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Abstract. Locality from bounded receptive fields is one of the biggest
problems that needs to be solved in convolutional neural networks. Mean-
while, operating convolutions in frequency domain provides complemen-
tary viewpoint to this dilemma, as a point-wise update in frequency
domain can globally modulate all input features involved in Discrete Co-
sine Transform. However, Discrete Cosine Transform concentrates ma-
jority of its information in a handful of coefficients in lower regions of
frequency spectrum, often discarding other potentially useful frequency
components, such as those of middle and high frequency spectrum. We
believe valuable feature representations can be learned not only from
lower frequency components, but also from such disregarded frequency
distributions. In this paper, we propose a novel Adaptive Frequency
Filtering based Channel Attention Module (AFF-CAM), which exploits
non-local characteristics of frequency domain and also adaptively learns
the importance of different bands of frequency spectrum by modeling
global cross-channel interactions, where each channel serves as a distinct
frequency distribution. As a result, AFF-CAM is able to re-calibrate
channel-wise feature responses and guide feature representations from
spatial domain to reason over high-level, global context, which simply
cannot be obtained from local kernels in spatial convolutions. Extensive
experiments are conducted on ImageNet-1K classification and MS COCO
detection benchmarks to validate our AFF-CAM. By effectively aggre-
gating global information of various frequency spectrum from frequency
domain with local information from spatial domain, our method achieves
state-of-the-art results compared to other attention mechanisms.

1 Introduction

Recently, convolutional neural networks (CNN) have achieved remarkable pro-
gress in a broad range of vision tasks, e.g. image classification, object detection,
and semantic segmentation, based on their powerful feature representation abil-
ities. The success has mainly been fueled by strong prior by inductive bias and
ability to model local relationship through large number of kernels in convolu-
tional layers. To further enhance the performance of CNNs, recent researches
have investigated to create networks that are deeper [1, 2], wider [3], and also to
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contain more cardinality [4, 5] by creatively stacking multiple convolutional lay-
ers. Even with the increase in performance with aforementioned attempts, there
still exists a limitation of locality inherited in nature of CNNs that roots from
localized receptive fields (RF) due to small kernels, e.g., 3x3 kernels [2] in most
image-oriented tasks. Thus, it is of the utmost importance that we guide CNN to
better extract global information, also known as long-range dependency. Theo-
retically, long-range dependencies can be acquired from deeper networks. Deeper
networks allow the buildup of larger and more complex RFs because stacking
multiple layers increases RFs linearly or exponentially. However, recent study
[6] has proven that not all pixels in a RF contribute equally to an output unit’s
response and that effective RF only occupies a fraction of the full theoretical
RF.

To efficiently and effectively implement non-local RFs to better acquire long-
range dependencies, we introduce spectral transform theory, in particular Dis-
crete Cosine Transform (DCT). We propose to adopt DCT in our network for
the following reasons. First, as stated in spectral convolution theorem in Fourier
Theory, updating a single value in frequency domain globally influences all the
input features associated in Fourier Transform. We take advantage of this fact
and enable CNN to implement the effect of having non-local RFs even from ear-
lier layers that have localized RFs. Second, from 2D image perspective, DCT ex-
presses a finite sequence of data points by the series of harmonic cosine functions
wavering at distinct frequencies. In other words, DCT expresses the phenomena
of an image in terms of different bands, e.g., low, middle, or high, of frequency
components. For example, removing high frequency components blurs the image
and eliminating low frequency components leaves us with edges. This indicates
that by adequately modulating the amount of different frequency details through
DCT, we are able to pick the most important frequency components and discard
the rest. We link this to a well-known concept known as attention mechanism.
Attention is a tool that permits the network to utilize the most relevant parts of
a given input feature in a flexible manner. By fusing the characteristics of DCT
and attention mechanism, we formulate the network to give distinct attention to
different bands of frequency components. Although majority of the information
is stored in just a few DCT coefficients, particularly those of lower frequencies,
we believe useful information can be found not only in lower frequencies but also
in middle or high frequency spectrum.

