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Abstract. Knowledge Distillation (KD) is a compression framework
that transfers distilled knowledge from a teacher to a smaller student
model. KD approaches conventionally address problem domains where
the teacher and student network have equal numbers of classes for clas-
sification. We provide a knowledge distillation solution tailored for class
specialization, where the user requires a compact and performant net-
work specializing in a subset of classes from the class set used to train
the teacher model. To this end, we introduce a novel knowledge dis-
tillation framework, Class Specialized Knowledge Distillation (CSKD),
that combines two loss functions: Renormalized Knowledge Distillation
(RKD) and Intra-Class Variance (ICV) to render a computationally-
efficient, specialized student network. We report results on several pop-
ular architectural benchmarks and tasks. In particular, CSKD consis-
tently demonstrates significant performance improvements over teacher
models for highly restrictive specialization tasks (e.g., instances where
the number of subclasses or datasets is relatively small), in addition to
outperforming other state-of-the-art knowledge distillation approaches
for class specialization tasks.

Keywords: Neural Network Compression - Class Specialization - Know-
ledge Distillation.

1 Introduction

Researchers have demonstrated the success of Deep Convolutional Neural Net-
works (DCNNs) on a wide range of computer vision applications including im-
age recognition [35][63][5], instance-based and pixel-level image segmentation
[50][53][33], and object localization in images and videos [47][7][49][25]. Often-
times, state-of-the-art DCNN models are unwieldy and require a significant
amount of computation time and memory space for training and inference,
which can limit their real-world usability, particularly for mobile and edge ap-
plications. Neural network compression techniques have been dedicated to alle-
viating these issues by removing less activated parameters in complex models
[15][38][11][64][19][27][55] or leveraging knowledge distillation [17][40][57][18][51]
[1][34] to train a smaller student network.

Knowledge distillation is a teacher-student learning methodology that aims
to train a compact student neural network by replicating the implicit knowledge
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encoded in a larger teacher model. In general, KD generates a pre-trained neu-
ral network (i.e., a teacher network) and transfers the teacher’s knowledge to a
student network by minimizing the difference between the outputs of the two
networks. Yun et al. [56] combine a self-knowledge distillation technique with
class-wise prediction regularization to tackle the issue of overfitting for neural
network training. By penalizing the predictive distribution between similar sam-
ples, their approach achieves competitive classification accuracy. Muller et al. [32]
show that the student network can experience sub-optimal knowledge transfer
from the teacher network when using coarsely-defined class labels. Their work
improved the knowledge transfer between the teacher and student by enabling
the teacher to partition class labels into multiple subclasses.

There exist a wide range of practical applications and use cases for class spe-
cialized neural networks [45][20][22]. Many general-purpose ensembling methods
in machine learning [9][36] leverage specialized ezxperts, including [59][43]. In ad-
dition, most Al-assisted real-world manufacturing processes require fine-grain
model specialization [60][13][39][4][3][8][48], as do a variety of deployed models
in Medicine [60][13], Biology [39][4], Agriculture [3][8], and vital supply chain
operations [48]. These specialization domain challenges are also frequently exac-
erbated due to inherent data scarcity and annotation costs.

Several recent works have called attention to class or task specification prob-
lems in relation to knowledge distillation. Shen et al. [43] and Zaras et al. [59]
aggregate the knowledge from multiple teacher networks and transfer it to the
student. Morgado et al. [31] use a teacher network fine-tuned on a specific task
as guidance to train task-specific proxy layers in a student network. This method
also focuses on specialized tasks, but it requires a fine-tuning of the remaining
parameters in the proxy layers. Kao et al. [21] present a KD technique to im-
prove the overall accuracy on weak classes by transferring distilled outputs from
multiple teacher networks to a single student network. Notably, this approach
does not produce a compact, specialized network for specific subclasses.

