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Abstract. Instance segmentation is formulated as a multi-task learning
problem. However, knowledge distillation is not well-suited to all sub-
tasks except the multi-class object classification. Based on such a com-
petence, we introduce a lightweight foreground-specialized (FS) teacher
model, which is trained with foreground-only images and highly opti-
mized for object classification. Yet, this leads to discrepancy between
inputs to the teacher and student models. Thus, we introduce a novel
Foreground-Specialized model Imitation (FSI) method with two comple-
mentary components. First, a reciprocal anchor box selection method is
introduced to distill from the most informative output of the F'S teacher.
Second, we embed the foreground-awareness into student’s feature learn-
ing via either adding a co-learned foreground segmentation branch or ap-
plying a soft feature mask. We conducted an extensive evaluation against
the others on COCO and Pascal VOC.

Keywords: Knowledge distillation - Instance segmentation.

1 Introduction

To deploy deep learning models on resource-constrained edge devices, researchers
have been devoting efforts in four major directions: (1) model compression, i.e.,
quantization and pruning [10]; (2) better light-weight backbones such as Mo-
bileNet [14] and ShuffleNet [35]; (3) reduced model architecture such as YOLO
[28] and SSD [24] for one-stage object detection and (4) model imitation which
trains a compact and device-friendly model to imitate the behavior a more pow-
erful yet more computationally expensive model. The focus of this work is to
improve the model imitation for object instance segmentation.

A typical and widely used model imitation method is KD [13] which transfers
the knowledge from a large model with stronger generalization capability to a
lightweight model, while both models are trained on the same dataset. One major
challenge faced by the existing KD methods is that the teacher models where the
knowledge is transferred from normally have many layers and parameters, e.g.,
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l

(a) Teacher in KD (b) Foreground-specialized Teacher

Fig. 1. The difference between teacher models in traditional knowledge distillation
(KD) and our foreground-specialized teacher model. (a) In KD, the teacher model is
normally much larger than the student model. (b) The foreground-specialized teacher
model can be as small as the student model and thus can be efficiently trained and
imitated.

using VGGNet [31] as the teacher backbone, so training and distilling from such
models are time-consuming and would rely on high-end computing devices with
large memories®. In addition, a recent work [6] shows that the final accuracy of
the student model does not increase monotonically with the size of the teacher
model. As the teacher model gets larger, the accuracy of the student model first
increases and then decreases. This phenomenon means that substantial effort
would be required to explore the optimal teacher model in order to achieve the
most accurate student model.

The goal of the object instance segmentation is to detect and delineate each
distinct object of interest from an input image. It is normally formulated as
a multi-task learning problem including bounding box detection, object clas-
sification and mask prediction [11]. The multi-task learning formulation poses
additional challenges for applying the KD to object instance segmentation, be-
cause the KD is designed exclusively for the multi-class classification problem,
i.e., the object classification, which is only one out of three sub-tasks of the ob-
ject instance segmentation. Therefore, it is counterproductive to apply KD to
the other two sub-tasks of the object instance segmentation, i.e., bounding box
detection and mask prediction, which KD is not designed for.

In order to resolve the above challenges, we focus on exploring a more effective
and efficient way of model imitation for the object instance segmentation. Unlike
the conventional KD in which the teacher model takes the same input as the
student model, we simplify the input to the teacher model in order to relieve its
learning burdens on the two sub-tasks, i.e., bounding box detection and mask
prediction, but makes the teacher model dedicated to object classification which
KD is designed exclusively for. Specifically, as shown in Figure 1, we simplify the
input to the teacher model by removing the background stuff from the training
images while leaving only pixels for the foreground objects. In this fashion, it will

3 In distillation, the memory cost can be reduced when the outputs of teacher models
are pre-computed. Yet, this disables on-the-fly data augmentation, a critical compo-
nent for improving the model accuracy especially when the dataset is small.
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Table 1. Model accuracy (mAP@[0.5,.95]) comparison on COCO dataset by transform-
ing the input with different backbone architectures of YOLACT. Standard: the model
trained and validated using the complete images. FS-Teacher: the model trained and
validated using foreground-only images.

