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Abstract. Deep Convolutional Neural Networks (CNNs) have high mem-
ory footprint and computing power requirements, making their deploy-
ment in embedded devices difficult. Network pruning has received at-
tention in reducing those requirements of CNNs. Among the pruning
methods, Stripe-Wise Pruning (SWP) achieved a further network com-
pression than conventional filter pruning methods and can obtain op-
timal kernel shapes of filters. However, the model pruned by SWP has
filter redundancy because some filters have the same kernel shape. In
this paper, we propose the Filter Shape Pruning (FSP) method, which
prunes the networks using the kernel shape while maintaining the recep-
tive fields. To obtain an architecture that satisfies the target FLOPs with
the FSP method, we propose the Adaptive Architecture Search (AAS)
framework. The AAS framework adaptively searches for the architec-
ture that satisfies the target FLOPs with the layer-wise threshold. The
layer-wise threshold is calculated at each iteration using the metric that
reflects the filter’s influence on accuracy and FLOPs together. Compre-
hensive experimental results demonstrate that the FSP can achieve a
higher compression ratio with an acceptable reduction in accuracy.

Keywords: Deep Learning Optimization - Structured Pruning - Con-
volution Neural Networks.

1 Introduction

Deep Convolutional Neural Networks (CNNs) have been widely used in computer
vision applications, such as image classification [6,31], object detection [30, 29,
21], and segmentation [1,24]. These successes rely on the tremendous number
of parameters and computations of the networks. However, their high require-
ments in storage and computing resource make the networks hard to deploy in
edge devices. To address this problem, numerous studies have proposed different
approaches to compress the networks. Popular approaches include quantization
[2], compact network design [10, 39], and network pruning [5, 23].

Network pruning methods can be classified into several categories: element-
wise pruning, filter pruning, and stripe-wise pruning. Element-wise pruning [5]
is the most fine-grained non-structured pruning method that removes the indi-
vidual weights to obtain a high compression rate without sacrificing accuracy.
However, because the positions of non-zero weights are irregular and random,
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Fig. 1: Different pruning types of convolution layers.

element-wise pruning has irregular memory access and thus cannot achieve prac-
tical performance improvement without dedicated hardware. In contrast, filter
pruning [23,15,9] is a structured method that removes the unimportant filters,
which can directly achieve real performance improvement in general processors.
However, filter pruning is less fine-grained than element-wise pruning; there-
fore, the further compression is limited. To overcome this weakness of filter
pruning, Stripe-Wise Pruning (SWP) [27] has been introduced. SWP combines
the strengths of element-wise pruning and filter pruning methods. Thus, SWP
achieves finer granularity than traditional filter pruning and can still be acceler-
ated in general processors. Fig. 1 shows the different pruning types of convolution
layers.

SWP can obtain the optimal kernel shapes of filters by pruning unimportant
stripes after training the importance of stripes in the filter using a learnable
matrix called a FilterSkeleton (FS). The follow-up studies of SWP [12,20, 22]
focused on obtaining further optimized kernel shapes; therefore, the improvement
of compression rate is insignificant or rather diminished. Moreover, when we
visualize the filters of each layer in the model after SWP, several filters are found
to have the same kernel shape as shown in Fig. 2. The kernel shapes significantly
influence receptive fields, which are crucial for feature extraction. This indicates
that the features extracted by filters with the same kernel shape have higher
similarity than the others. Furthermore, this property causes filter redundancy,
a phenomenon in which filters extract similar features that exist in duplicate.
Thus, by pruning these filters, filter redundancy can be effectively reduced with
little impact on accuracy. Motivated by these observations, we propose the Filter
Shape Pruning (FSP) method, which prunes the model after SWP by kernel
shape while preserving the receptive fields of kernel shapes. Moreover, we use
“the FSP rule”, a crucial concept in FSP, that maintains receptive fields. The
FSP method can highly compress networks with a slight loss in accuracy.