In this paper, we focus on the problem of training a compact student net-
work for explicit specialized classes applicable in real-world specialization tasks
to simultaneously reduce compute overhead and improve data efficiency costs.
We present a novel KD framework to generate a compact student network for
class specialization by restricting knowledge transfer from the teacher model to
a subset of classes of interest. This specialized knowledge transfer is effected
primarily using Renormalized Knowledge Distillation (RKD) loss. We further-
more regularize this knowledge distillation process by simultaneously minimiz-
ing the intra-class variance for latent representations among all subclasses in the
student network with the introduction of Intra-Class Variation (ICV) loss. We
show that these two loss functions work in tandem to bolster class specialization
performance for compact student networks through empirical experiments and
qualitative analyses. Our proposed technique is generalizable across a variety of
different model architectures and vision tasks, including image classification and
transfer learning applications.

The contributions of our work are as follows:
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Class Specialized Knowledge Distillation 3

1. We introduce a novel KD technique using the proposed RKD and the ICV
loss functions for class specialization problems.

2. We empirically evaluate our proposed technique on standard benchmarks
models and image datasets. Our experiments show that the proposed tech-
nique is competitive with, and frequently outperforms, the state-of-the-art
KD techniques for specialized student networks.

3. We further demonstrate the generalizability of our proposed technique by
generating specialized neural networks on both image classification and tran-
sfer learning tasks.
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Fig. 1. Overview of our CSKD approach. During the knowledge distillation stage, the
student network calculates the Renormalized Knowledge Distillation Loss (LrkD),
Orthogonal Projection Loss (Lopr), and the Intra-Class Variance Loss (Lrcv) given
the teacher network trained on training data with all classes. fs(Is) represents a feature
extractor that outputs feature embeddings for the student network given an image
batch. ¢ is a mapping function that chooses a subset of logits from the teacher and
transfers it to the student. Pr and Ps are a prediction for the teacher and the student.
zr and zg represent a logit for the teacher and the student, respectively.

2 Related Work

2.1 Knowledge Distillation

Many knowledge distillation approaches have been applied to network model
compression problems by training a student network with fewer parameters that
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nevertheless achieve competitive performance with large-scale models [17][34]
[65][1][6][51][40][57]. These approaches mainly focus on the transfer of probab-
ility-based knowledge [17][6], latent representation knowledge [57][40][34][1][51],
or combinations of both types of knowledge [65] to the student. Another common
research tactic for knowledge distillation centers around self-knowledge transfer
approaches. Yun et al. [56] leverage the concept of self-distillation to propose a
class-wise prediction regularization for reducing overfitting and improving model
generalization. Zhang et al. [61] propose a self-distillation framework that ex-
tracts representations of knowledge from different depths of attention modules
to enhance model performance without considering teacher networks. Zheng et
al. [62] utilize a self-guidance technique where they train the predictions of mul-
tiple sub-networks (student networks) to match the predictions of a complete
network (a teacher network) to strengthen model generalization. Other research
focuses on KD techniques for multiple teacher networks [44][29][59]. Each of
these methods partitions the data into multiple subsets associated with different
classes and then executes various heterogenous or homogeneeous KD processes.
Lastly, they aggregate the representations of knowledge from all teacher networks
and transfer them to the student. Although the aforementioned approaches can
successfully produce a compressed variant of the teacher model, they do not
explicitly generate a lightweight student network to solve class specialization
problems.

