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Abstract. This paper addresses theoretical and practical problems in
the compression of vision transformers for resource-constrained environ-
ments. We found that deep feature collapse and gradient collapse can
occur during the search process for the vision transformer compression.
Deep feature collapse diminishes feature diversity rapidly as the layer
depth deepens, and gradient collapse causes gradient explosion in train-
ing. Against these issues, we propose a novel framework, called VTCA,
for accomplishing vision transformer compression and architecture ex-
ploration jointly with embedding space search using Bayesian optimiza-
tion. In this framework, we formulate block-wise removal, shrinkage,
cross-block skip augmentation to prevent deep feature collapse, and Res-
Post layer normalization to prevent gradient collapse under a knowl-
edge distillation loss. In the search phase, we adopt a training speed
estimation for a large-scale dataset and propose a novel elastic reward
function that can represent a generalized manifold of rewards. Exper-
iments were conducted with DeiT-Tiny/Small/Base backbones on the
ImageNet, and our approach achieved competitive accuracy to recent
patch reduction and pruning methods. The code is available at https:

// github. com/ kdaeho27/ VTCA .

1 Introduction

Vision transformers have recently shown superior performance in learning long-
range dependency property of sequential data and have attracted attention in
various computer vision tasks. Modern architectures based on the transformer
concept, such as ViT [10] and DeiT [29], are capable of learning significant visual
representations from images and outperform traditional convolutional neural
networks (CNNs) [18,16,13].

Despite the availability of vision transformers, such architectures have been
demonstrated to be even more resource-intensive than CNNs and have deploy-
ment limitations in a resource-limited environment [36]. Due to the significant
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(b) Gradient collapse

Fig. 1: (a) Deep feature collapse and (b) gradient collapse occurred during search
process for compression.

structural differences between CNNs and ViT, using successful CNN compres-
sion methods [19,15,14] for ViT is problematic. Previous studies for the trans-
former compression include pruning [7,36,37], neural architecture search (NAS)
[6], and patch reduction [26,23,24]. Most studies compress the number of heads,
the hidden dimensions of the multi-layer perceptron (MLP) layers, and dropping
blocks.

However, we found that deep feature collapse and gradient collapse occur
during the compression process, as shown in Figure 1. Deep feature collapse
denotes rapidly diminishing feature diversity as the transformer block deepens.
This phenomenon occurs as the number of heads is compressed. As shown in
Figure 1a, the feature diversity 𝑟 (𝑌 ) decreases rapidly with compression of the
number of heads of DeiT-Tiny. Gradient collapse refers to changes in the scale
of the gradient as the compression rate changes. Figure 1b shows the gradient
expectation of hidden dimensions in MLP and QKV dimensions in self-attention
modules. With a Pre-LN transformer, the gradient scale changes according to
the compression rate, which causes gradient exploding during training.

To prevent the collapse problems, this paper aims to establish compression
and architectural search jointly. We call this Vision Transformer Compression
and Architecture exploration (VTCA). Figure 2 illustrates the overall structure
of VTCA: it compresses hidden dimensions in the MLP as well as the number of
heads in the self-attention module, and searches the architecture to add cross-
block skip augmentation and layer normalization under knowledge distillation.
To search for the optimized architecture, we propose a novel search process based
on Bayesian optimization (BO) for vision transformer compression, as shown in
Figure 3.

Our main contributions are as follows:

1. We formulate deep feature collapse and gradient collapse as problems occur-
ring during the compression process for the vision transformer. To alleviate
these problems, we propose a new framework based on BO, called VTCA,
that integrates compression and architecture search.
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Fig. 2: The overall structure of VTCA, integrating compression and architecture
exploration strategies: (1) block-wise removal and shrinkage —we compress
self-attention head numbers, hidden dimension of MLP module, and blocks; (2)
cross-block skip augmentation; (3) addition of Res-Post layer normal-
ization; under knowledge distillation. For more details on the search space, see
Section 3.3

.

2. For efficient space search, we propose a normalized cross-entropy score (NCE
score) with training speed estimation to define as a reward.

3. We propose an elastic reward function including compression rate and NCE
score to evaluate compressed architectures. The reward function is repre-
sented as generalizing both naive and N2N (Network to Network) [1] reward
functions, and it can control a trade-off between compression rate and accu-
racy.

4. Experiments are conducted with popular variants of ViT on ImageNet; our
method performs better than or comparably with existing methods.