Model  ResNet-18 ResNet-50 ResNet-101
Standard 23.76 27.97 29.73
FS-Teacher 41.08 46.69 47.86

be tremendously simpler for a teacher model on the bounding box detection and
the mask prediction, because the foreground objects are salient on the vacant
background.

We name the teacher model trained on the simplified input as the foreground-
specialized (FS) teacher model. As shown in Table 1, we observe a significant
performance gain achieved by the teacher models on the simplified input, over
that achieved by the standard teacher models on the original input. One may
argue the “unfairness” of the comparison between the FS teacher models and
the standard ones in Table 1 because of the presence/absence of the input sim-
plification on the validation data, i.e., foreground-only images vs. the original
images. Yet, the KD method is mainly concerned about the output of a teacher
model while barely favoring preprocessing tricks, so the performance gain is still
quite beneficial despite the negligible “unfairness”. In Table 1, note that even
the FS teacher model based on the backbone ResNet-18 performs much better
than the standard teacher model based on ResNet-101. As such, it can enable a
significantly more efficient teacher model.

As shown in Figure 1, compared to the standard teacher model in KD, the
FS teacher model takes different input but shares the output format. To accom-
modate this new change, we introduce a novel Foreground-Specialized model
Imitation (FSI) which includes two complementary modules that allow the stu-
dent model to better imitate the teacher. First, instead of distilling knowledge
from all three types of teacher output, i.e., classification, bounding boxes, and
instance masks, we only distill knowledge from the teacher’s classification out-
put which is what the teacher model was designed exclusively for. In addition, to
deal with the highly unbalanced positive and negative anchor boxes, a reciprocal
anchor box selection method is introduced to distill knowledge based on those
most informative teacher outputs. Second, though we could not filter out the
background from the input of the student model with ease, the student model
can be encouraged to better imitate the teacher by embedding the foreground-
awareness into the feature learning. Particularly, we introduce two solutions by
either applying a learned latent soft foreground mask to the intermediate con-
volution features (at the cost of reduced inference speed) or co-learning a fore-
ground segmentation task by attaching a branch to the student’s backbone (not
affecting the inference speed). Both solutions are demonstrated to be effective
in improving the student model’s accuracy through extensive evaluations.
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2 Related Works

It is a challenging task to deploy deep neural networks on pervasive mobile and
edge computing devices that have limited computing resources. Towards this
goal, model compression techniques [10] have been introduced to approximate
a given deep learning model with a compact one that reduces the storage cost,
and representative methods include quantization [16,27], pruning [12], and low-
rankness [17]. Model compression is effective in reducing the model size, however,
the accuracy is generally bounded by the model before compression and may rely
on specialized hardware and/or software support for speedup [9].

More complicated vision tasks like object detection and instance segmenta-
tion rely on a multi-stage architecture [11,29] to achieve favorable accuracy at
the cost of heavy computation. To enable on-device inference, researchers have
come up with a more effective approach that uses a single-stage architecture [28,
24, 2] to substantially reduce the computational cost while still achieving satis-
factory accuracy. Key technologies behind the success include multi-scale anchor
boxes [24], feature pyramid networks [21], focal loss [22], etc.

On the other hand, model imitation technologies, mostly, KD [13] have been
introduced to enforce additional guidance using a large teacher model’s predic-
tion in addition to the ground truth labels. The KD method was first introduced
in the classification problem and the insight behind it is that a pre-trained large
model on the same dataset has already learned the essential underlying relation-
ship among different classes that can be generalized to new unseen samples, e.g.,
cars are close to trucks but are quite different from apples, and this essential
information is reflected by the model’s output. Later works have extended KD
to other problems including object detection [3, 33], semantic segmentation [25],
and sequence learning problems [18]. However, a recent thorough evaluation [6]
on the efficacy of KD indicates that larger models do not often make better
teachers due to mismatched capacity of teacher and student models.