2.2 Task Specialization

Some relevant research work on network model compression for class specializa-
tion applications propose the KD framework among multiple teacher networks
and one or more student networks [43][59][21] or prune a neural network via
a non-KD technique [12]. Shen et al. [43] propose a knowledge amalgamation
framework to combine with teacher outputs from multiple pre-trained teacher
models and leverage the combined teacher outputs to learn a lightweight stu-
dent network for comprehensive classification. Like Shen’s work [43], Zaras et al.
[59] utilize a similar idea to ensemble multiple teacher networks trained on non-
overlapping subclasses given the entire class and efficiently distill the knowledge
from all the teachers to a compact student network for the whole class. Kao et
al. [21] also propose an ensemble-based KD framework for making a student net-
work by leveraging multiple expert networks (teacher networks) to better guide
student knowledge acquisition. As a result of aggregating the predictions of mul-
tiple teacher-student frameworks that specialize in specific tasks, the trained
student network achieves better classification performance. Gabbay et al. [12]
define a value-locality-based network compression algorithm to search for the
specific neurons of the activations associated with high degree values given spe-
cialized tasks and replace these neurons with the associated average arithmetic
values. Since this method does not use fine-tuning, their approach can only match
the performance of the uncompressed neural network. Each of these prior ap-
proaches require specialization of the teacher network while distilling knowledge
injectively (that is, for an equal number of classes) to the student. By contrast,
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Class Specialized Knowledge Distillation 5

our proposed KD framework focuses on explicitly tailoring the distillation pro-
cess itself to the required task specialization problem.

3 Owur Approach

In this section we provide an overview of our CSKD framework and give details
of each loss function used to train our student network. Our method is designed
to generate a lightweight student network for specialized classes (e.g., 5 or 10
specific classes) given the entire set of class (e.g., 100 or 200 classes) using the
RKD and ICV loss functions. Figure 1 shows the overview of the proposed knowl-
edge distillation framework for neural network compression tasks on specialized
classes. RKD loss effectively transfers the teacher logit information associated
with the target classes of interest to the student, so we can integrate the latent
data representations learned by the teacher into the student training process.
In addition, we introduce ICV loss to regularize student training by minimizing
the intra-class variance of feature embeddings output by the penultimate layer
of the student network.

3.1 Knowledge Distillation

In this section, we revisit the orthodox knowledge distillation methodology [2]
[17]. Given a teacher network T and a student network S, we define fr and fg
as a function approximated by a deep neural network for the teacher and the
student. We also define zr and zg as a logit for the teacher and the student
network. Then, we consider X2, the set of tuples with two distinct elements, as
a set of data points. Specifically, we denote X? = {(z;,z;) | i # j} henceforth.
In the teacher-student framework setting, knowledge distillation [17] aims to
minimize the following objective function, given the logits of the teacher and the
student network:
LKD =« Z L(ZT, Zs) (1)

T, EX

where L is a loss function minimizing the difference between the output of the
teacher and the student. Additionally, « is a hyperparameter used to control the
severity of penalty for the knowledge distillation loss.

Researchers have proposed a variety of different loss functions to calculate the
difference between two logits or feature embeddings. Hinton et al. [17] normalize
logits of the teacher and the student via softmax and leverage Kullback-Leibler
(KL) divergence to calculate the difference between them for the loss function
L:

Z lCﬁ(softmam(Z?T), softmasc('z?S)) (2)

T, EX

where 7 is a hyperparameter, temperature, that controls the smoothness of the
probability distribution. As 7 increases, the KL loss is more sensitive to differ-
ences between the teacher and student logits.
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Unlike the Hinton et al. work, Romero et al. [40] transfer knowledge from
the teacher to the student by minimizing the difference between the feature
embeddings of the teacher and the student for the loss function L:

Y (@) = M(fs(a)ll? 3)

T, €EX

where ||.|| represents the Euclidean norm. M is a mapping function that takes
the feature embeddings of the student as input and aligns the embeddings of the
student with the feature embeddings of the teacher.

As in [40][17], many researchers have proposed related knowledge distillation
methods [57][54][51][1][34][30] based on Eq. 1. Notably, these methods transfer all
outputs of the teacher network to the student network. As such, these methods
can only be used in conventional knowledge distillation frameworks, and are
therefore not directly applicable with specialization tasks.