With aforementioned motivations, we introduce a novel Adaptive Frequency
Filtering based Channel Attention Module (AFF-CAM), that leverages non-
local characteristics of frequency domain through DCT and formulates channel-
wise attention map, which explores and learns the importance of distinct fre-
quency distributions, to modulate the local feature representations from spatial
domain. As depicted in Fig. 1, AFF-CAM is composed of three main sub-modules
after going through DCT: i) Global Update Module (GUM) that targets feature
maps to acquire long-range dependencies with its non-local RFs. The effects of
non-local RFs are implemented by 1x1 convolutional layers in frequency domain
because, as mentioned above, point-wise update in frequency domain globally
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Fig. 1: General overview of AFF-CAM. AFF-CAM is composed of three
sub-modules: i) Global Update Module (GUM), which gathers long-range de-
pendencies with non-local receptive fields and globally updates input feature
representations, ii) Freqeuncy Distribution Learner (FDL), which allows the net-
work to learn the importance of different bands of frequency spectrum through
mask filtering, and iii) Enhanced Squeeze-and-Excitation (ESE) that efficiently
acquires global cross-channel interactions to re-weigh channel responses.

affects input features associated in DCT. ii) Frequency Distribution Learner
(FDL) that partitions input feature maps in frequency domain into M different
distributions/bands of frequency spectrum with a set of learnable frequency fil-
ters so that various kinds of advantageous information can be aggregated fromM
different distributions. We adopt this idea because DCT concentrates majority of
its information in a handful of coefficients, mainly lowest frequency (DC) compo-
nent, often ignoring information from other frequency distributions (e.g. middle,
and high). FcaNet [7], which most resembles our method, also exploits DCT to
construct multi-spectral channel attention map. However, FcaNet only uses a
few pre-selected (e.g. 1, 2, 4, 8, 16, or 32) DCT coefficients that are considered
profitable. By doing so, FcaNet cannot flexibly learn richer feature representa-
tions beyond fixed frequency components. With FDL, our network is not limited
to specific, prefixed frequency components but provies more adaptation to learn
useful details from different frequency distributions. iii) Enhanced Squeeze-and-
Exication (ESE) that produces a channel descriptor by aggregating feature maps
across their spectral dimensions (height×width) by “squeeze” operation and out-
puts a collection of per-channel modulation weights via “excitation” operation.
While squeeze operation was originally conducted with Global Average Pooling
(GAP) in SENet [8], we utilize combination of GAP and Global Max Pooling
(GMP) operations to extract richer feature representations like in CBAM [9].
Excitation operation is generally implemented with two fully-connected (FC)
layers to capture non-linear cross-channel interactions and also to control model
complexity through dimension reduction. However, according to ECANet [10],
using mutliple FC layers is not only memory intensive but also dimension re-
duction in FC layers destroys the direct correspondence between channel and
its weight. ECANet proposes to replace FC layers with a single lightweight 1D
convolution with adaptive kernel size k and captures local cross-channel inter-
action. Inspired by this, ESE also adopts 1D convolution layer but enhances
the idea by introducing 1D-Dilated Convolution Pyramid (1D-DCP), which
stacks multiple dilated [11] 1D convolutional layers with different dilation rates
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and successfully obtains global cross-channel interactions. This way, 1D-DCP is
able to implement the effect of a FC layer with the model complexity of a 1D
convolution.

Contributions. To recap, main contributions of our AFF-CAM can be sum-
marized as follows:

1. From GUM, we are able to obtain long-range dependencies that conventional
convolutional layers cannot acquire through simply stacking multiple layers.

2. From FDL, we are not limited to a few, pre-defined frequency components
but able to adaptively learn richer feature representations from wide range
of frequency distributions.