2 Preliminaries and Motivation

2.1 Vision Transformer

Follwing the success of transformer architectures in natural language processing
(NLP) tasks [30,8], recent approaches such as ViT [10] and DeiT [29], have been
introduced for computer vision tasks. The ViT block consists of a multi-head
self-attention (MSA) and MLP modules with layer normalization [3] placed in
front of each module. An input image is split into 𝑁 patches and each patch is
projected into a 𝑑-dimensional vector. Given the feature 𝑌𝑙 ∈ R𝑁×𝑑 in 𝑙-th layer,
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the MSA module can be defined as:

MSA(𝑌𝑙) = Concat( [𝐴𝑙ℎ𝑌𝑙𝑊 𝑣
𝑙ℎ]

𝐻𝑙

ℎ=1
)𝑊𝑜

𝑙 (1)

𝐴𝑙ℎ = Softmax
( (𝑌𝑙𝑊𝑞

𝑙ℎ
) (𝑌𝑙𝑊 𝑘

𝑙ℎ
)𝑇

√
𝑑ℎ

)
(2)

where 𝐴𝑙ℎ ∈ R𝑁×𝑁 is self-attention map, 𝑊 𝑣
𝑙ℎ

∈ R𝑑×(𝑑/𝐻 ) is projection matrix in

the ℎ-th head, 𝑊𝑜
𝑙
∈ R𝑑×𝑑 is the output projection matrix. 𝑊𝑞

𝑙ℎ
∈ R𝑑×(𝑑/𝐻 ) and

𝑊 𝑘
𝑙ℎ

∈ R𝑑×(𝑑/𝐻 ) are the query and value projection matrices, respectively.
The MLP module consists of two linear projections and extracts features

from each patch independently. Given the MLP input feature 𝑍𝑙 ∈ R𝑁×𝑑, the
MLP can be defined:

MLP(𝑍𝑙) = 𝜎(𝑍𝑙𝑊1,𝑙 + 𝑏1,𝑙)𝑊2,𝑙 + 𝑏2,𝑙 (3)

where 𝑊1,𝑙 ∈ R𝑑×𝑑𝑚 and 𝑊2,𝑙 ∈ R𝑑𝑚×𝑑 are weights in the MLP module and 𝜎 is
the non-linear activation function. The MLP and MSA modules are alternately
stacked to construct a vision transformer model.

Most studies have focused on compressing or pruning the number of heads
and the hidden dimension of MLP [6,34,36] at each block. We found that deep
feature collapse, in which feature diversity diminish rapidly as the transformer
block deepens, and gradient collapse, in which gradient expectation changes de-
pending on the compression rate, occurred during compression.

2.2 Deep Feature Collapse

Feature collapse is defined as the occurrence of hard to distinguish features
among patches in a layer as the block depth increases [27,9]. To distinguish from
the feature collapse that occurs in vision transformers, we define deep feature col-
lapse as occurring while compressing the number of heads 𝐻𝑙 as the transformer
block deepens.

Given an output feature 𝑌𝑙 in the 𝑙-th layer, feature diversity is measured as
the difference between the features and the rank-1 matrix [9]:

𝑟 (𝑌𝑙) = ‖𝑌𝑙 − 1y𝑇𝑙 ‖, where y𝑇𝑙 = argminy′
𝑙
‖𝑌𝑙 − 1y𝑇𝑙 ‖ (4)

where ‖ · ‖ is an ℓ1, ℓ∞-composite norm. The feature diversity 𝑟 (𝑌𝑙) of the ar-
chitecture in which the number of heads is compressed decreases rapidly as the
block deepens, as defined by the following theorem established in [9].

Theorem 1. Given a transformer model in which the MSA and MLP modules
are stacked, the feature diversity 𝑟 (𝑌𝑙) in the 𝑙-th layer is bound by that of input
𝑌0, i.e.,

𝑟 (𝑌𝑙) ↓ ≤
(4𝐻𝑙 ↓ 𝛾𝜆′√

𝑑

) 3𝑙−1
2

𝑟 (𝑌0)3
𝑙

(5)
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where 𝐻𝑙 is the number of heads in the 𝑙-th layer, 𝛾 is a constant related to the
weight norms, 𝜆′ is the Lipschitz constant of MLP and 𝑑 is the feature dimension.

Because the 𝐻𝑙𝛾𝜆
′/
√
𝑑 are smaller than 1, feature diversity 𝑟 (𝑌𝑙) is decreasing

as block depth 𝑙 increases [9]. Furthermore, when the number of heads 𝐻𝑙 in the
𝑙-th layer is compressed, the feature diversity is drastically reduced as shown
in Figure 1a. We call this deep feature collapse. To alleviate this problem, we
propose a cross-block skip augmentation.