3.2 Renormalized Knowledge Distillation

We introduce Renormalized Knowledge Distillation (RKD) as a mechanism to
transfer only part of the outputs of the teacher to a specialized student network.
Unlike conventional knowledge distillation approaches, RKD loss leverages a
mapping function ¢ to select a subset of the logits from the teacher and normal-
izes this subset via the softmax function. Once the renormalized teacher logits
are generated, the loss transfers the logit information solely for the classes of
interest from the teacher to the student.
Formally, we define RKD loss as follows:

Zr = ¢(2r) (4)

Lrrkp =« Z Kﬁ(softmax(zf)
fen )

, softmax('%s))

where 27 is the output of the mapping function ¢ for the teachers logits, ¢ is the
mapping function that identifies the subset of the teacher logits corresponding
with the specialized classes of interest, and L is the KL divergence loss min-
imizing the difference between the teacher and student logits. By applying the
mapping function, RKD loss can select any number of the logits from the teacher
and transfer specific knowledge associated with the logits from the classes of in-
terest regardless of the logit dimensions of the teacher and the student networks.
Notice that RKD generalizes as conventional knowledge distillation loss, so that
when the teacher and student logit dimensions are equal, Eq. 5 reduces to Eq. 2
and Eq. 1.
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Class Specialized Knowledge Distillation 7

3.3 Regularization Loss for Feature Embeddings

RKD loss transfers the part of logits associated with classes of interest for sub-
class specialization from the teacher to the student, but it does not directly
leverage the feature embeddings learned from a network to enhance classifica-
tion performance for model training. It is well-known [24][10][46][26][14] that
DNNs encode feature embeddings hierarchically. Accordingly, researchers have
applied these hierarchically-generated features to a large variety of different prob-
lems [34][51][57][53][42] to achieve competitive performance. Inspired by previous
works [34][51][57], we similarly utilize feature embeddings to enhance classifica-
tion performance for the student by maximizing inter-class angular distance
while simultaneously minimizing intra-class feature spatial variance.

To maximize the inter-class embedding distance given feature embeddings
from the penultimate layer, we adopt Orthogonal Projection Loss (OPL) [37] to
enforce class-wise orthogonality in the feature embeddings. OPL is defined as

follows:
s=( > (flxa). flxy) /(> 1) (6)
Ws g_;’ W's gj
d=( Y (fl@) flxn) /(Y. 1) (7)
i,k€B i,k€B
Yi # Yk Yi # Yk
£0PL=(1—8)+|d| (8)

where f(x) is a feature embedding given an input, (.,.) is a similarity mea-
surement function that takes two input vectors and computes the cosine value
between the vectors, and B is a mini-batch size. Minimizing OPL equates to
enforcing orthogonality between embeddings of data points in different classes.
This result is achieved by calculating the similarity of input pairs with the same
class and the dissimilarity of input pairs with distinct classes in an image batch.
OPL thus effectively increases the angular distance of inter-class embeddings in
the feature representation space for model training.

Although OPL can render class-wise orthogonality in the feature embeddings,
it nevertheless only considers the cosine similarity and dissimilarity between in-
put pairs without regard for minimizing the spatial extent of intra-class embed-
dings within a single class. To help achieve this end, we introduce Intra-Class
Variance (ICV) loss to enforce intra-class variance minimization for all feature
embeddings with the same target class by calculating the variance of the outputs
of the penultimate layer for each target class. In our experiments, we demon-
strate that ICV loss can be used in tandem with OPL to further improve the
effectiveness of learned latent embeddings.

Formally, we formulate the ICV loss using the following equations:

f'ua'r = w(fS(Xl)) i=1..C (9)
C

Liov =Y | foarllr (10)
i=1
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where fg is an approximate feature extractor function via student neural net-
works, fg(X;) is an N x D feature embedding matrix with the same target
class, ¥ is a function that calculates variance for every embedding, fye, iS a
1 x D vector, and ||.|| » is a normalization function that computes the Frobenius
norm for the embedding vectors. To calculate gradients for weight updating, we
need to ensure that ICV loss is differentiable. ICV is comprised of conventional
variance and L2 norm for calculations for matrices, indicating that ICV is made
up of differentiable functions, and therefore differentiable. Thus, if one defines
the output of the network forward pass: 0; = Liov (fs(X;)), then the gradients
required for backpropagation of the network can be obtained via g; = 6%1#,
where w denotes a network parameter.