3. From ESE, we attain global cross-channel interactions with substantially low
computational complexity.

2 Related Work

2.1 Attention

By proposing to model the importance of features, attention mechanism has
been a promising tool in enhancing the performance of CNNs. Attention mod-
ules facilitate the networks to learn “what” and “where” to look in spatial
and channel dimensions, respectively, by focusing on important features and
suppressing non-useful details through activations. SENet [8] first introduces
“Squeeze-and-Excitation” (SE) block that adaptively re-calibrates channel-wise
feature responses by explicitly modeling inter-dependencies between channels.
With channel attention, SE block facilitates network to realize “what” is more
meaningful representation in a given image. ECANet [10] reinstates the im-
portance of efficient channel attention proposed by SENet and proposes cheaper
alternative. ECANet further explains that because of channel reduction ratio r in
Multi-Layer Perceptron (MLP) of SE block, relationship mapping between chan-
nels is indirect and thus, non-optimal. To alleviate such problems, ECA block re-
places MLP with 1D convolution with an adaptive kernel size, k. Inspired by this,
our AFF-CAM also replaces MLP with 1D convolution with additional improve-
ments (“1D-Dilated Convolution Pyramid” of Section 3.2). CBAM [9] enhances
SE block with “Channel Attention Module” (CAM) by replacing GAP with com-
bination of GAP and GMP to preserve richer contextual information, leading
to finer channel attention. Our AFF-CAM’s “squeeze” operation shares similar
architecture, as frequency feature representations are compressed with combina-
tion of GAP and GMP pooling operations (“Enhanced Squeeze-and-Excitation”
of Section 3.2). CBAM also introduces “Spatial Attention Module” (SAM) by us-
ing 2D convolutions of kernel size k×k to guide network “where” to focus, which
is complementary to the channel attention. Our method does not follow up on
spatial-wise attention because conducting DCT destroys the pixel-to-pixel corre-
spondence. For example, whereas first pixel of a spatial image might represent a
sky, first pixel in a DCT image represents low frequency details of a whole image,
and not just a sky. Thus, re-weighing feature response of each pixel position in
DCT produces meaningless results. AANet [12] mixes “self-attention”[13] with
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SE block. AANet does not re-calibrate the channel-wise feature responses, but
creates completely new feature maps through self-attention mechanism, which
simultaneously exploits spatial and feature sub-spaces, and then goes through
channel-wise compression. GCNet [14] mixes SENet with simplified Non-local
Network (NLN) [15], where NLN aggregates query-specific global context to each
query position to capture long-range spatial dependencies. Simply put, GCNet
models global context of a single pixel by aggregating the relational information
of every other pixels in a given image, which is computationally intensive. Our
proposed method eliminates this computation burden by acquiring long-range
dependencies through modulating different frequency components globally with
lightweight 1 × 1 convolution operations (“Global Update Module” of Section
3.2).

2.2 Frequency Analysis

With eminent breakthroughs of CNN, there have been wide range of works [16,
17, 7, 18] that tried to incorporate frequency analysis, more specifically Fourier
Transform, into deep learning frameworks. Because of the duality between con-
volution in spatial domain and element-wise multiplication in frequency domain,
computing convolution in frequency domain has been considered as a replace-
ment for vanilla convolution in spatial domain to solve an issue of heavy compu-
tational expense. Simply put, properties of Fourier Transform for CNN can be
denoted as F (x ∗ y) = F (x)⊙ F (y), where x and y represent two spatial signals
(e.g. images) and ∗ and ⊙ the operators of the convolution and the Hadamard
product, respectively. Mathieu et al. [16] first carries out the convolutional oper-
ations in frequency domain with discrete Fourier Transform (DFT) and discovers
that Fourier Transform of filters and the output gradients can be reused, lead-
ing to faster training and testing process. Additionally, operating convolutions
in spectral domain can alleviate the problem of “locality” presented in vanilla
convolutions due to their local receptive fields, as point-wise modulation in fre-
quency domain globally updates input features associated in Fourier Transform.
FFC [17] is inspired to capsulate both local context and long-range context
with a local branch that conducts ordinary small-kernel convolution and a semi-
global/global branch that manipulates image-level spectrum via DFT, respec-
tively. However, FFC naively adds responses from local and semi-global/global
branches. Concept of merging local and global information through frequency
analysis is similar to our AFF-CAM. However, because outputs of spatial do-
main and frequency domain encode different levels of feature representation,
our method does not simply add but utilizes output of frequency domain as a
guidance to enhance low-level details captured in spatial domain via attention
mechanism. FcaNet [7] utilizes DCT to construct multi-spectral channel atten-
tion. FcaNet adopts DCT, rather than DFT, for computational efficiency with
its ability to pre-compute basis function (Eq.2) from real-valued cosine functions.
The idea of updating channel features through DCT is similar to our AFF-CAM.
However, N number of DCT weights/filters in FcaNet are hand-picked and fixed
before training, thus cannot be learned and optimized. We believe useful infor-
mation can be found and learned in different bands of frequencies. Therefore, we
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add learnable filters to fixed base filters to learn and provide more adaptation to
select the frequency of interest beyond the fixed base filters (“Frequency Distri-
bution Learner” of Section 3.2). FNet [18] replaces transformers’ self-attention
sublayers with Fourier Transform. While incorporating DFT to create attention
maps is similar to our AFF-CAM, the way such attention maps are used differs.
AFF-CAM utilizes attention maps to modulate the local descriptors of spatial
feature representations to reason over high-level, global context. However, FNet
disregards local information, but primarily considers long-range dependencies
that is modeled via Fourier Transform.