In this study, we propose the Adaptive Architecture Search (AAS) framework
that efficiently applies FSP to the networks. The AAS framework adaptively
searches for an architecture that meets the target FLOPs and fine-tunes the
pruned model from scratch. Previous adaptive pruning studies 33, 40] proposed
a metric that only considers the accuracy or computational intensity of the
pruned model. In contrast, we propose a metric that considers the effect of the
filters on accuracy and FLOPs. This metric can find filters that generate many
FLOPs while less sensitive in accuracy. Furthermore, using the proposed metric
during the AAS framework, we use the adaptive layer-wise threshold that reflects
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Fig.2: Visualization of the VGG-16 filters pruned by SWP [27]. We illustrate
the Top-5 filters according to their frequency in each layer, and the blue color
indicates the remaining stripe after SWP.

the architecture, which varies at each iteration. Using our proposed framework,
we can obtain an architecture consisting of filters that have good scores in both
accuracy and FLOPs.

The main contributions of this study can be summarized as follows:

— We propose the FSP method that efficiently reduces filter redundancy while
maintaining receptive fields of kernel shapes. Furthermore, we prune the
network using “the FSP rule” to preserve the receptive fields. Using FSP, we
can achieve a higher compression ratio than other pruning methods.

— We propose the AAS framework using a layer-wise threshold that adaptively
changes. The layer-wise threshold is calculated by a metric reflecting the in-
fluence of the filter on accuracy and FLOPs together. The framework obtains
the architecture that satisfies the target FLOPs using the FSP method.

The rest of the paper is organized as follows. Section 2 covers related works.
Section 3 presents preliminaries. Section 4 describes the FSP method and the
AAS framework. Section 5 provides the experimental results and analysis. Sec-
tion 6 covers additional experiments. Finally, we summarize and conclude this
study in Section 7.

2 Related Work

Filter Pruning Filter pruning is a structured pruning method that prunes
unimportant filters. Therefore, it does not require dedicated hardware/libraries.
Li et al. [15] pruned unimportant filters based on the {1 norm of the filter weights.
Liu et al. [23] used the scaling factor 7, a trainable variable of batch normaliza-
tion, to remove unimportant channels from the output channels of each layer. He
et al. [17] discovered that the average rank of several feature maps generated by
a single filter is always the same, regardless of batch size. The authors formulated
a process to prune filters with low-rank feature maps based on the principle that
they contain less information. Lin et al. [35] proposed a metric that measures the
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correlations among different feature maps to perform efficient filter pruning us-
ing channel independence. The authors considered the less independent feature
map as containing less useful information and pruned its corresponding filter.
The networks pruned by filter pruning methods can be accelerated without ded-
icated hardware. However, because the filter pruning method uses a bigger unit
than element-wise pruning, it has the disadvantage of a low compression rate.
To solve this problem, SWP has been introduced.

Stripe-Wise Pruning Meng et al. [27] proposed Stripe-Wise Pruning (SWP)
to prune more fine-grained networks than conventional filter pruning methods
and can still be accelerated without dedicated hardware. SWP obtains the opti-
mal kernel shape of the filter by learning the importance of the filter stripes. Liu
et al. [22] developed the pruning framework called Squeezing More Out of Filters
(SMOF) that reduces the kernel size with the “peeling” method and the number
of filters of CNNs with Filter Mask, which learns the importance of filters. Huo
et al. [12] proposed Balanced-Stripe-Wise Pruning (BSWP). BSWP balances
stripes by adding a regulation term to the loss, reflecting the frequency of kernel
stripes and the number of filter stripes within each layer. Liu et al. [20] pro-
posed a two-stage approach that automatically finds the optimal kernel shape.
The authors add three regulation terms to the loss: sparse regulation, direction-
wise regulation, and group-wise regulation. Furthermore, they proposed a binary
search algorithm to find the pruning threshold to meet the constraint. Because
these studies focused on obtaining further optimized kernel shapes, the improve-
ment in compression ratio is small or rather decreased. Therefore, the benefits of
the fine granularity of SWP are underused. To address this problem, we propose
the Filter Shape Pruning (FSP) method, which prunes the networks using the
kernel shape while fully using the fine granularity of SWP.