3.4 Training with Losses

Our final student model is trained using a combination of losses, including, in-
cluding RKD and ICV losses, a task-specific loss, and OPL. The task-specific
loss can be a conventional cross-entropy loss, say, in the case of classification
problems, or a different, bespoke loss for function for different problem domains.
Our total loss for the student network is defined:

Liotal = Liask + @Lrxp + BLopL +vLicV (11)

where L,sx is the task-specific loss, « is a hyperparameter for the RKD loss, 3
is a hyperparameter for OPL, and ~ is a hyperparameter for the ICV loss. All of
these hyperparameters can help to regularize the L5 loss and thereby improve
model performance. We utilize a heuristically-chosen small positive value for all
the hyperparameters, since Ly is still the most crucial guideline for student
network training.

4 Experimental Results

We empirically evaluate CSKD on image classification and transfer learning spe-
cialization tasks. In addition, we conduct ablation studies that assess the effect
of different numbers of subclasses for specialization performance, in addition to
testing different hyperparameter values for each of the loss functions appear-
ing in (11). For fair comparisons, we follow the same experimental settings as
reported in relevant baseline KD research in our experiments [1][34]. We then
choose the student networks in accordance with standard knowledge distillation
teacher-student comparison practices [51][1].

4.1 Ablation Study Setup

We first conduct ablation studies with respect to the number of subclasses used
for specialization, in addition to the hyperparameter values used in our loss
function. Our experiments encompass several different benchmark architectures,
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Class Specialized Knowledge Distillation 9

Model: (Teacher, Student) (WRN-40-2, WRN-16-1)
Benchmark CIFARI10 CIFAR100
(Class Frac., Subclass Num.)| (50%, 5) | (6%, 5) |(10%, 10)|(50%, 50)
Teacher 94.98% |81.60% | 77.5% | 74.56%
(Lee)
Student 93.68% | 93.20% | 89.20% | 72.82%
(Lee)
Student
(Lee + Lricp) 93.82% | 93.59% | 89.60% | 73.24%
Student
94.42% | 93.99% | 89.80% 73.32%
(Lee + Lrekp + Loper) ’ ’ ’ ?
Student
94.66% (95.19 90.70 74.24
(Lee + Lrep + Lope + Lzev) ° % % %

Table 1. The table shows top-1 accuracy comparisons for distinct subclasses of the
entire class for WRN. Lc¢g represents the cross-entropy loss in the experiment. The
hyperparameter of each loss term (e.g., Lrxp, Lopc, and Lzcy) is 0.1.

including standard residual networks (Resnet) [16] and wide residual networks
(WRN) [58] across the CIFAR10, CIFAR100, and Tiny ImageNet [23] benchmark
datasets. We consider these ablation studies to better understand the effects of
the proposed loss functions and to test the robustness of our method for different
degrees of task specialization. For all ablation experiments, we train the teacher
network on the normative training sets (e.g., all 10 or 100 classes for CIFAR10
and CIFAR100, respecetively) and test the trained network on the images as-
sociated with specializeed classes (e.g., 5, 10, and 50 classes). Additionally, we
train and test the student networks only on the identified subclasses.