3 Method

In this section, we demonstrate the core concepts of our proposed AFF-CAM.
The main contributions are threefold: i) Global Update Module (GUM), which
obtains long-range dependencies by globally updating feature representations
associated in DCT, ii) Frequency Distribution Learner (FDL), which learns im-
portance of different frequency distributions, and iii) Enhanced Squeeze-and-
Excitation (ESE) that efficiently acquires global cross-channel interactions to
re-calibrate channel-wise feature responses. The general overview of our pro-
posed AFF-CAM is shown in Fig. 1.

3.1 Preliminaries: Discrete Cosine Transform

We begin by introducing DCT. DCT is a powerful tool used in field of digital
signal processing for transforming a spatial-temporal signal or an image into
spectral sub-bands of different importance. Simply put, it is a linear transfor-
mation of measurements in time/spatial domain to the frequency domain. DCT
has the property that most of the visually significant information about a given
image is concentrated and stored in just a few coefficients. For this reason, DCT
is often used in image compression application. Even though all the properties
can be extended to higher input dimensions, we constrain ourselves to the 2D
DCT for simplicity. Like any Fourier-related transform, DCT expresses a signal
in terms of a sum of sinusoids with different frequencies and amplitudes. The
general equation for 2D DCT F for a given input feature map fx,y ∈ RH×W×C ,
where fx,y represents the pixel value of H ×W image at point (x, y), is defined
as:

Fu,v = C(u)C(v)

W−1∑
x=0

H−1∑
y=0

fx,yB
x,y
u,v (1)

s.t. C(u) =


1√
W

if u = 0√
2
W otherwise

C(v) =


1√
H

if v = 0√
2
H otherwise

Bx,y
u,v = cos(

πu

2W
(2x+ 1))cos(

πv

2H
(2y + 1)) (2)

where Bx,y
u,v is a basis function of DCT. In terms of CNN, basis function can

be regarded as filters/weights for convolution operations. Basis function can be
pre-computed and simply looked up in DCT computation.
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Fig. 2: Overview of GUM.

3.2 Adaptive Frequency Filtering based Channel Attention Module
(AFF-CAM)

Channel Attention. Channel attention mechanism attempts to assign dif-
ferent significance to the channels and reduce channel redundancy of given fea-
ture map by capturing inter-channel relationship. General equation for acquiring
channel-wise attention map A, given a feature map f , can be denoted as:

A = σ(Network(compress(f)) (3)

where σ is a sigmoid activation function, compress is a operation to aggregate
spatial information into a single global value, i.e., RH×W×C 7−→ R1×1×C , and
Network is a mapping function, i.e., fully-connected layer or 1D convolutional
layer. There have been studies [7, 18] that tried to acquire channel attention
map using Fourier Transform. FcaNet is most similar to our proposed AFF-
CAM, as it utilizes DCT to construct multi-spectral channel attention map.
However, FcaNet exhibits three drawbacks: i) DCT feature representations are
not updated globally using non-local RFs, ii) fixed number of “hand-picked”
DCT filters that cannot be learned and optimized through training, and iii) large
number of network parameters due to two fully-connected layers as Network in
Eq. 3. In the subsequent subsections, we discuss how each of our proposed sub-
modules in AFF-CAM irons out such drawbacks.

Global Update Module (GUM). To alleviate the first issue, we propose
GUM as shown by Fig. 2. Given a spatial feature map X ∈ RH×W×C , we first
transform it into frequency domain by performing 2D DCT along the spatial
dimensions:

YDCT = F [X] ∈ RH×W×C (4)

where F [·] denotes the 2D DCT (Eq. 1). As YDCT represents the frequency
spectrum of X, we then globally modulate the spectrum by performing 1x1

grouped convolution [19] with a group size ofM (GConv
c→ c

r

1×1,M ), ReLU activation

function, and 1x1 convolution operation (Conv
c
r→c
1×1 ):

YGUM = Conv
C
r →C
1×1 (ReLU(GConv

C→C
r

1×1,M (YDCT ))) ∈ RH×W×C (5)