Adaptive Pruning Method The adaptive pruning method determines the
pruning rate by considering the trade-off between accuracy and reduction in
computations at each iteration. Therefore, this method has a smaller accuracy
drop than the non-adaptive pruning strategy, which prunes a fixed percentage of
filters. Singh et al. [33] proposed a framework called Play and Prune (PP), which
jointly prunes and fine-tunes the networks with an adaptive weight threshold.
The initial weight threshold is obtained using an optimization formula, and the
weight threshold is adaptively determined by considering the accuracy of the
remaining filters. Zhao et al. [40] presented an adaptive and activation-based
pruning approach to generate models that automatically satisfy each of the three
target tasks: accuracy-critical, memory-constructed, and latency-sensitive. This
work uses the average of activation-based attention maps to determine the im-
portance of filters and prunes the networks by adaptively adjusting the global
threshold. However, these studies used a metric that reflects either the accuracy
or FLOPs when adaptively obtaining pruning rates. To solve this problem, we
propose a metric that considers both accuracy and FLOPs, which allows us to
find unimportant filters in both aspects.
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Fig. 3: Overall process of SWP. During the training process, FilterSkeleton (FS)
learns the importance of stripes. After the training process, valid stripes are
multiplied by filters and we obtain the optimal kernel shapes. Only valid stripes
create an output feature map in the inference process.

3 Preliminaries

In this section, we review the key concepts of Stripe-Wise Pruning (SWP) [27]
as shown in Fig. 3. SWP has been introduced to learn the optimal kernel shape
with pruning and achieves K2x finer granularity than filter pruning (assuming
the kernel size is K x K). Meng et al. [27] introduced a learnable matrix I,
namely FilterSkeleton (F'S), to learn the optimal kernel shape. In the convolution
process, I is multiplied by filter W, which can be expressed as

C K K
+1 § § § l l l
Xn,h,w - In,i,j X Wn,c,i,j X Xc,h+i71,w+j717 (1)
c 4 J

where Xé} hw denotes a [-th convolutional layer feature map. N and C' are the
number of filters and channels of the input feature map in layer [, respectively;
and n and c are the n-th filter and c-th input channel, respectively. K denotes
kernel size, and ¢ and j are indexes of the width and height of the kernel. I is
first initialized with an all-one matrix, and the [; norm penalty of I is added to
the original loss term.

For efficient pruning, stripes with I,lm)j less than threshold 7' are no longer
updated in the training process, and these stripes are pruned after the training
process. We define the pruned FS as I,ll,ﬂ-’ ., where n/ denotes the n’-th filter in
N’, and N’ is the number of filters with at least one stripe remaining in the
kernel after pruning. Finally, ITZL,)M is merged to W (i.e., W < W ®I), and only
W is used during inference. In the inference process shown in Fig. 3, W has
only valid stripes; therefore, the calculation order of Equ. (1) can be modified
so that the channel-direction is calculated first. In other words, Equ. (1) can be
reformulated as follows:

K K C

anJ,rIzl,w = ZZ(Z W’rltczj X X<l:,h+i71,w+j71) . (2)
i J c

The channel-direction calculation of Equ. (2) can be implemented by ‘im2col’;
therefore, the model after SWP is available in the general processor.
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4 Proposed Method

4.1 Filter Shape Pruning (FSP)

Filter Shape Pruning (FSP) is a method that prunes filters by each kernel shape
obtained by Stripe-Wise Pruning (SWP). SWP is a pruning method to obtain
the optimal kernel shape by learning the importance of stripes in the filter via
a learnable matrix called the FilterSkeleton (FS) in the training process. After
training, stripes with a F'S value less than the global threshold are pruned, and
then we can gain the optimal kernel shapes consisting of valid stripes in each
filter. As shown in Fig. 2, filters with the same kernel shape exist at each layer.
As the kernel shape of the filter is a significant factor affecting receptive fields,
filters with the same kernel shape have similar receptive fields, which causes filter
redundancy. FSP can efficiently reduce this filter redundancy to obtain a highly
compressed model.