Model: (Teacher, Student) (Resnet34, Resnet18)
Benchmark Tiny ImageNet
(Class Frac., Subclass Num.)|(2.5%, 5)|(5%, 10)|(25%, 50)
Teacher 56.00% | 59.20% | 60.08%
(Lee)
Student 73.60% | 75.19% | 67.03%
(Lee)
Student
76.80 75.59 67.99
(Lee + Lrip) % % %
Student
79.20 77.59 68.47
(Lee + Lrep + Lopr) & 7 %
Student
78.40 77.99 68.15
(Lee + Lrip + Lope + Lzev) % % %

Table 2. The table shows top-1 accuracy comparisons for distinct subclasses of the
entire class for Resnet. Lcg represents the cross-entropy loss in the experiment. The
hyperparameter of each loss term (e.g., Lrxp, Lopc, and Lzcy) is 0.1.

We follow the same experimental settings as [34] to conduct our ablation
experiments. For CIFAR10 and CIFAR100, we pad zeros to input images to
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have 40 x 40 images and randomly crop 32 x 32 cropped images. Additionally,
we use random horizontal flipping for data augmentation. We utilize SGD with
batch size 128, momentum 0.9, and weight decay 5 x 10-4 to train networks for
200 epochs. We also apply learning rate decay starting with 0.1 by multiplying
by 0.2 at 60, 120, and 160 epochs. Finally, we use WRN-40-2 and WRN-16-1 for a
teacher and a student network. For Tiny ImageNet, we resize input images to 256
x 256 and randomly crop the input images to generate 224 x 224 cropped images
for network training. We also use random color jittering and horizontal flipping
for data augmentation. We train the teacher and student network for 300 epochs
and apply adjustable learning rates from 0.1 to small values by multiplying by
0.2 at 60, 120, 160, 200, and 250 epochs. In addition, we replicate these same
experimental conditions for Resnet34 and Resnet18 network architectures as a
teacher and a student network, respectively.

4.2 Ablation Study Experiment: Subclass Numbers for the Student

Model: (Teacher, Student) (WRN-40-2, WRN-16-1)
Benchmark CIFARI10 CIFAR100
T?ZChfr 94.98% [94.98%(94.98%| 81.60% |81.60%] 81.60%
CE
St(‘zde)“t 93.68% |93.68%93.68%] 93.20% [93.20%| 93.20%
CE
Hyperparameters 0.1 0.15 0.2 0.1 0.15 0.2
Student 93.82% [94.14%|94.00%| 93.59% |94.00%| 94.19%
(Lee + Lrkp)
Student
94.42% [94.30%|94.46%| 93.99% |94.39%| 94.79%
(Lee + Lrip + Lope) ’ % ’ % % ?
Student
94.66%|94.36%|94.62%|95.19%|94.99%|95.19
(Lee + Lrkp + Lopr + Lzev) % % % % % %

Table 3. Top-1 accuracy comparisons for a variety of hyperparameters of every penalty
loss (e.g., LrkD, Lopr, and Lzcv) for WRN. All experimental results are conducted
by 5 subclasses. Lce represents the cross-entropy loss in the experiment.

We test our method using randomly selected subclasses of varying sizes (e.g.,
5, 10, 50) to better understand the effects of different subclasses for top-1 clas-
sification accuracy for task specialization on CIFAR10, CIFAR100, and Tiny
ImageNet. We list empirical evaluation results in Table 1 and Table 2. As we
can see, most student networks trained using CE achieve higher top-1 accuracy
for small subclasses (e.g., 5, 10, and 50) compared with the teacher networks.
For CIFAR10 and CIFAR100 with 50 subclasses, the teacher has better top-1
accuracy than the top-1 accuracy of the students. We observe that the effec-
tiveness of class specialization through knowledge distillation is sensitive to the
relative number of subclasses (i.e., in proportion to the total number of teacher
classes). Notably, the student performance is generally comparable to that of the
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Class Specialized Knowledge Distillation 11

teacher when the relative number of subclasses is large (e.g., 50%); however, in
the case of a considerably small relative number of subclasses (e.g., 5—10%), the
student performance is often dramatically better. We believe that these experi-
mental results indicate the strong data efficiency potential encapsulated by the
CSKD framework. Despite an extreme scarcity of “specialized” training data, it
is nevertheless possible to successfully train a student network that substantially
outperforms a fully-trained teacher on class specialized tasks (in one case we train
a student network on only 2.5% of the Tiny ImageNet training data, however
the student model renders a 40% relative improvement over the teacher).