Another research topic related to our work is learning using privileged infor-
mation (LUPI) [32,19], which assumes additional information or modality about
the data is provided at training but may not be available at test time. Most ex-
isting LUPI works assume the extra data modalities, e.g., the depth modality,
can be easily obtained or generated [20,26,8, 5].However, for many real appli-
cation scenarios, the majority training data are large-scale crowd-sourced wild
data which does not have such extra information. Instead, our approach gen-
erates specialized training data from the ground-truth labels as a resolution to
simplify the task and train strong specialized models. In addition, only our work
uses such models as the KD teachers.

3 Method

In this section, we present our method in detail. We first give a brief recap of
the YOLACT one-stage object instance segmentation method. Then we describe
how the FS teacher model is trained and the necessity of imitating the model.
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Table 2. Misclassification errors on COCO dataset.

Model |Conf@0.5|Conf@0.7|Conf@0.9
Standard | 49.71% | 42.59% | 37.67%
FS-Teacher| 38.63% | 30.87% | 23.34%

After that, we delineate our model imitation approach targeting the peculiarities
that are different from the existing KD method.

3.1 Recap of YOLACT

Two-stage object instance methods such as Mask-RCNN [11] are not suitable
for on-device inference. Following the idea of single-stage object detection meth-
ods [28,24], researchers have recently proposed one-stage object instance seg-
mentation methods [34, 2] enabling real-time inference speed on mobile and edge
devices. Among those methods, YOLACT [2] is the state-of-the-art solution con-
sidering both the accelerated inference speed and satisfactory segmentation ac-
curacy. Compared to Mask-RCNN;, it achieves about 4x speed-up with fairly
close accuracy.

YOLACT is based on the RetinaNet [22] architecture which is composed of
a feature pyramid network (FPN) [21] based backbone and a set of classifica-
tion and box regression branches following each pyramid feature map to predict
the class category and bounding box coordinates for each anchor box. On top
of RetinaNet, YOLACT adds a protonet branch to infer a set of latent mask
prototypes and further, for each anchor box, predicts a coefficient vector for
composing the mask prototypes. The final output mask for each anchor box is
the weighted sum of the latent mask prototypes given the predicted coefficients.

3.2 FS Teacher Training

Mask Prototypes

> ProtoNet
:
§ » Mask-COF Branch NMS
O
% > Box Branch
B Class Branch

Fig. 2. The training of a teacher based on YOLACT.
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The FS model is trained using exactly the same model architecture and out-
puts as introduced in § 3.1 and is illustrated in Figure 2. The only change is
that the background of the input image is removed. This input transformation
does not require additional annotation efforts since the foreground can be con-
veniently determined as the union of masks for each foreground object. Pixels
not covered by the foreground mask is set to 0 (i.e., black) before feeding into
the model.

The teacher model does not need to be larger than the student model and
we demonstrate that the student model could achieve substantial accuracy im-
provement when both the teacher model and the student model use the same
backbone network (i.e., ResNet-18). However, it must be noted that (1) the out-
put feature map sizes from both models’ backbone and (2) the number of anchor
boxes are required to be consistent between the two models so that each anchor
box from the student model can find a unique mapping from the teacher, and
thus it knows where it can distill the knowledge.

Boosted classification accuracy In this subsection, we discuss and validate
that the F'S teacher model has significantly improved classification performance.
For instance segmentation, there could be two major types of errors. (1) Object
not detected, i.e., there’s no positive object detected or a detected object with
IoU below a given threshold. (2) Misclassification, i.e., an object is detected
with enough IoU to a ground-truth but is wrongly classified as a different class.
The FS teacher model is trained without background interference which means
that the training burden is greatly reduced to mostly classifying objects and
identifying the object boundaries (especially for overlapped objects).

‘We measure the misclassification errors of the standard model which is trained
and validated using the complete images and the FS model and we show the
comparison in Table 2. Specifically, we calculate the misclassification error as
the percentage of objects (averaged over all classes) which (1) has been detected
with an IoU above 0.75 to a ground-truth object and (2) is wrongly classified.
In addition, we set different confidence thresholds on each measurement, e.g.,
Conf@0.5 means we use the detected objects that are classified to a object class
with confidence score greater than 0.5. The measured result indicates that the
FS teacher model can reduce the misclassification errors by more than 14%.