2.3 Gradient Collapse

The MSA and MLP modules contain linear layers, and projection dimensions
such as QKV and MLP dimension are generally compressed. We found that the
gradient scale became unstable with different compression rates for each trans-
former block, causing gradient explosion during training. We call this gradient
collapse. The cause of this phenomenon is shown in the following theorem, es-
tablished in [33].

Theorem 2. Given a Pre-LN transformer with L layers assuming an output
feature ‖𝑌𝐿 ‖22 are (𝜖, 𝛿)-bounded and a hidden dimension 𝑑𝑚 is same as a feature
dimension 𝑑, the gradient of the weights of the last layer with probaility at least
0.99 − 𝛿 − 𝜖

0.9+𝜖 is bounded by dimension 𝑑𝑚, i.e.,

‖ 𝜕L
𝜕𝑊2,𝐿

‖𝐹 ≤ O(𝑑𝑚
√︂

ln 𝑑𝑚
𝐿

)

where L denotes number of blocks, and 𝜖 and 𝛿 = exp(−𝑑𝜖2/8) are small numbers.

From Theorem 2, we can see that the scale of the Pre-LN transformer gradient
is proportional to the dimension 𝑑𝑚 being compressed. To alleviate this problem,
we propose inserting additional layer normalization after the MSA and MLP
layers. The approach, called Res-Post-LN, has been introduced [35] but has not
been proven theoretically for effectiveness. Figure 1b shows that the gradient
scale of Pre-LN becomes unstable with the compression rate. The instability of
the gradient scale for each block causes gradient exploding. However, the gradient
scale of Res-Post-LN is stable in each block. We demonstrate how Res-Post-LN
prevents gradient collapse in Section 3.3.

3 Proposed Method

In this section, we introduce a search framework for exploring optimal architec-
ture via the proposed BO process. The architecture domain is highly complex,
and searching compression and architecture jointly is a high-dimensional prob-
lem that makes optimization procedures difficult to realize. To solve this issue,
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Fig. 3: Comparison of BO-based (a) ESNAC and (b) VTCA search process.

we propose our VTCA to extend ESNAC [5] which achieves compression for
CNN in the embedding space. ESNAC can only be used with CNN and is diffi-
cult to apply to a large-scale dataset because of its high search cost. We adopt
training speed estimation for a large-scale dataset and propose a novel elastic
reward function that can represent a generalized manifold of rewards including
naive and N2N rewards [1]. We compare the loops of ESNAC and VTCA in
Figure 3.

3.1 Search Process with BO

The goal of the proposed method is to search a student transformer based on
a given teacher network, maximizing the compression rate of weight parameters
while still obtaining performance comparable to the teacher network. Formally,
we aim to solve the following optimization problem:

𝑥 = argmin
𝑥∈X

𝑓 (𝑥), (6)

where X denotes the domain of transformer architectures and the function 𝑓 (𝑥) :
X ↦→ R evaluates a reward for how well our criterion is satisfied. Instead of
an N2N reward [1], we propose an elastic reward function that controls the
compression rate–performance trade-off.

The problem becomes hard to tackle because there is no certain form of
𝑓 , a consequence of the complex relationship between compressed architecture
and the corresponding reward. We adopt a BO approach, which is promising for
optimizing expensive black-box functions. During the BO process, we denote the
sampled architecture in the t-th round as 𝑥1:𝑡 . The evaluated architectures for
times 1 through t are denoted as 𝑥1:𝑡 . The samples can be modeled as Gaussian
processes (GP) and can be defined as follows:

𝑓 (𝑥1:𝑡 ) ∼ N (𝜇(𝑥1:𝑡 ),K(𝑥1:𝑡 , 𝑥1:𝑡 )) (7)

where 𝜇 is the mean function; and K(𝑥1:𝑡 , 𝑥1:𝑡 ) is the variance matrix. Then, the
joint distribution of the preceding evaluated architectures 𝑓 (𝑥1:𝑡 ) and the next
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compressed architecture 𝑓 (𝑥𝑡+1) can be represented by[
𝑓 (𝑥1:𝑡 )
𝑓 (𝑥𝑡+1)

]
∼
(
𝜇(𝑥1:𝑡 )
𝜇(𝑥𝑡+1),

[
K(𝑥1:𝑡 , 𝑥1:𝑡 ), k(𝑥1:𝑡 , 𝑥𝑡+1)
k(𝑥𝑡+1, 𝑥1:𝑡 ), 𝑘 (𝑥𝑡+1, 𝑥𝑡+1)