We control the number of parameters by adopting C → C
r and C

r → C, which
indicate channel reduction and channel restoration by ratio r, respectively. We
set r = 16 for larger models, e.g., ResNet50 [2], and r = 8 for smaller models, e.g.,
ResNet-18/34 [2]. Global modulation can be implemented with 1x1 convolutional
layers because point-wise update of spectrum YDCT can globally affect input
feature representations X involved in DCT. We use grouped convolution with
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Fig. 3: Detailed overview of FDL.

a group size of M for the first convolution operation GConv
C→C

r

1×1,M , as we will
partition frequency spectrum into M different bands of frequency components
in Frequency Distribution Learner. This way, each of the M different frequency
distributions can be globally updated separately. Second convolution operation

Conv
C
r →C
1×1 is achieved by conventional 1× 1 convolutional layer as sole purpose

of this operation is to restore channel dimension back to C. As a result, YGUM

is able to attain long-range dependencies through the effect of using non-local
RFs.

Frequency Distribution Learner (FDL). To solve the second issue, we pro-
pose FDL as demonstrated by in Fig. 3. It has been established that spectral
distribution of DCT is non-uniform and most of the energy are concentrated in
just a few coefficients in low frequency area. While the general consensus is to
utilize low frequency components to compress and represent an image, we believe
useful details can be found and learned from other frequency distributions.

To carry out this task, we first construct M different binary fixed filters
[wi

fixed]
M
i=1, where wi

fixed ∈ RH×W×1. As low-frequency components are placed
in top-left corner and higher frequency components in the bottom-right corner
of DCT spectrum, each of the M binary fixed filters are split diagonally to
exploit different frequency distribution. We then add learnable filters [wi

learn]
M
i=1,

where wi
learn ∈ RH×W×1, to the binary fixed filters to grant more access to

select the frequency of interest beyond the fixed filters. By doing so, we obtain
wi = [wi

fixed + wi
learn)]

M
i=1, in which we clip wi

learn using Hyperbolic Tangent

(tanh) to keep wi
learn in a range of -1 to 1.

To apply each of obtained wi to YGUM , we split YGUM into M parts along
the channel dimension. Each of the split feature maps is denoted as:

YGUM = [Y 0
GUM ;Y 1

GUM ; · · · , Y M−1
GUM ] (6)
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Fig. 4: Detailed overview of ESE.

where Y i
GUM ∈ RH×W× C

M , i ∈ {0, 1, · · · ,M − 1} and C should be divisible by
M . For each Y i

GUM , corresponding wi is assigned as:

Y i
FDL = Y i

GUM ⊙ wi ∈ RH×W× C
M (7)

where ⊙ represents element-wise multiplication. Each of the Y i
FDL is then con-

catenated to produce the final output:

YFDL = concat([Y 0
FDL, Y

1
FDL, · · · , Y M−1

FDL ]) ∈ RH×W×C (8)

As a result, each Y i
FDL ∈ RH×W× C

M holds different information from M distinct
frequency distributions.

Enhanced Squeeze-and-Excitation (ESE) To make use of the information
from different frequency distributions, we introduce ESE, as depicted by Fig. 4.
ESE first aggregates, or so called “squeezes”, different frequency bands (e.g. low,
middle, high) information of YFDL along its spectral dimensions (height×width)
via GAP and GMP to produce two channel context descriptors: Favg ∈ R1×1×C

and Fmax ∈ R1×1×C .

After, Favg and Fmax are separately forwarded to a shared network to capture

cross-channel interactions and produce enhanced descriptors: F̃avg and F̃max.
While two FC layers are most widely used to implement a shared network, they
are computationally expensive, which is our third issue. ECANet replaces two
FC layer with a single 1D convolution to avoid high computation and dimension
reduction that occur in typical FC frameworks [8, 9, 12, 20, 14, 7]. While ECANet
solves the computation issue, it can only capture local cross-channel interaction.
So it can be viewed as a “partial” FC layer. We propose 1D-Dilated Convolu-
tion Pyramid (1D-DCP), as shown in orange dashed box in Fig. 4, which stacks
multiple 1D convolutional layers with different dilation rates r1, r2, r3 to capture
global cross-channel interaction. Except for the last layer, each 1D convolutional
layer is followed by ReLU activation function. Dilation convolution grants larger
RF size by inserting spaces, i.e. zeros, between the kernel elements. For a 1D
input signal x[i], the output xdilated[i] of dilated convolution with filter w[k] of

length K is defined as xdilated[i] =
∑K

k=1 x[i+ r · k]w[k] where r is the dilation
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(a) (b)