Challenges on distilling from FS model The challenges are mostly from
the fact that the teacher and the student models have different input. For the
student model, there’s no trivial way of obtaining foreground masks in real-time
inference. Applying foreground segmentation (using models like DeepLab [4])
as pre-processing not only incurs extra computational burden but also cannot
guarantee a flawless foreground mask. Therefore, instead of manipulating on
the input inference images, we propose a new distillation method to have the
student model effectively imitate the FS teacher model as described in detail in
the following subsection.
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Fig. 3. Overview of the imitation training with FSI. The Reciprocal Anchor-Box Selec-
tion module identifies the critical knowledge from the teacher for the student to learn;
the Foreground Segment module embeds the foreground-awareness into the student’s
feature learning.

3.3 FSI: Foreground-Specialized Model Imitation

As shown in Fig. 3, FSI is contains two novel modules: (1) reciprocal anchor box
selection and (2) foreground segment.

Reciprocal anchor box selection The core idea is to have the student to learn
from only what the teacher is specialized for. The F'S teacher has been trained to
concentrate on classifying the foreground objects while it hasn’t been challenged
much to predict the masks or to regress the bounding boxes, considering that
the image background has been zeroed out. This means the distillation should
only focus on teacher’s classification output for each anchor box. Meanwhile,
distilling the classification output for all anchor boxes is highly inefficient given
the extremely unbalanced distribution of positive and negative boxes and would
absorb teacher’s adverse knowledge when it makes a wrong prediction.

Therefore, we propose a reciprocal anchor box selection method to effectively
learn the most critical knowledge from the teacher. Concretely, the selected
knowledge includes the teacher’s “opinion” on two sets of anchors. The first
set includes anchor boxes that the teacher gives positive opinions, i.e., correctly
predicted as foreground objects. This part represents the essence of teacher’s
knowledge that the student should absorb. The second set includes anchor boxes
that have been wrongly predicted as foreground objects by the student but cor-
rectly predicted as background by the teacher. This represents student’s wrong
knowledge. In Algorithm 1, we present the pseudo-code for the method and we
tensorize the operations for fast training in our implementation.
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Algorithm 1: Reciprocal Anchor Box Selection

Input : Y}, and f/js are classification output from the teacher model and
the student model of all anchor boxes S, respectively.
Output: Sy.cip is a set of selected anchor boxes for distillation.
1 begin

2 Srecip <= 0 for i =1 — size(S) do

3 gt = Vi get(i); tus = argmax(il) ; // teacher prediction
4 95 = Yi.get(i);  scs = argmaz(y;) ; // student prediction
5 if tas = gt; and (tes > 0 or sqs > 0) ; // 0 represents background
6 then

7 L Srecip-insert(7)

Foreground-aware feature learning FS teacher extracts features without
the background interference. To imitate the teacher better, we propose two al-
ternative approaches to embed the foreground awareness into student’s learned
features.

Soft feature mask Inspired by the Squeeze-and-Excitation Networks [15], as
shown in Fig. 4 (a), we generate a latent soft feature mask for FPN features
for an adaptive feature calibration based on teacher’s guidance. Despite its ef-
fectiveness in improving the student’s accuracy, it incurs 17% inference speed
reduction with the ResNet18 backbone.

o)

/

Conv3x3 (256, 1)

(a) Soft Feature Mask (b) Foreground Segmentation

Fig. 4. Foreground-aware feature learning approaches.
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Foreground segmentation Instead of adding additional operations to the feature
maps, we attach a binary segmentation branch to the FPN features of the student
as shown in Fig. 4 (b), we apply a weighted pixel-wise binary cross-entropy
loss [30] posing higher weight on the foreground pixels so that the foreground
regions get more attention in the feature learning. The added layers (white layers
in Fig. 4 (b)) will only be used in the training and will not be touched during
inference, so the student’s inference speed will not be affected. We prefer to this
approach because of its balanced performance on accuracy and efficiency.

