.1) 93.9(↓ 1.5) 19.385(↓ 46.9%) 2.6 (↓ 50.4%)

WRN-DN1-late 3.0 78.7 (↓ 2.0) 94.5(↓ 0.9) 23.635 (↓ 35.3%) 3.94 (↓ 24.8%)

WRN-DN2 5.0 75.7 (↓ 5.0) 92.7(↓ 2.7) 12.935 (↓ 64.6%) 2.28 (↓ 56.5%)

is the fact that the parameter ratio between the DNs and the baseline model
is significantly higher. Different routing module positioning might yield better
performance (at some computational cost).

5 Conclusion

We introduced DecisioNet (DN), a binary-tree structured network with condi-
tional routing. We proposed a systematic way of building it based on an existing
baseline network. DN utilizes Improved Semantic Hashing for training end-to-
end, applying conditional routing both during training and evaluation. DN takes
advantage of its tree structure, passing inputs only through a portion of the net’s
neural modules saving a lot of the computational cost. We evaluated multiple
DN variants along with their baseline models on multiple image classification
datasets and showed that DN is capable of achieving similar performance (w.r.t.
its baseline model) while significantly decreasing the computational cost.

Future Research One clear drawback of our method is the use of additional
labels. In addition, these labels are generated using a pre-trained model. Learn-
ing hard routing without such auxiliary labels is challenging (as we saw when we
set β = 0), and it might be an interesting direction for future research. Another
direction is creating DN with unbalanced trees: in this paper, we only exam-
ined balanced DNs, while our clustering trees were not necessarily balanced. A
possible idea is to divide the computational power of branches proportionally to
the size of the data they should process (e.g ., a dataset with 100 classes which
is split into clusters of size 70 and 30, would have one branch with 70% of the
computational power and the other would have 30%).

Acknowledgements Thanks to the ISF (1439/22) and the DFG for funding.

1688



DecisioNet 15

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
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