] )
(8)

and the posterior predictive distibution of the next sample can be given by

𝑓 (𝑥𝑡+1) ∼ N (𝜇(𝑥𝑡+1), 𝜎(𝑥𝑡+1))
𝜇(𝑥𝑡+1) = k(𝑥𝑡+1, 𝑥1:𝑡 )K(𝑥1:𝑡 , 𝑥1:𝑡 )−1 𝑓 (𝑥1:𝑡 )

𝜎(𝑥𝑡+1) = 𝑘 (𝑥𝑡+1, 𝑥𝑡+1) − k(𝑥𝑡+1, 𝑥1:𝑡 )K(𝑥1:𝑡 , 𝑥1:𝑡 )k(𝑥1:𝑡 , 𝑥𝑡+1)
(9)

The mean 𝜇 and variance 𝜎 of the unexplored architecture 𝑥𝑡+1 can be calculated
via the historic architectures.

We obtain the next architecture 𝑥𝑡+1 using the expected improvement (EI)
acquisition function [22,4]. The EI recommends a next sample that is most likely
to maximize the objective function over current evaluated architectures:

EI𝑡 (𝑥) = E𝑡 (max( 𝑓 (𝑥) − 𝑓 ∗ (𝑥), 0)) (10)

where E𝑡 denotes the expectation over the posterior distribution at step 𝑡 and
𝑓 ∗ (𝑥) is the maximum value among evaluated architectures 𝑓 (𝑥𝑡 ). The above
algorithm is repeated up to a predefined step, and the architecture yielding the
maximum value is returned.

3.2 Latent Embedding Space Search

The search space required to explore compression and architecture search jointly
is very high-dimensional. High-dimensional BO suffers from drawbacks due to
the curse of dimensionality. To address this issue, we adopt an architecture em-
bedding function ℎ(·; 𝜃) to map the compressed architecture to the embedding
space according to the configuration parameters [5]. Here, 𝜃 represents the weight
parameters for learning in the embedding function. We define the kernel function
𝑘 (𝑥, 𝑥′ ; 𝜃) using an radial basis function (RBF) kernel:

𝑘 (𝑥, 𝑥′ ; 𝜃) = exp
(
− ‖ℎ(𝑥; 𝜃) − ℎ(𝑥′ ; 𝜃)‖2

2𝜎2

)
(11)

where 𝜎 is a hyperparameter and ℎ(·, 𝜃) represents an embedding space for the
high-dimensional architecture configuration. The functions ℎ(·, 𝜃) and 𝑘 (𝑥, 𝑥′ ; 𝜃)
share the same weights 𝜃. In what follows, we present the embedding function
ℎ(·, 𝜃) and describe how 𝜃 is learned during the search process.

The architecture embedding function ℎ(·, 𝜃) needs to represent diverse com-
pressed transformers adequately. In addition, it needs to be flexible enough to
represent the inter- and intra-blocks relationships in the order of the trans-
former blocks. Therefore, we adopt a structured block correlation with two Bi-
directional LSTMs motivated by [31]. One Bi-LSTM learns the relationships
among the intra-block configuration information, the other Bi-LSTM among the
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8 D. Kim et al.

inter-block configuration information. After passing the Bi-LSTMs, we concate-
nate all the hidden states, applying L2 normalization to these states to obtain
the embedding vector.

During the search stage, the weights 𝜃 are determined. The weights are
trained to minimize the negative log posterior probability:

L(𝜃) = − 1

|𝐷 |
∑︁
𝑖:𝑥𝑖 ∈𝐷

log 𝑝( 𝑓 (𝑥𝑖) | 𝑓 (𝐷\𝑥𝑖); 𝜃) (12)

where \denotes relative complement; and 𝑓 (𝐷\𝑥𝑖) = [ 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑖−1), 𝑓 (𝑥𝑖+1),
. . . , 𝑓 (𝑥𝑡 )]. Based on 𝑘 (·, ·; 𝜃), the mean and covariance matrix of 𝑝( 𝑓 (𝑥𝑖) | 𝑓 (𝐷\𝑥𝑖; 𝜃),
which is a Gaussian distribution, can be calculated analytically [5].

Multiple Kernel and Dimension Strategy We adopt a multiple kernel strat-
egy with diverse hidden dimensions per kernel. ESNAC trains a single model with
different subsets of 𝐷 instead of the entire evaluated architectures to avoid over-
fitting. The subset approach is helpful for small-scale datasets; however, a vision
transformer that learns large-scale datasets is often unsuitable for evaluating
architectures because of the large computation cost. Therefore, we determine
the different dimensions of hidden states in the embedding function per kernel,
allowing us to explore diverse architectures.