Fig. 5: Illustrations of conventional 1D convolution and dilated convo-
lution with kernel size of k = 3. (a) Three-layer network using conventional
1D convolution operation with dilation rates r1 = r2 = r3 = 1. (b) Three-layer
network using dilated convolution operation with exponentially increasing dila-
tion rates of r1 = 1, r2 = 2, r3 = 4.

rate. It can be seen that when r = 1, dilated convolution is identical to the con-
ventional 1D convolution operation. Fig. 5 demonstrates the difference between
conventional convolution and dilated convolution operated on 1D signals. Like
our proposed 1D-DCP, Fig. 5 is constructed with a 3-layer structure with kernel
size k = 3 and dilation rates r1, r2, r3. Fig. 5a shows that RFs of conventional
1D convolution increase linearly with the number of layers, resulting in RF of 7.
However, Fig. 5b indicates that using exponentially increasing dilated rates, i.e.,
r1 = 1, r2 = 2, r3 = 4, the RFs also increases exponentially to 15. Thus, by stack-
ing multiple 1D convolutional layers with different dilation rates, our 1D-DCP
can successfully capture global cross-channel interaction like a FC layer without
its computation overhead. F̃avg ∈ R1×1×C and F̃max ∈ R1×1×C are then merged
using element-wise summation to produce the output:

F̃avg = DCP1D(Favg), F̃max = DCP1D(Fmax) (9)

YESE = F̃avg + F̃max ∈ R1×1×C (10)

Channel Attention Map. Obtained YESE then goes through sigmoid activa-
tion function σ to provide final channel attention map A:

A = σ(YESE) (11)

It is clearly presented that our input spatial feature map X and resulting atten-
tion map A of AFF-CAM accommodate complementary feature information; X
contains low-level details, whereas A encompasses high-level semantics. By en-
abling effective communication between those two feature representations, our
proposed AFF-CAM can simultaneously capture short-range and long-range de-
pendencies. AFF-CAM accomplishes this by multiplying input spatial feature
representation X with acquired attention map A. This lets frequency informa-
tion to be a guide and modulates spatial feature representation to reason over
high-level, global context. In essence, the communication between X and A is
formulated as:

Xenhanced = A⊗X ∈ RH×W×C (12)
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Model M
Top-1 Params
(%) (M)

ResNet50 - 75.44 25.56
A 1 76.87 (+1.43) 28.12
B 4 77.62 (+2.18) 27.22
C 8 76.36 (+0.92) 27.12
D 16 76.16 (+0.72) 27.15

Table 1: Ablation study on
effectiveness of M .

Model Method
Top-1 Params
(%) (M)

BGRC GConv-ReLU-Conv 77.62 27.22
BCRC Conv-ReLU-Conv 77.03 28.16
BGRG GConv-ReLU-GConv 75.98 26.27

Table 2: Ablation study on GUM.
The results of utilizing different varia-
tions of GConv and Conv.

where A ∈ R1×1×C , X ∈ RH×W×C , and ⊗ denotes element-wise product.

4 Experiments

In this subsection, we evaluate our AFF-CAM on the widely used benchmarks:
ImageNet-1k for image classification and MS COCO for object detection. We
compare AFF-CAM with several state-of-the-art attention baselines built upon
ResNet [2], including SENet, CBAM, GCNet, AANet, ECANet, FFC, and FcaNet.

4.1 Ablation Studies

We begin by conducting several ablation studies on ImageNet-1k dataset to
empirically demonstrate the effectiveness of our network design with ResNet-50
as a baseline architecture. Initially, we experiment on how different number of
partitions of frequency spectrum M in Eq. 6 affects our network in terms of
accuracy and number of parameters in Table 1. For this experiment, we do not
adopt our 1D-DCP sub-module into the network, as we solely want to see the
effect of M . Instead, we use a single 1D convolutional layer like in ECANet. We
test with M=1, 4, 8, and 16. Maximum value of M is 16 because of channel

reduction ratio r and grouped convolution operation GConv
C→C

r

1×1,M in Eq. 5,

where C
r needs to be divisible by M with r = 16. Even with added parameters

from learnable filters wi in Eq. 7, total number of parameters decreases when
M > 1 because of the grouped convolution operation with a group size M in
Eq. 5. We yield the best result of 77.62% when using M = 4, which significantly
improves baseline ResNet50 by 2.18%. This indicates that commonly disregarded
frequency distributions, such as those of middle or high frequencies, do provide
meaningful feature representations and are worth giving attention to.