The pruning targets of FSP are filters with overlapping kernel shapes in each
layer, and filters with the same kernel shape can be grouped together. Thus, N’
filters in layer [ can be expressed as follows:

Wi = {8}, St, -+, SL, -+, 84}, (3)

where A is the number of types of kernel shape in layer [, and a is the a-th
kernel shape type. S’ is a set of filters with the same kernel shape type. In other
words, N’ filters in layer [ can be classified by kernel shape; therefore, there can
be multiple filters with kernel shape of a-th type, and we define a set of those
filters as S%. If more than two filters exist within S, the corresponding S is
the pruning target set. Here, the most important point is to retain at least one
filter within each S to preserve the receptive field of the kernel shape. In other
words, the maximum compression rate of FSP is defined when all S! have only
one filter. Therefore, it is not necessary to search for an architecture adaptively
to gain the maximum compression rate. We observed that small IV networks such
as ResNet56/110 are less likely to overlap kernel shapes than others; therefore,
we propose the weight inheritance technique which uses the weights after SWP.
The weight inheritance technique can reduce the overhead of searching and fine-
tuning for small N networks while obtaining the maximum compression rate; it
describes how to combine all filters in S| as one new filter, and only the new
filter is used for fine-tuning. To create the new filter, the weights W/, of all filters
in S! are multiplied with their FilterSkeleton Ifl,, and the multiplication values
are added together. Also, a new FilterSkeleton is initialized with the matrix in
which only the kernel shape position (i, j) is filled with ‘1’; otherwise filled with
‘0’. This process can be formulated as

wh= > whoel,, I, =

< 1, if (i, j) C validstripes
{ ()

0, otherwise

where num__f denotes the number of filters in S'. We applied FSP to ResNet56/110
using the weight inheritance technique in our experiments.
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The purpose of FSP is to remove redundant filters with the same kernel
shape until reaching the target FLOPs while preserving the minimum diversity
of kernel shapes. Therefore, FSP can be expressed as a problem of determining
the number of filters to remove in each pruning target set S.. To solve this
problem, we propose the Adaptive Architecture Search (AAS) framework. In
FSP, removing redundant filters with the same kernel shape is more important
if there are multiple filters in S!. However, if there is only one filter in S!, FSP
stops the removal of filters in S! to preserve the receptive field of the kernel
shape, and we define this "the FSP rule". We describe the AAS framework and
"the FSP rule" in Section 4.2.

4.2 Adaptive Architecture Search (AAS)

We propose the AAS framework that determines the number of filters to be
removed from each S’ to obtain the architecture that meets the target FLOPs.
For selecting filters to remove, we introduce a metric that considers the influence
of the filter on accuracy and FLOPs and use the layer-wise threshold 7" obtained
by this metric. In other words, the framework removes filters that have smaller
importance than T'. Then, T' adaptively changes according to the proposed
metric updated at each iteration. In the framework, if only one filter remains in
an Sl the S! is excluded from the pruning target sets to preserve the receptive
field of the kernel shape.

Layer-wise Threshold We introduce a metric that determines how much to
increase the layer-wise threshold, and this metric simultaneously considers the
influence of the filter on accuracy and FLOPs. To calculate the metric, we define
the filter importance as F,ll, and FLOPs importance as M,ll,. Frll, represents the
filter’s influence on the accuracy, and the larger the F}w the greater the impact

of the filter on accuracy. F!, is defined follows:

K K 71
; e
FTIL, — Zl Z] n ,L,]7 (5)

ns

where ng is the number of valid stripes in the filter, which is the number of
nonzero elements in I',. M!, represents the FLOPs generated by the filter and
is defined as follows:

M., = H x W x C x n, (6)

where H' and W' denote the output feature map height and width, respectively.