Training Speed Estimation We employ training speed estimation (TSE)
[25] because the full training of each architecture of the vision transformer is
expensive. Some studies have shown a correlation between training speed and
generalization performance [25,12,20]. TSE estimates generalization performance
with far fewer epochs 𝑛 than the full number of epochs 𝑁. However, we define
a reward that considers the compression rate with the TSE for architecture
compression. To define this reward, the TSE needs to be expressed as an upper
bound score, such as a compression rate between 0 and 1, regardless of the loss
function. Therefore, we propose a normalized cross-entropy score (NCE score)
that extends NCE [21] during the search process:

𝑁𝐶𝐸𝑠𝑐𝑜𝑟𝑒 = 𝐾 ·
−∑𝐾

𝑘=1 𝑞(𝑘 |𝑖) log 𝑝(𝑘 |𝑖)
−∑𝐾

𝑗=1

∑𝐾
𝑘=1 𝑞(𝑦 = 𝑗 |𝑖) log 𝑝(𝑘 |𝑖)

(13)

where 𝐾 is the number of classes, and 𝑖 denotes input images. The numerator
is the cross-entropy (CE) loss, and the denominator is the sum of the CEs for
each class. Then, 𝑁𝐶𝐸𝑠𝑐𝑜𝑟𝑒 ∈ (0, 1) can be represented as upper-bounded scores
to evaluate rewards.

Elastic Reward Function We introduce an elastic reward function including
compression rate and accuracy (NCE score) to evaluate compressed architec-
tures. The N2N reward [1] was proposed as an alternative to a näıve reward to
maximize compression rate while preserving high accuracy. However, this reward
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𝜌 =0.01 𝜌 =0.3 𝜌 =0.5 𝜌 =0.7

(a) Naïve reward function (b) N2N reward function

𝜌 = 0.9

(c) Elastic reward function

Accuracy ↑ , Compression ↓Accuracy ↓ , Compression ↑

Fig. 4: Manifold of reward functions : (a) naive reward, (b) N2N reward (c) elastic
reward function.

cannot control the penalty between accuracy and compression rate. The elastic
reward function is motivated by the sigmoid function and can be represented as
a generalized function that incorporates naive and N2N reward functions [1] by
adjusting the scale factor 𝜌. Figure 4 shows the manifold of the elastic reward
functions. The scale factor 𝜌 controls the trade-off between compression rate and
accuracy. The larger the scale factor, the more the compression rate is penal-
ized (↑ accuracy and ↓ compression). The smaller the scale factor, conversely,
the more the accuracy is penalized (↓ accuracy and ↑ compression). The elastic
reward function is defined as follows:

𝑓 (𝑥) =
(

2

1 + exp(−102𝜌 · 𝐶 (𝑥)) − 1

)
· 𝐴(𝑥)

where 𝐶 (𝑥) is the compression rate, 𝐴(𝑥) is the accuracy (NCE score), and 𝜌 is
the scale factor.

Training Loss An architecture with optimal reward is trained with the follow-
ing objective function [36]:

min
𝑊 ,𝑔𝑡

L(𝑊, 𝑔𝑡) = ℓ(𝑊, 𝑔𝑡) + 𝜆𝑙ℓ𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (𝑊,𝑊𝑡 ) (14)

where ℓ(·, ·) is cross-entropy loss and ℓ𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (·, ·) is knowledge distillation loss,
namely KL-divergence between the compressed and teacher networks. 𝑊𝑡 de-
notes weights for the uncompressed teacher network, and 𝜆𝑙 denotes the hyper-
parameter for scale of loss.

3.3 Search Space

We define the search space based on the teacher transformer. The search space
is constructed from all the architectures that can be obtained by manipulating
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10 D. Kim et al.

the teacher network with the following three operations: (1) block-wise removal
and shrinkage, (2) cross-block skip augmentation and (3) addition of res-post
layer normalization.

Block-wise Removal and Shrinkage Since we jointly compress and search
the student architecture from the given teacher architecture, we only consider
making architectures smaller than the given network. Block-wise removal refers
to dropping the transformer block; block-wise shrinkage refers to compressing
the number of heads 𝐻𝑙 and the hidden dimension of MLP in the 𝑙-th layer.