With obtained M = 4, we conduct the next experiment, where different
variations of 1 × 1 convolution operations are adopted for GUM (Eq. 5). As
demonstrated in Table 2, Model BGRC outputs the best result of 77.62%. This
proves that i) separately updating M different frequency components is superior
to updating the whole frequency spectrum (Model BCRC), and ii) sole purpose
of the second convolution operation is to restore channel dimension, thus depth-
wise separable convolution is not needed (Model BGRG).

Next, we analyze how using different dilation rates r1, r2, r3 in 1D-DCP of
ESE influences our network. For this experiment, we bring the best Model BGRC

from above ablation study (Table 2) to be the baseline. Model B1,1,1
GRC introduces

the idea of stacking multiple 1D convolutional layers on top of Model BGRC but
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Model r1 r2 r3
Top-1 Params
(%) (M)

BGRC 1 - - 77.62 27.22

B1,1,1
GRC 1 1 1 77.77 (+0.15) 27.22

B1,2,4
GRC 1 2 4 77.98 (+0.36) 27.22

B1,3,9
GRC 1 3 9 78.09 (+0.47) 27.22

B1,4,16
GRC 1 4 16 77.84 (+0.22) 27.22

Table 3: Ablation study on
1D-DCT. The effectiveness of
different dilation rates r1, r2, r3.

GUM FDL ESE
Top-1 Params
(%) (M)

- - - 75.44 25.56

75.91 (+0.47) 25.56

76.46 (+1.02) 25.61

78.09 (+2.65) 27.22

Table 4: Ablation study on AFF-
CAM. The effectiveness of each sub-
module.

does not use any dilations. Models B1,2,4
GRC , B

1,3,9
GRC and B1,4,16

GRC apply exponentially
increasing dilation rates. Each model’s superscript indicates the applied dila-
tion rates r1, r2, r3 on to the baseline Model BGRC . We generate the best result
of 78.09% with Model B1,3,9

GRC , which improves baseline Model BGRC by 0.47%
without adding any trainable parameters. The result implies that stacking multi-
ple 1D convolutions with different dilation rates enables the network to capture
global cross-channel interactions just like a FC layer without its computation
overhead.

Finally, with selected hyper-parameters M = 4 (Table 1) and r1 = 1, r2 =
3, r3 = 9 (Table 3) from above ablation studies, we establish the strength of three
sub-modules of our proposed AFF-CAM in Table 4. The result indicates that
the largest performance gain of 1.63% (76.46% → 78.09%) comes from adding
GUM, which enables the effect of having non-local RFs and acquires long-range
dependencies. With biggest performance gain, GUM is also responsible for most
of the added parameters in AFF-CAM. For future works, we plan on developing
a more efficient module that obtains long-range dependencies. Second biggest
performance gain of 0.55% (75.91% → 76.46%) comes from adding FDL, which
exploits and gives attention to commonly discarded frequency distributions. This
also matches our proposed motivation that profitable feature representations
can be learned not only from low frequency distribution, where majority of the
information is held, but also from commonly discarded frequency distributions.

4.2 Image Classification on ImageNet-1K

To evaluate the results of the proposed AFF-CAM framework on ImageNet, we
employ three ResNet backbone architectures, e.g. ResNet-18, ResNet-34, and
ResNet-50. We adopt the same data augmentation scheme as ResNet for training
and apply single cropping with the size of 224x224 for testing. The optimizer
is performed by Stochastic Gradient Descent (SGD) with momentum of 0.9
and weight decay of 1e-4. The learning rate starts with 0.1 and drops every 30
epochs. All models are trained for 90 epochs with mini-batch size of 1024 for
smaller models (e.g. ResNet-18/34) and 512 for bigger models (e.g. ResNet-50)
on each of the 4 A100-SXM GPUs. Table 5 summarizes the experimental results.