To determine how much to increase the layer-wise threshold, we first need
to determine the effect of each layer on accuracy and FLOPs. Therefore, we
calculate the layer score L. and layer FLOPs L! using Equ. (5) and Equ. (6),
and they are expressed as

N’ N’ 371
Ll Zn’ Fn’ Ll _ Zn/ Mn/

s N/ ’ m N (7>
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Using Equ. (7), the relative layer’s accuracy importance AL' and FLOPs
importance FL! compared to all convolution layers are as follows:
L L
=7, FL'=_—_"—. (8)
20 L 20 Ly,

Finally, the formulation of the metric with AL! and FL! is as follows:

AL

ATlia~(1fALl)+B'FLl ©)
N metric_norm ’

where o and [ are the weight parameters of the metric. We will discuss the
variation of parameters and FLOPs according to the values of o and 8 in Section
6.2. metric_norm regulates the variation of the threshold. Since the threshold is
too large if the model’s FLOPs are smaller than the target FLOPs, metric_norm
is multiplied by € (e > 1) to make AT! small. We used € = 2 in our experiments.
The larger the AL', the greater the effect of the filter on accuracy; thus, we have
to prune the smaller AL filters. Therefore, we use (1 — AL') for the metric.
Using the metric (Equ. (9)), the layer-wise threshold 7" is updated as follows:

T =T'. (1+ ATY . (10)

The FSP Rule The key concept of FSP is to retain at least one filter in S
to preserve the receptive fields of kernel shapes. To maintain the key concept
of FSP, the AAS framework follows the FSP rule, which deals with maintaining
receptive fields throughout the framework. After pruning, if there is only one
filter in S!, S! is eliminated from the pruning target sets in the next iteration.
In the case that all filters in S are less than 7', only the filter with the most
significant F,lb/ remains, and S! is eliminated from the pruning target in the next
iteration.

The Procedure of Adaptive Architecture Search (AAS) The AAS proce-
dure is illustrated in Fig. 4. First, the framework classifies the filters of the model
after SWP (Equ. (3)), and sets S!, which has more than two filters, as the prun-
ing target set. Second, our framework saves or rewinds the state. The framework
evaluates the FLOPs of the pruned model in the end, and if the FLOPs of the
pruned model are smaller than the target FLOPs in iteration ¢, metric_norm
increases to make smaller AT” of iteration i + 1. To obtain a model close to
the target FLOPs by applying the adjusted ATY, the model before pruning at
iteration i is required, so the framework has to save the pruned model of itera-
tion ¢ — 1. Therefore, the framework checks whether metric_norm is updated
and if not updated, the framework saves the latest model. If metric_norm is
updated, the framework rewinds the current state to the saved state. Next, the
framework calculates the metric (Equ. (9)) and update the layer-wise threshold
TL (Equ. (10)). Then, the framework compares the filter importance F!, with
T! for each layer and prunes the model according to “the FSP rule”. Finally,
the framework evaluates the FLOPs of the pruned model, which are described
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Classify filters (Equ. (2)) and
get the sets of filters with the
same kernel shape to prune

!

s Store the current state or
rewind to the latest state ModelFLOPs
in TargetFLOPs

Yes No
Compute the proposed metric
(Equ. (9)) and update layer- q ModelFLOPs
wise threshold T! (Equ. (10)) JLerminate <TargetFLOPs
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Prune the model according to . .
“the FSP rule” metric_norm Fine—tune the pruned model

< metri_norm x € for a one epoch

Fig.4: AAS framework procedure. Model FLOPs represents the FLOPs of the
pruned model and TargetF'LO Ps represents the target FLOPs boundary. When
the pruned model meets Target FFLOPs, it is fine-tuned from scratch.

as Model FLOPs. If ModelFLOPs is within the target FLOPs, the framework
is terminated. If it is smaller than the target FLOPs, AT* is adjusted by in-
creasing metric_norm. The adjusted AT* makes Model FLOPs at the next
iteration close to the target FLOPs. If Model FLOPs does not reach the target
FLOPs, the framework fine-tunes the pruned model for one epoch. This process
adjusts the FS values of the pruned model in iteration ¢ so that the FS values
suitable for the current architecture can be reflected in the next iteration. The
proposed metric reflects the changed architecture for each iteration; therefore,
the framework can find the optimal architecture that satisfies the target FLOPs.
After obtaining the pruned model that satisfies the target FLOPs, the pruned
model is fine-tuned from scratch.