Cross-block Skip Augmentation The addition of cross-block skip augmen-
tation is employed to prevent deep feature collapse as described in Theorem 1.
Cross-block skip augmentation connected from the 𝑘-th layer to the 𝑙-th layer
can be formulated as:

SkipAug(𝑌𝑙) = 𝑌𝑙 + 𝑇𝑙𝑘 (𝑌𝑘 ;Θ𝑙𝑘 ) (15)

where 𝑇𝑙𝑘 (·) is the augmentation operation from the 𝑘-th layer to the 𝑙-th layer
and Θ𝑙𝑘 ∈ R𝑑×𝑑 denotes the weight matrix. The augmentation block consists of
linear projection, an activation function (e.g., GELU), and layer normalization
and can be defined as:

𝑇𝑙𝑘 (𝑌𝑘 ;Θ𝑙𝑘 ) = I(𝑏𝑙𝑘 )LN(𝜎(𝑌𝑘Θ𝑙𝑘 )), where I(𝑏𝑙𝑘 ) =
{
1, 𝑏𝑙𝑘 ∈ 𝐵
0, otherwise.

(16)

The I(𝑏𝑙𝑘 ) is an indicator function for the cross-block skip augmentation set 𝐵,
and the 𝑏𝑙𝑘 denotes skip augmentation blocks connected from the 𝑘-th layer to
the 𝑙-th layer.

We analyze how cross-block skip augmentation prevents deep feature collapse
in the following theorem.

Theorem 3. Given a model with the cross-block skip augmentation, the diver-
sity 𝑟 (𝑌𝑙) of features in the l-th layer can be bounded by that of the input data
𝑟 (𝑌0):

𝑟 (𝑌𝑙) ≤
(4𝐻𝑙𝛾𝜆′√

𝑑

) 3𝑙−1
2

𝑟 (𝑌0)3
𝑙 + I(𝑏𝑙𝑘 )𝛼𝑙𝑘𝑟 (𝑌𝑘 )︸             ︷︷             ︸

≥0

where 𝛼𝑙𝑘 = 𝜆𝐿𝑁𝜆𝑎‖Θ𝑙𝑘 ‖. Here, Θ𝑙𝑘 is the the weight matrix in the augmentation
block from the 𝑘-th layer to the 𝑙-th layer, 𝜆𝐿𝑁 , 𝜆𝑎 are the Lipschitz constants of
layer normalization LN(·) and non-linear activation function 𝜎(·) respectively,
and I(𝑏𝑙𝑘 ) is the indicator function defined in equation 16.

Comparing with Theorem 1, the cross-block skip augmentation introduces
an additional term I(𝑏𝑙𝑘 )𝛼𝑙𝑘𝑟 (𝑌𝑘 ), which is greater than or equal to zero and
prevents the feature diversity from decreasing doubly exponentially. A detailed
proof of Theorem 3 is given in Appendix A.1.
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Adding Res-Post Layer Normalization To prevent gradient collapse, we
apply layer normalization at the end of each residual block as shown in Figure 2.
This is referred to as Res-Post-LN in this paper. Res-Post-LN has been proposed
in [35], however its effectiveness has not been theoretically proven. We analyze
how Res-Post-LN prevents gradient collapse in the subsequent theorem.

Theorem 4. Given a Res-Post-LN transformer with L layers assuming the an
output feature ‖𝑌𝐿 ‖22 are (𝜖, 𝛿)-bounded and a hidden dimension 𝑑𝑚 is same as a
feature dimension 𝑑, the gradient of the weights of the last layer with probaility
at least 0.99 − 𝛿 − 𝜖

0.9+𝜖 is bounded by dimension 𝑑𝑚, i.e.,

‖ 𝜕L
𝜕𝑊2,𝐿

‖𝐹 ≤ O(
√︂
𝑑𝑚 ln 𝑑𝑚

𝐿
)

where L denotes number of blocks, and 𝜖 and 𝛿 = exp(−𝑑𝜖2/8) are small numbers.

From Theorem 4, the scale of gradient for the Res-Post-LN transformer is
less affected by the feature dimension 𝑑𝑚. As shown in Figure 1b, the Pre-LN
gradient expectation is fluctuates for each layer 𝐿 according to the compression
rate. However, the gradient expectation of Res-Post-LN is stable regardless of
the compression rate. The stability of the gradient size for each block ensures
stable learning. A detailed proof of Theorem 4 can be found in the supplementary
material.

Representation for Block Configurations The representation for each block
configuration is defined by a vector of length (2𝑛 + 3), where n is the maximum
number of blocks in teacher network. The 2𝑛 dimensions encode a directed acyclic
graph for cross-block skip augmentation. The first 𝑛-dimensions represent the
input from another node, while the remaining 𝑛-dimensions represent the output
from each node. The attribute of each block is denoted by three numbers: the
number of heads, hidden dimensions of MLP, and drop block.