Loss function We introduce two additional loss terms (of which the weights are
both set to 1) to the loss function of YOLACT. The first is KD loss Lgistin
which measures the KL-Divergence between the classification outputs of the
teacher and student on a set of selected anchor boxes Sy.ccip:

Ldistill:# Z KLdiv(0'<?£>7U(ﬁ))a (1)
|Srecip| iGszp T T

where T is a temperature [13] and o(-) denotes the softmax.

The second loss term is the binary foreground segmentation loss Ly.s.q which
is a weighted pixel-wise binary cross-entropy loss [30] and the weight between
foreground and background pixels is set as 2:1.

Our overall learning objective is:

Lyoract + MLagistitn + A2 Lijseq (2)

where \; and Ay are hyper-parameter to balance the loss terms and are both set
to 1 in our experiments.

4 Experiments

Setup We conduct experiments on COCO [23] and Pascal VOC [7]. Teachers and
students only differ in their backbones, and unless otherwise noted, students
use ResNet-18 as their backbone. All teachers and students are first trained
individually with an input size of 550x550. Then, in the model imitation training
stage, teachers are frozen and students are fine-tuned with the losses defined
in § 3. We perform all experiments on 4 NVIDIA Tesla V100 GPUs with a
batch size of 32. Both the initial training stage and the imitation stage use
the SGD optimizer following the schedule proposed in YOLACT [2] and all the
training sessions finish after 54 epochs for COCO and 112 epochs for Pascal
VOC. The distillation temperature T is set to 3 for COCO and 1 for Pascal
VOC. The accuracy metric used are the mean average precision (mAP) at IoU
= 0.5 (denoted as @0.5) and the mAP averaged for IoU € [0.5 : 0.05 : 0.95]
(denoted as Q[.5, .95]).
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Table 3. Comparison on COCO. The first row shows the performance of the student
without being taught by the teacher.

COCO Pascal VOC

Teacher Backbone| - Method m g ar s @0 5, 05] [Mask@0.5[Mask@[0.5,.95]
N/A Student | 40.44 23.76 68.93 13.74
KD-Cls | 42.96 95.29 70.61 15.90
ResNet-50 1 jop Hint | 43.15 25.68 70.08 45.78
KD-FHint| 43.67 25.94 70.08 45.78
KD-All | 43.17 25.65 70.12 45.56
KD-Cls | 42.49 95.26 69.07 14.67
KD-Hint | 42.52 25.04 69.39 44.69
ResNet-101 - \yery prring|  43.11 25.37 69.70 44.84
KD-All | 4272 95.12 69.81 44.98
FSLSFM | 44.29 26.42 70.55 16.27
ResNet-50 FSL.FS | 44.30 26.50 70.66 46.27
FSLSFM | 43.97 26.23 69.62 14.65
ResNet-101 FSL.FS | 43.77 26.11 68.89 44.30
esNet1s | FSLSEM | 4427 26.39 71.04 16.21
esnet- FSL-FS | 44.43 26.53 70.72 46.17

Compared baselines We compare our method against 4 KD baseline methods
which use a large teacher that is trained on the same dataset and shares the
same input/output format as the student. (1) KD-Cls distills exactly the same
teacher knowledge as our method but uses a larger teacher model. (2) KD-
Hint [3] distills CNN features from intermediate layers in addition to the clas-
sification output. Specifically, we add an adaptation layer (1x1 conv) to each
FPN’s output feature map, and the output of each adaptation layer is compared
to the corresponding feature map of the teacher model by calculating the L2
distance as the hinted feature loss Lgistiti-nint- (3) KD-FHint [33] is similar to
KD-Hint, but only distill CNN features from the foreground regions. (4) KD-All
is built on top of KD-Hint via adding an additional mask prototype distilla-
tion 10ss L gistiti-mast (Smoothed L1 loss) for the corresponding mask prototypes
generated in YOLACT’s protonet. The compared KD baseline methods use two
different backbones for teachers, i.e., ResNet-50 and ResNet-101. Our methods
are named as FSI-SFM and FSI-FS. Suffix “SFM” and “FS” represent alter-
native approaches to embed the foreground awareness, i.e., Soft Feature Mask
(SFM) and Foreground Segmentation (FS).