5 Experiments

5.1 Experimental Settings

We conducted experiments on two popular datasets (Cifar-10 [13] and ImageNet
[3]) and two different architectures (VGG-16 [32] and ResNet[7]). We applied
VGG-16 and ResNet-56/110 to Cifar-10. Our method was based on a model after
Stripe-Wwase Pruning (SWP); thus, we obtain the baseline of SWP ! mainly
using hyper-parameters similar to those used in [27]. The SWP baseline of VGG-
16 was trained using the same hyper-parameter as [27], except the training epoch.
We used 115 epochs for training, and the initial learning rate was 0.1 and was

! The baseline obtained by SWP influences the performance of our method. The better
the SWP baseline, the better the performance compared with our results. We report
the SWP re-implementation results used as the baseline.
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divided by 10 at epochs 45 and 75. We used a = 0.5 and g8 = 0.5. The SWP
baseline of ResNet-56 was trained for 160 epochs using the same hyper-parameter
as [27]. However, there no results were obtained for ResNet-110 in [27]; therefore,
we searched hyper-parameters for the networks. We used a batch size of 128, and
the other parameters were the same as the baseline of ResNet56. We used the
AAS framework to the SWP baseline of VGG-16 and fine-tuned from scratch
for 115 epochs with the cosine annealing [25] scheduler. For ResNets, we applied
the weight inheritance technique and fine-tuned for 50 epochs with the AdamW
[26] optimizer and cosine annealing scheduler. The learning rate was 0.001, and
the weight decay was 0.05. The other VGG-16 and ResNets hyper-parameters
were the same as those used in the SWP baseline training.

We applied ResNet-18 to ImageNet, and the SWP baseline of ResNet-18 was
trained using the same hyper-parameters as [27]. We use the AAS framework to
the SWP baseline of ResNet18 and fine-tune from scratch for 90 epochs using the
AdamW optimizer and cosine annealing scheduler. The learning rate was 0.001,
and the weight decay was 0.01. We used o = 1 and 8 = 2. The other ResNet-18
parameters were the same as those used for the SWP baseline training.

5.2 Results on Cifar-10

VGG-16 Table 1 shows the performance of our method and other pruning
methods. AAS-15% indicates that the target FLOPs were 15% less than that
of the SWP baseline. Furthermore, our SWP baseline is the re-implementation
result of SWP in Table 1. Compared to L1, Hinge, GAL, SSS, SMOF, and AAB,
AAS-15% achieved a significantly large reduction in both FLOPs and parameters
with higher accuracy. AAS-30% was advantageous in all aspects compared to
ABCPruner and HRank. AAS-50% significantly reduced the FLOPs (83.6%)
and parameters (96.73%) and was the only one that reduced the FLOPs by
more than 80%. Fig. 5 shows the comparison of our method with other pruning
methods, and the higher the dot in the upper right, the better the performance
of the method. In Fig. 5a, the advantages of the FSP were clearer. Our results
showed better performance considering both the FLOPs reduction and accuracy.
These results indicate that FSP reduces filter redundancy while maintaining the
receptive field of the kernel so that it can further compress the networks with a
small accuracy loss.

ResNet-56/110 Table 1 shows the experimental results of ResNet-56/110 on
Cifar-10. Max indicates that we apply the maximum compression rate of FSP
to the networks using the weight inheritance technique. Our SWP baselines are
re-implementation results of SWP in Table 1. The Max of ResNet-56 reduced
FLOPs by 80.51% and deleted parameters by 78.22%. In addition, our results had
the best performance in all aspects among the studies in Table 1. Compared to
our SWP baseline, our results achieved higher accuracy and improved reduction
of parameters and FLOPs. Fig. 5b shows a graph comparing Max to other studies
in terms of FLOPs reduction and accuracy. Max is at the furthest upper right
than the other works, which confirms that our method performed better in terms
of accuracy and FLOPs.
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Table 1: Comparing the FSP method with state-of-the-art pruning methods for
VGG-16 and ResNet-56/110 on Cifar-10. We have sorted in the order of small
reduction in FLOPs, and our methods show the most significant reduction in
FLOPs and parameters.