4 Experiments

We evaluate the VTCAmethod for image classifcation on the ImageNet challenge
dataset [17]. We implement experiments for VTCA on DeiT-Tiny/Small/Base
[29], comparing the automatically found compressed architectures to recent com-
pression methods. We compare the compression rate and performance with vary-
ing scale factors 𝜌. We also perform an ablation study on how each architecture
module affects the performance results.

4.1 Comparison Results

The experiment results are in Table 1. Here, the VTCA results are all obtained
experimentally with a scale factor of 0.7. Our VTCA method achieves compet-
itive accuracies compared with recent methods. We adopt several of the latest
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Table 1: Comparison on ImageNet of vision transformer compressed by VTCA
with other competitive methods.

Model Method Top-1 Acc (%) FLOPs (G) Design Type

DeiT-Tiny

Baseline [29] 72.2 1.3 -
HVT [24] 69.64 (-2.56) 0.64 Patch Reduction
SViTE [7] 70.12 (-2.08) 0.99 Pruning
UVC [36] 71.8 (-0.4) 0.69 Pruning
VTCA 71.63 (-0.57) 0.99 BO

DeiT-Small

Baseline [29] 79.8 4.6 -
PatchSlimming [26] 79.4 (-0.4) 2.6 Patch Reduction

IA-RED2 [23] 79.1 (-0.7) - Patch Reduction
PoWER [36] 78.3 (-1.5) 2.7 Patch Reduction
HVT [24] 78.0 (-1.8) 2.4 Patch Reduction
SViTE [7] 79.22 (-0.58) 3.14 Pruning
SCOP [36] 77.5 (-2.3) 2.6 Pruning
UVC [36] 79.44 (-0.36) 2.65 Pruning
VTCA 79.45 (-0.35) 3.11 BO

DeiT-Base

Baseline [29] 81.8 17.6 -
PatchSlimming [26] 81.5 (-0.3) 9.8 Patch Reduction

IA-RED2 [23] 80.9 (-0.9) 11.8 Patch Reduction
VTP [37] 80.7 (-1.1) 10.0 Pruning
UVC [36] 80.57 (-1.23) 8.0 Pruning
VTCA 81.94 (+0.14) 11.9 BO

patch reductions, specifically PoWER [11], HVT [24], PatchiSlimming [26], and
IA-RED2 [23], as well as pruning methods, namely SCOP [28], VTP [37], SViTE
[7], and UVC [36].

VTCA avoids accuracy losses compared to pruning and patch reduction
methods. On DeiT-Tiny/Small it performs competitively on accuracy compared
to UVC, the latest pruning method. In particular, VTCA on DeiT-Base achieves
better accuracy than baseline while decreasing FLOPs. VTCA obtains 81.94%
of Top-1 accuracy while FLOPs are comparable to IA-RED.2. We observe that
VTCA shows competitive accuracy, but FLOPs are higher than with the pruning
method. This is due to slightly increased FLOPs with the addition of cross-block
skip augmentation and layer normalization.

4.2 Effect of Scale Factor

We performed experiments on how the change of the scale factor 𝜌 in our elastic
reward function affects accuracy and compression rate, setting the scale factor
𝜌 to 0.3, 0.5, 0.7, and 0.9; the results are shown in Table 2. Because accuracy
becomes more important as the scale factor increases, we see an accuracy gain
but with loss of FLOPs. Conversely, when the scale factor is decreased, we obtain
a FLOPs gain; but performance losses.

4.3 Ablation Study

As VTCA foregrounds integrating compression and architecture search simul-
taneously, it is natural to question how each module contributes to the final
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Table 2: Changes in accuracy and FLOPs according to scale factor.

Model Scale factor Top-1 Acc. (%) FLOPs (G)

DeiT-Tiny

𝜌 = 0.9 71.73 1.03
𝜌 = 0.7 71.63 0.99
𝜌 = 0.5 70.23 0.89
𝜌 = 0.3 68.8 0.72

result. We conducted an ablation study by removing each module; the results
are shown in Table 3. The effectiveness of knowledge distillation has already
been demonstrated in [36], but an ablation study on knowledge distillation was
not performed.

Table 3: Ablation study on the modules implemented on VTCA.

Method Top-1 Acc. (%) FLOPs (G)

Uncompressed baseline 72.2 1.3
Compression Only 69.78 0.84

Compression With Res-Post-LN Only 71.16 0.95
Compression With Skip Augmentation Only 70.89 0.91

VTCA-tiny 71.63 0.99

We first determined the result when we conduct only block-wise removal
and shrink in our method, demonstrating that only performing compression will
significantly impair accuracy on DeiT-Tiny by over 2.4%. That is expected, as
simply compressing the model architecture makes it very unstable and prone to
collapse.