Comparison with baselines We show results on COCO and Pascal VOC in Ta-
ble 3. The proposed FSI method brings notable improvement: mAP has in-
creased by 2.77 and 2.47 respectively for Mask@[0.5,.95]. For Pascal VOC, the
result ResNet-18 student model almost achieves the accuracy of the ResNet-50
model (46.21 vs 46.87 referring to Table 7). FSI-SFM and FSI-FS have similar
performance, and both outperforms the compared KD baselines. In addition, we
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Table 4. Per-Class Result on COCO. BT: Accuracy before teaching. AT: Accuracy
after teaching.

person | bike car |m-bile| plane bus train truck boat | t-light
BT| 28.52 | 871 | 22.75 [19.03 | 40.93 | 51.24 54.47 | 21.51 10.10 | 14.52
AT| 31.56 | 10.64 | 25.57 |21.97 | 42.95 | 54.23 56.37 | 24.65 12.15 | 15.82
hydrant | s-sign |p-meter|bench| bird cat dog horse sheep cow
BT| 50.76 | 53.38 | 32.21 | 8.97 | 16.14 | 55.65 47.40 | 27.81 23.85 | 28.86
AT| 53.72 | 55.67 | 35.39 | 11.32 | 15.53 | 60.57 50.14 | 29.91 25.40 | 30.85
elephant| bear | zebra |giraffe|b-pack|umbrellalhandbag| tie suitcase | frisbee
BT| 42.35 | 59.34 | 40.37 |37.86| 5.12 | 28.81 4.96 12.21 16.51 | 42.29
AT| 46.33 | 63.39 | 41.56 | 39.25 | 6.98 | 32.68 6.47 9.12 19.50 | 47.40
skis |snow-b| s-ball | kite | b-bat | b-glove | skate-b | surf-b | t-racket | bottle
BT| 0.65 | 10.30 | 25.31 |14.65 | 11.44 | 24.67 14.89 | 17.63 38.85 | 16.38
AT| 091 12.87 | 26.31 | 16.38 | 13.10 | 29.01 19.05 | 20.07 | 41.51 | 19.42
w-glass | cup fork | knife |spoon| bowl | banana | apple [sandwich|orange
BT| 15.23 | 23.43 | 2.60 | 1.64 | 1.50 | 24.83 9.51 8.74 25.22 | 18.04
AT| 17.58 | 26.44 | 4.65 | 2.77 | 3.23 | 26.71 11.38 | 12.74 | 29.64 | 19.66
broccoli | carrot | hotdog | pizza | donut | cake chair | couch | p-plant | bed
BT| 12.65 | 6.61 | 12.68 |37.80 | 30.00 | 22.26 4.74 22.67 10.34 | 25.72
AT| 15.38 | 10.03 | 14.89 | 38.56 | 35.40 | 26.25 6.73 26.60 13.01 | 27.87
d-table | toilet tv  |laptop|mouse| remote | k-board |c-phone| m-wave | oven
BT| 9.55 | 47.52 | 45.15 |43.74 | 45.73 | 12.38 34.77 | 19.57 | 41.63 | 22.61
AT| 11.34 | 51.78 | 50.09 |45.52 | 48.37 | 15.60 38.33 | 23.37 | 48.03 | 26.25
toaster | sink | fridge | book | clock | vase scissor | t-bear | h-drier |t-brush
BT| 14.73 | 22.71 | 36.19 | 1.36 | 40.44 | 19.82 8.68 28.73 2.93 4.88
AT| 18.90 | 26.00 | 41.18 | 1.76 | 42.36 | 22.31 16.72 | 31.85 4.89 5.49

Table 5. Ablation study on COCO.