Model Method Accuracy(%) FLOPs | (%) Param | (%)
Baseline 93.25 0 0
L1 [15] 93.40 34.2 64
Hinge [16] 93.59 39.07 80.05
GAL [19] 92.03 3.6 7.6
SSS [11] 93.02 41.6 73.8
SMOF [22] 93.50 58 80.9
AAB [40] 93.41 61.17 72.85
VGG-16 SWP (reimp.) 93.52 67.02 93.1
SWP [27] 93.65 71.16 92.66
Ours (AAS-15%) 93.61 72.01 94.43
ABCPruner [18] 93.08 73.68 88.68
HRank [17] 91.23 76.5 92
Ours (AAS-30%) 93.40 76.99 95.47
Ours (AAS-50%) 92.71 83.6 96.73
Baseline 93.10 0 0
CP [9] 91.8 50 )
DSA [28] 92.91 52.2 ;
SOKS [20] 93.08 51.73 54.12
IR [36] 92.70 67.7 -
AAB [40] 92.54 71.44 ;
ResNet-56 CHIP [34] 92.05 72.3 71.8
HRank [17] 90.72 74.1 68.1
SWP [27] 92.98 7.7 75.6
SWP (reimp.) 92.82 77.95 73.82
TRP [38] 91.62 77.83 -
FP [14] 91.54 79.50 70.59
Ours (Max) 92.88 80.51 78.22
Baseline 93.50 0 0
L1 [15] 93.30 38.6 324
GAL [19] 92.55 48.5 44.8
FP [14] 93.73 48.52 44.77
ResNet-110 ~ ABCPruner [1§] 93.58 65.04 67.41
HRank [17] 92.65 68.6 68.7
SWP (reimp.) 93.63 70 71.43
CHIP [34] 93.63 71.6 68.3
Ours (Max) 93.42 74.8 77.11

The results of ResNet-110 is also reported in Table 1. Compared with L1,
GAL, and HRank, our results had better performance on all fronts. Particularly,
our method removed 2.38x parameters and 1.94x FLOPs than L1. In compari-
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Fig.5: FLOPs reduction and accuracy comparison with other pruning methods

on Cifar-10 and ImageNet. (a)-(c) were the results of Cifar-10, and (d) was the
result of ImageNet.

son with FP and CHIP, Max reduced FLOPs and parameters with little drop in
accuracy. Fig. 5c demonstrates that our method achieved the highest reduction
in FLOPs with only a slight drop in accuracy. These results demonstrate that

FSP can obtain a high compression rate with little accuracy loss by maintaining
the receptive fields of kernel shapes.

5.3 Results on ImageNet

The results for ResNet-18 on ImageNet are shown in Table 2. Our SWP baseline
is the re-implementation result of SWP in Table 2. AAS-15% reduced the FLOPs
by 15% and deleted parameters by 36.74% based on the SWP baseline. Compared
with LCCL, our results reduced more FLOPs with higher accuracy. Furthermore,
our results achieved a 61.2% FLOPs and 57.74% parameters reduction with small
accuracy loss compared to SFP, COP, and ABCPruner. Fig. 5d shows that AAS-

15% had the highest compression rate among the other pruning methods with
similar accuracy.
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Table 2: Comparing the AAS framework with state-of-the-art pruning methods
on ImageNet. We applied our framework to ResNet-18. We sorted in the order of
smallest reduction in FLOPs, and our method obtained the highest compression
ratio in FLOPs and parameters.