We then conducted the experiment with Res-Post-LN only. This implies in-
tegrating only compression and Res-Post-LN with knowledge distillation. Better
performance was achieved than with compression alone. Much better accuracy is
obtained than with cross-block skip augmentation, owing to preventing gradient
collapse and ensuring stable training.

When the experiment was performed with cross-block skip augmentation
only, we observed that gradient exploding occurs in some architectures during
the search process. This made it difficult to find an optimal architecture, resulting
in performance loss; (e.g., approximately 1.4% drop on DeiT-Tiny). Overall, the
results of our ablation studies support the effectiveness of optimizing compression
and architecture search jointly.

5 Conclusion

In this paper, we propose a VTCA that jointly compresses and searches the
architecture of a vision transformer. We consider deep feature collapse, in which
the number of heads is compressed and the feature diversity rapidly decreases as
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the layer becomes deeper, and gradient collapse, in which the scale of the gradient
changes rapidly for each layer as the weight dimensions compress. To alleviate
this problem, we propose a cross-block skip augmentation to prevent feature
collapse and Res-Post-LN architecture to prevent gradient collapse. Experiments
demonstrate that VTCA achieves competitive performance compared to recent
patch reduction and pruning methods. Our future work will extend VTCA to
achieve as many FLOPs as pruning without accuracy loss.
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A Appendix

A.1 Proof of Theorem 3

Here, we prove Theorem 3 on how cross-block skip augmentation prevents feature
collapse of vision transformers.

The feature diversity 𝑟 (𝑇𝑙𝑘 (𝑌𝑙)) outputted by the augmentation operation
𝑇𝑙𝑘 (·) can be bounded as:

𝑟 (𝑇𝑙𝑘 (𝑌𝑘 )) ≤ ‖𝑇𝑙𝑘 (𝑌𝑘 ) − 𝑇𝑙𝑘 (1y𝑇𝑘 )‖ = ‖I(𝑏𝑙𝑘 )LN(𝜎(𝑌𝑘Θ𝑙𝑘 )) − I(𝑏𝑙𝑘 )LN(𝜎(1y𝑇𝑘 Θ𝑙𝑘 ))‖
= ‖I(𝑏𝑙𝑘 ) [LN(𝜎(𝑌𝑘Θ𝑙𝑘 )) − LN(𝜎(1y𝑇𝑘 Θ𝑙𝑘 ))] ‖

where the inequality comes from equation 4 defining the feature diversity. The
𝑏𝑙𝑘 denotes skip augmentation blocks connected from the 𝑘-th layer to the 𝑙-th
layer. The I(𝑏𝑙𝑘 ) is an indicator function for the cross-block skip augmentation
set 𝐵 defined in equation 16.

Using Lipschitz continuity [32,2] of the linear projection, a non-linear acti-
vation function, and layer normalization, the bound can be further described
as:

𝑟 (𝑇𝑙𝑘 (𝑌𝑘 )) ≤ I(𝑏𝑙𝑘 )𝜆𝐿𝑁𝜆𝑎‖Θ𝑙𝑘 ‖‖𝑌𝑘 − 1y𝑇𝑘 ‖ = I(𝑏𝑙𝑘 )𝜆𝐿𝑁𝜆𝑎‖Θ𝑙𝑘 ‖𝑟 (𝑌𝑘 )
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where 𝜆𝐿𝑁 and 𝜆𝑎 denotes the Lipschitz constant of layer normalization and
the non-linear activation function respectively, and Θ𝑙𝑘 is the weight matrix.
Combining with a multi-head attention module (Corollary 3.2 in [9]) and the
cross-block skip augmentation, diversity after the SkipAug module is bounded
as

𝑟 (𝑌𝑙) ≤
(4𝐻𝛾𝜆′

√
𝑑

) 3𝑙−1
2

𝑟 (𝑌0)3
𝑙 + I(𝑏𝑙𝑘 )𝜆𝐿𝑁𝜆𝑎‖Θ𝑙𝑘 ‖𝑟 (𝑌𝑘 )

≤
(4𝐻𝛾𝜆′

√
𝑑

) 3𝑙−1
2

𝑟 (𝑌0)3
𝑙 + I(𝑏𝑙𝑘 )𝛼𝑙𝑘𝑟 (𝑌𝑘 )

where 𝛼𝑙𝑘 = 𝜆𝐿𝑁𝜆𝑎‖Θ𝑙𝑘 ‖, 𝛾 is a constant related to the weight norms and 𝜆′ is
the Lipschitz constant of MLP. The above inequality corresponds to Theorem 3.
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