Model: (Teacher, Student) |(Resnet34, Resnet18)
Benchmark Tiny ImageNet
Teacher 56.00% |56.00%| 56.00%
(Lee)
Student 73.60% |73.60%)| 73.60%
(Lee)
Hyperparameters 0.1 0.15 0.2
Student
76.80% (76.80%| 75.20
(Lee + Lrip) & % %
Student
79.20%79.20%)| 76.00%
(Lee + Lrkp + Lopr) © ? ¢
Student
78.40% |76.80%| 78.40%
(Lee + Lrep + Lope + Lzev) ¢ ¢ ¢

Table 4. Top-1 accuracy comparisons for a variety of hyperparameters of every penalty
loss (e.g., Lrxp, Lopr, and Lzcy) for Resnet. All experimental results are conducted
by 5 subclasses. Lce represents the cross-entropy loss in the experiment.

4.3 Ablation Study Experiment: Hyperparameters for Loss Terms

We report the effects of varying hyperparameter values for the CIFAR10, CI-
FAR100, and Tiny ImageNet datasets in Table 3 and Table 4. All experimental
results are conducted on five target subclasses. Setting the hyperparameter of
all three loss terms (e.g., Lrxp, Lopr, and Lzcy) to 0.1 achieves consistently
competitive top-1 classification accuracy compared with other hyperparameter
values. Specifically, the student model with all three hyperparameter values set
to 0.1 achieves classification accuracy of 94.66% and 95.19% for CIFAR10 and
CIFAR100, respectively. In addition, we see that most of the students utilizing
all three loss functions in tandem have the highest top-1 classification accuracy
compared with the student with only one or two losses. These results help val-
idate our hypothesis that RKD, OPL, and ICV can effectively be leveraged in
tandem to enhance class specialized KD performance by striking an agreeable
balance between data-efficient knowledge distillation and model regularization.

In order to provide a qualitative analysis of our loss functions, we visualize
the feature embeddings of the penultimate student layer by t-SNE [28] in figure
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12 L. Wang et al.

2 and figure 3. In particular, in both figures, (b) illustrates the latent structure
inculcated to the student model through RKD loss; and (d) shows the effect of
dense class embeddings induced by ICV.

Fig. 2. Feature embedding t-SNE visualization of the penultimate layer for Tiny Im-
ageNet with 5 target subclasses. Each plot represents: (a) Lceg, (b) Lee + Lrip, (€)
Les + Lrip + Lope, and (d) Lee + Lrep + Lope + Lzev

4.4 Classification Performance Comparisons

We evaluate our proposed method for image classification with specialized image
classes using four distinct benchmarks (CIFAR10, CIFAR100, Tiny ImageNet,
and CUB200 [52]). In order to assess specialized image classification performance
on our student networks, we randomly select five subclasses from the entire set
of classes for each of the benchmark datasets. For the CIFAR10, CIFAR100, and
Tiny ImageNet, datasets, the teacher network is trained on the entire training
dataset (i.e., all classes) and tested on five selected subclasses. By contrast, the
student networks are trained and tested using only the five selected subclasses.
Because the CUB200 benchmark dataset consists of only 11,788 images for 200
different bird species, we acquire a pre-trained Resnet34 model on the ImageNet
benchmark [41] and fine-tune this model on the CUB200 benchmark for the
teacher network. For the student, we train the student network (e.g., Resnet18)
on the images associated with five random subclasses from scratch and test the
trained student network on the same subclasses. We evaluate our proposed losses
and several state-of-the-art knowledge distillation approaches (e.g., FitNet [40],
Attention [57], VID [1], and the Relational Knowledge Distillation (ReKD) loss
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Fig. 3. Feature embedding t-SNE visualization of the penultimate layer for CIFAR100
with 5 target subclasses. Each plot represents: (a) Lce, (b) Lce + Lrip, (¢) Lee +
Lrip + Lopc, and (d) Lee + Lrip + Lope + Lzcv