Model Method Top-1(%) Top-5(%) FLOPs | (%) Param | (%)
Baseline 69.76 89.08 0 0
LCCL [4] 66.33  86.94 34.6 -
SFP [8] 67.1 87.78 41.8 -
COP [37] 66.98 ; 43.3 45.1
ResNet-18  \ pOPruner [18]  67.28  87.67 44.88 43.55
SWP (reimp.) 68.72 88.63 53.98 41.83
SWP [27] 69.59 89.04 54.58 -
Ours (AAS-15%) 66.86 87.05 61.2 57.74

Table 3: Effectiveness of pruning filters while preserving the receptive field of
the kernel shape. We applied VGG-16 on Cifar-10 and ResNet-18 on ImageNet.

Model Method Param (M) FLOPs (M) Accuracy (%)
FSP 0.68 144.33 93.40
VGG-16 Simple baseline 0.78 156.14 92.79
FSP 4.94 1415.95 66.86
ResNet-18 o ple baseline 6.01 1424.57 65.64

6 Ablation Study

6.1 Effect of Preserving the Receptive Field

We experimentally proved the effect of preserving the receptive field of the kernel
shape, which is the core concept of FSP. We compared FSP with a ‘Simple
baseline,” which removes filters with the same kernel shape after SWP in the
order of the smallest filter importance (Equ. (5)). We experimented VGG-16 on
Cifar-10 and ResNet-18 on ImageNet, and used the same SWP baseline for both
FSP and the simple baseline. We fine-tuned both FSP and the simple baseline
to the same conditions as Section 5.1. The result is shown in Table 3.

In Table 3, although FSP has fewer parameters and FLOPs than the simple
baseline, it showed higher accuracy in both VGG-16 and ResNet-18. In the simple
baseline case, we observed that some kernel shape sets had no filters. That is,
the receptive fields corresponding to those sets were erased, which resulted in
an additional accuracy drop. The results demonstrate that the core concept of
FSP, which is to preserve the receptive field of the kernel shape, plays a key role
in reducing the loss in accuracy.
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Table 4: Variance of parameters, FLOPs, and accuracy according to o and f.
We set o =1— 8.

a B Param | (%) FLOPs | (%) FLOPs/Param  Accuracy (%)
0.1 0.9 20.19(0.83M)  30.18(144.46M) 1.49 93.07
0.3 0.7 27.88(0.75M)  30.35(144.10M) 1.09 93.21
0.5 0.5 34.62(0.68M)  30.24(144.33M) 0.87 93.40
0.7 0.3 38.46(0.64M)  30.22(144.37M) 0.79 93.18
09 0.1 40.38(0.62M)  30.03(144.76M) 0.74 92.96

6.2 Weight Parameters of the Metric : a and 3

«a and [ are weight parameters used for the proposed metric and determine
whether to assign weight to accuracy importance or FLOPs importance. We
investigated the difference between the parameters and FLOPs according to «
and g for the general case. We experimented with VGG-16 on Cifar-10 under the
same conditions except for o and 3 and used AAS-30% as a pruning method.
We reported parameters and FLOPs reduction compared to the SWP baseline.
Table 4 shows the results. The larger the S compared to the «, the larger the
FLOPs reduction compared to the parameters reduction. In other words, the
larger the (3, the more the framework preferentially prunes filters that generate
many FLOPs. Considering the accuracy, the overall performance was good when
a = 0.5 and £=0.5.

7 Conclusion

In this study, we propose the Filter Shape Pruning (FSP) method, which prunes
networks using the kernel shape of the filter while preserving the receptive field
of the kernel shape. In addition, we proposed the Adaptive Architecture Search
(AAS) framework to search for the architecture that satisfies the target FLOPs
with the FSP method. The AAS framework adaptively searches the architec-
ture that meets the target FLOPs with the layer-wise threshold. The layer-wise
threshold is updated at each iteration by the proposed metric that considers the
effect of the filter on both accuracy and FLOPs. The experimental results demon-
strated that the FSP method could obtain a higher compression rate than other
pruning methods with an acceptable accuracy loss by preserving the receptive
fields of kernel shapes.
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