RECIP SFM FS|NegBox Hint|Mask@0.5 Mask@[0.5,.95]
X X v X X 43.86 26.15
v X X X X 43.28 25.70
v X v v X 44.23 26.35
v X v X v 44.08 26.34
v X v X X 44.43 26.53
v v o X X X 44.27 26.39

don’t observe clear accuracy improvement by adding more loss terms to these
baselines. This might be due to the fact that a large number of hyper-parameters
need to be set and optimized for different datasets and teacher architectures. By
contrast, our method only distills the knowledge from the teacher’s classification
output and thus avoids the complicated hyper-parameter tuning. Overall, we
observe that a too heavy teacher (ResNet-101 vs. ResNet-50) is not necessarily
better than the lightweight one (ResNet-18) as a consequence of greatly mis-
matched model capacity as addressed in [6]. In addition, we present the result
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Table 6. Results of co-learned object detection on COCO and Pascal VOC. The first
row shows the accuracy of the student.

COCO Pascal VOC

T-Backbone | Method |5 a5, @105, 05] [Box@0.5]Box@[0.5,.95]
ResNet-18 | Student 44.61 25.01 72.23 44.88
KD-Cls | 46.80 26.86 72.71 16.83
KD-Hint | 47.33 27.14 72.50 46.75
ResNet-50 | iy prgint| 47.67 27.24 72.60 46.71
KD-All | 47.34 27.16 72.87 46.69
KD-Cls | 46.83 26.67 72.76 44.25
KD-Hint | 46.45 25.86 72.44 44.12
ResNet-101 |y iy prring| 4721 927.07 72.46 44.19
KD-All | 46.57 25.96 72.74 44.40
ResNet-18 | FSI-SFM | 48.23 27.67 73.07 47.61
ResNet-18 | FSI-FS | 48.54 28.01 73.01 47.12

for each COCO class in Table 4. Among the 80 classes, 78 of them get obviously
improved accuracy. The only exceptions are birds (slightly reduced accuracy)
and ties (relatively small objects with a small number of validation images).

Ablation study To show the effect of the different components we have designed,
we present the ablation study on COCO in Table 5. The abbreviated keywords
in the table are explained as follows: RECIP: Reciprocal anchor box selection. If
marked as X, we only select the anchor boxes that the teacher has correctly pre-
dicted as foreground objects and ignores those wrongly predicted by the student.
NegBoz: 300 random selected background boxes correctly predicted by teachers
are added for distillation. Hint: Feature distillation loss [3]. SFM: Foreground
awareness with soft feature mask. FS: Training with foreground segmentation
branch. The first row of Table 5 reflects the effectiveness of the reciprocal anchor
box selection. When the student only learns from teacher’s essential knowledge
but does not correct its own mistake, mAP drops by 0.57. Without learning the
foreground-aware features, mAP drops by 1.15 as indicated at the second row.*
Distilling on more anchor boxes or adding additional distillation loss actually
reduces the performance.

Co-learned object detection task Object detection is a co-learned task for in-
stance segmentation in YOLACT. We see the trend is similar to the instance
segmentation in the evaluation. The experiment result and the comparison with
baseline methods are presented in Table 6.

Large student models The proposed FSI method can be applied to improving
large students, which is not feasible for the conventional KD. We conduct exper-
iments on students with ResNet50 and ResNet101 as backbones where teachers

4 Simply adding the the foreground awareness (FS) to the student without a teacher
can improve mAP by 0.4.
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share the same architecture. In addition to YOLACT, we also use the recently
released YOLACT++ [1] which further improves the base model accuracy by
incorporating deformable convolutions, optimizing anchor box scales and aspect
ratios, and adding a mask re-scoring branch. We present the results in Table 7
where considerable improvements are observed in the majority of scenarios. The
only exceptions are mAP values of Mask@0.5 on Pascal VOC where only a
slight improvement is achieved indicating an upper bound of the YOLACT ar-
chitecture. However, we still observe an increase of 2 for mAP of Mask@][0.5,.95]
showing that the proposed FSI method outputs more higher-quality masks.