CIFAR10(CIFAR100|Tiny ImageNet/ CUB200
Class Fraction (%) 50 5 2.5 2.5
Teacher 94.98% 81.60% 56.00% 63.96%
Student (Lc¢) 93.68% 93.20% 73.60% 51.40%
Student (FitNet) [40] 93.86% 93.59% 75.20% 57.04%
Student (Attention) [57]| 94.54% 94.40% 78.40% 55.63%
Student (VID) [1] 93.82% 93.79% 78.40% 59.15%
Student (ReKD) [34] 94.06% 92.79% 78.40% 59.15%
Student
(Les + Lrip) 93.82% | 93.59% 76.80% 58.45%
(Ours)
77777 Student | | T[T
(Les + Lrip + Lope) | 94.42% | 93.99% 79.20% 57.74%
(Ours)
77777 Student | | [T~
(Lee + Lrxp + Lopr | 94.66% 95.19% 78.40% 61.97%
+ Lzcv) (Ours)

Table 5. Top-1 classification accuracy (%) for image classification on CIFAR10, CI-
FAR100, Tiny ImageNet, and CUB200. We select hyperparameter 0.1 to the three
losses in our proposed framework.
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[34]) on the same four benchmarks. We select these four approaches as the base-
line techniques since these KD methods transfer the feature embeddings rather
than the logits from the teacher to the student. These approaches thus avoid
the issue of dimensionality misalignment between the teacher and student logits
for class specialization tasks. For the hyperparameters of these approaches, we
set A Astention t0 50. Additionally, we set Agrexp—p to 25and Arexp—p to 50 in
the ReKD loss. Then, we set Apjiner and Ay rp to 0.1. We use the same setting
mentioned in Section 4.1 for model training and use the same experiment setting
for Tiny ImageNet for the CUB200 dataset. Table 5 shows top-1 classification
accuracy on the four benchmarks using five target subclasses. As we can see, a
number of student networks outperform the teacher networks on well-calibrated
specialized classification tasks, particularly when the class fraction percentage
(i.e., number of subclasses divided by the total number of classes) is relatively
low and the class representation is balanced. From these results, CSKD either
achieves competitive classification performance or outperforms existing state-of-
the-art knowledge distillation approaches for the tested class specialization tasks.
Moreover, in each experiment, CSKD demonstrates significant performance im-
provements over a “naive” student network trained solely using Lce. In the case
of the challenging CUB200 dataset, despite the absence of pre-trained features,
the more compact CSKD model utilizing our total loss function (Lce + Lrip
+ Lopre + Lzey) yields over 20% relative performance improvement over a
naive student, and performs only marginally worse than the larger, pre-trained
teacher model for the class specialization task. These results empirically validate
the essential thrust of of our CSKD approach. In place of greedily transferring
the knowledge of feature embeddings of intermediate layers from the teacher to
the student, our proposed approach instead (1) only transfers specific teacher
logits to the student network and (2) regularizes the student network by concur-
rently enforcing orthogonality in between the classes and minimizing intra-class
variance.

5 Conclusion

In this paper, we presented the CSKD framework combining RKD and ICV loss
functions to render a compact and performant student network for the class
specialization problem setting. The proposed RKD loss improves the efficiency
of KD for class specialized tasks by transferring only the relevant portion of the
teacher output of the teacher to a specialized student network. Additionally, ICV
loss enforces spatially dense feature embeddings by minimizing class-wise vari-
ance. CSKD consistently outperforms other knowledge distillation approaches
for specialized student networks.

Acknowledgments We thank all the paper reviewers who provided construc-
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