When using ResNet-18 as backbone architecture, AFF-CAM outperforms
the baseline ResNet-18 by 1.12% and surpasses current state-of-the-art CBAM
by 0.79% for Top-1 accuracy. When using ResNet-34 as backbone architecture,
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Method Backbone Top-1 (%) Top-5 (%) Params (M) FLOPs (G)

ResNet [2]

ResNet-18

70.40 89.45 11.69 1.814
SENet [8] 70.59 89.78 11.78 1.814
CBAM [9] 70.73 89.91 11.78 1.815
AFF-CAM 71.52 90.36 11.84 1.84

ResNet [2]

ResNet-34

73.31 91.40 21.80 3.66
SENet [8] 73.87 91.65 21.95 3.66
CBAM [9] 74.01 91.76 21.96 3.67
AANet [12] 74.70 92.00 20.70 3.56
ECANet [10] 74.21 91.83 21.80 3.68
FcaNet [7] 74.29 91.92 21.95 3.68
AFF-CAM 74.88 92.27 22.06 3.71

ResNet [2]

ResNet-50

75.44 92.50 25.56 3.86
SENet [8] 76.86 93.30 28.09 3.86
CBAM [9] 77.34 93.69 28.09 3.86
GCNet [14] 77.70 93.66 28.11 4.13
AANet [12] 77.70 93.80 25.80 4.15
ECANet [10] 77.48 93.68 25.56 3.86
FFC [17] 77.80 - 27.70 4.50
FcaNet [7] 77.29 93.67 28.07 4.13
AFF-CAM 78.09 93.82 27.22 4.39

*All results are reproduced with the same training settings.

FcaNet is reproduced as official code utilizes different training strategies.

Table 5: Classification results on ImageNet-1K dataset. The best Top-1/5
accuracy scores across all baselines are written in bold.

AFF-CAM outperforms the baseline ResNet-34 by 1.57% and surpasses current
state-of-the-art AANet by 0.18% for Top-1 accuracy. When using ResNet-50as
backbone architecture, AFF-CAM outperforms the baseline ResNet-50 by 2.65%
and surpasses current state-of-the-art FFC by 0.29% for Top-1 accuracy.

4.3 Object Detection on MS COCO

In this subsection, we evaluate our AFF-CAM framework on object detection
task to verify its general applicability across different tasks. We utilize Faster
R-CNN [21] as baseline detector and ResNet-50 with Feature Pyramid Net-
work (FPN) [22] as backbone architecture. For training implementation, we
adopt MMDetection [23] toolkit and use its default settings as choice of hyper-
parameters. Optimizer is executed with SGD with momentum of 0.9 and weight
decay of 1e-4. The learning rate is initialized to 0.01 and drops by the factor of
10 at 8th and 11th epochs. All models are trained for 12 epochs with mini-batch
size of 4 on each of the 4 A100-SXM GPUs. As shown in Table 6, our AFF-
CAM framework proves its generalization ability. Without bells and whistles,
our AFF-CAM outperforms baseline ResNet-50 by 3.4% and surpasses current
state-of-the-art FcaNet by 0.8% for Average Precision (AP).

5 Conclusions

In this paper, we propose a novel AFF-CAM that effectively explores the details
of different frequency bands through DCT. While most information is stored
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Fig. 6: ImageNet-1K Top-1 Accuracy vs. Model Complexity.

Method Backbone Detector
AP AP50 AP75 APS APM APL

(%) (%) (%) (%) (%) (%)

ResNet [2]

ResNet-50 Faster-RCNN [21]

36.4 58.2 39.2 21.8 40.0 46.2
SENet [8] 37.7 60.1 40.9 22.9 41.9 48.2
ECANet [10] 38.0 60.6 40.9 23.4 42.1 48.0
FcaNet [7] 39.0 60.9 42.3 23.0 42.9 49.9
AFF-CAM 39.8 60.7 43.6 22.8 42.4 51.0

*All results are reproduced with the same training settings.

Table 6: Object detection results on MS COCO val 2017 dataset. The
best Average Precision score is written in bold.

in lower DCT coefficients, our method exploits other discarded frequency spec-
trum and adaptively re-calibrates channel-wise feature responses by efficiently
modeling global inter-dependencies between channels. Furthermore, our method
takes advantage of the fact that point-wise update in frequency domain glob-
ally affects input features associated in DCT. As a result, our method is able to
implement the ensemble of local and non-local receptive fields in a single unit.
Comprehensive experiments are conducted on ImageNet-1K classification and
MS COCO detection datasets to demonstrate the applicability of AFF-CAM
across different architectures, as well as different tasks. The results display con-
sistent performance improvements that are clearly attributed to our proposed
motivations.
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