Larger teacher model In this experiment, we investigate whether using a larger
teacher model, i.e., the model size of the teacher model is larger than the student,
can further improve the model accuracy. We run experiments by replacing the
small ResNet-18 backbone in the FSI teacher models with larger backbones of
ResNet-50 and ResNet-101. The experiment results on MS COCO and Pascal
VOC datasets are presented in Table 8. For both datasets, we observe that
using a large backbone in the teacher network could not further improve the
accuracy of the student models. This result can be explained as the mismatched
capacity [6] that small students are unable to mimic large teachers on their
classification capability. The performance even drops when ResNet-101 backbone
is used due to the huge difference between the model sizes of the teacher model
and the student model.

Working with model compression KD and model compression are two compli-
mentary directions. KD is to improve an originally lightweight model but com-
pression is to reduce the model size while trying to maintain the accuracy. There-
fore, a common practise is to first apply KD to improve the model’s accuracy
and then apply the compression to reduce the model size. We present the result
of applying quantization [16] to a model distilled by our FSI method and an
original base model in Table 9. Both models have similar accuracy drop after
compression but our distilled model still performs better.

Training efficiency Because a small teacher model is used, FSI has advantages
in greatly reduced training overhead compared to traditional KD with a large
teacher model.

Training speed The proposed method also substantially reduces the training time
in 3 aspects (1) Simpler task: Training the teacher model is much faster since
the transformed input images make the training task simpler and we find that
the model converges with around 40% less epochs; (2) Smaller teacher model:
The savings come from the reduced model forward time and further speedup
could come from using a larger batch size. (3) FEasier hyper-parameter tuning:
Determining the optimal hyper-parameter setting (i.e., weights among different
loss terms) for the compared baseline methods requires significant amount of
training/engineering efforts. Compared to our method, existing solutions have
more loss terms and also need to find the optimal model size for the teacher.
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Table 7. Large students’results.
Dataset Model Training State |Mask@0.5/Mask@[0.5,.95]
YOLACT |Before Teaching| 45.92 27.97
ResNet50 | After Teaching | 49.71 30.43
YOLACT |Before Teaching| 48.01 29.73
COCO ResNet101 | After Teaching | 52.06 31.95
YOLACT++|Before Teaching| 52.71 33.69
ResNet50 | After Teaching | 54.49 35.03
YOLACT++ |Before Teaching| 53.17 34.46
ResNet101 | After Teaching | 54.84 35.55
YOLACT |Before Teaching| 72.34 46.87
Pascal ResNet50 | After Teaching | 72.59 48.93
YOLACT |Before Teaching| 72.72 48.26
ResNet101 | After Teaching | 73.11 50.21
Table 8. Large teachers on COCO and Pascal VOC.
Method MS COCO Pascal VOC
T-Backbone Mask@0.5|Mask@[0.5,.95]| Mask@0.5|Mask@[0.5,.95]
ResNet-18 | Student | 40.44 23.76 68.98 43.74
FSI-SFM| 44.29 26.42 70.55 46.27
ResNet-50 | porps | 44.30 26.50 70.66 46.27
FSI-SFM| 43.97 26.23 69.62 44.65
ResNet-101 | po1ps | 4377 26.11 68.89 44.30
ResNet-18 |FSI-SFM| 44.27 26.39 71.04 46.21
ResNet-18 | FSI-FS 44.43 26.53 70.72 46.17

Table 9. Compressing model before and after distillation.

Model mAP before compression| mAP after compression (4x)
ResNet-18 (Original) 23.76 22.89
ResNet-18 (Distilled) 26.53 25.62

Conclusion

In this paper, we introduce FSI, a foreground-specialized teacher model imi-
tation framework for improving the accuracy of instance segmentation meth-
ods. Given that the teacher takes different input from the student, FSI incor-
porates two novel modules to have the student learn from the teacher better:
(1) identifying the most essential teacher knowledge and (2) embedding the
foreground-awareness into student’s feature learning. We demonstrate the effec-
tiveness of FSI on COCO and Pascal VOC by comparing them to KD baselines.
The methodology presented in this work could have the potential to be applied
to other multi-task learning problems.
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