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Abstract. Due to diverse architectures in deep neural networks (DNNs)
with severe overparameterization, regularization techniques are critical
for finding optimal solutions in the huge hypothesis space. In this pa-
per, we propose an effective regularization technique, called Neighbor-
hood Region Smoothing (NRS). NRS leverages the finding that models
would benefit from converging to flat minima, and tries to regularize
the neighborhood region in weight space to yield approximate outputs.
Specifically, gap between outputs of models in the neighborhood region
is gauged by a defined metric based on Kullback-Leibler divergence. This
metric could provide insights in accordance with the minimum descrip-
tion length principle on interpreting flat minima. By minimizing both
this divergence and empirical loss, NRS could explicitly drive the opti-
mizer towards converging to flat minima, and meanwhile could be com-
patible with other common regularizations. We confirm the effectiveness
of NRS by performing image classification tasks across a wide range of
model architectures on commonly-used datasets such as CIFAR and Im-
ageNet, where generalization ability could be universally improved. Also,
we empirically show that the minima found by NRS would have relatively
smaller Hessian eigenvalues compared to the conventional method, which
is considered as the evidence of flat minima.1

Keywords: Deep Learning · Optimization · Flat Minima.

1 Introduction

Driven by the rapid development of computation hardwares, the scale of today’s
deep neural networks (DNNs) is increasing explosively, where the amount of pa-
rameters has significantly exceeded the sample size by even thousands of times
[11,10,7]. These heavily overparameterized DNNs would induce huge hypothesis
weight spaces. On the one hand, this provides the power to fit extremely com-
plex or even arbitrary functions [13], on the other hand, it becomes much more
challenging to seek optimal minima while resisting overfitting during training
1 Code is available at https://github.com/zhaoyang-0204/nrs
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Fig. 1. Description of model divergence and flat minima. Given the same input, model
divergence gauges the distance between models in the output space, and flat minima
implies that models between these in the neighborhood region δθ and the reference
model θ would be relatively lower compared to sharp minima. NRS would minimize
the model divergence for models in this neighborhood to explicitly find flat minima
during training.

[26]. Generally, minimizing only the empirical training loss that characterizes
the difference between the true labels and the predicted labels (such as cate-
gorical cross-entropy loss) could not provide sufficient guarantee on acquiring
minima with satisfactory model generalization [20]. Regularization techniques
are in higher demand than ever for guiding the optimizers towards finding min-
ima with better model generalization.

Researchers find that minima of well-generalized models are more likely to
be located at the landscape where the geometry of its neighborhood region is
flat [12,16]. In other words, models would benefit from biasing the convergence
towards flat minima during training. A common simple idea is to minimize the
empirical loss of models with random perturbations. Unfortunately, [9,30] empiri-
cally suggest that optimization only the empirical loss of these random perturbed
models would not help to flatten the loss landscape.

In this paper, we show that by adding proper regularizations, such simple
random perturbation could also lead to flat minima, where we propose a sim-
ple and effective regularization technique, called neighborhood region smooth-
ing (NRS). NRS could regularize the models with random perturbation in the
neighborhood region to yield the same outputs instead of their loss values. To
accomplish such regularization, we firstly define the model divergence, a metric
that gauges the divergence between models in the same weight space. We demon-
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strate that model divergence could provide interpretation of flat minima from
the perspective of information theory, which shares similar core with the mini-
mum description length principle. Since model divergence is differentiable, NRS
regularization would be implemented in a straightforwards manner in practice,
which would minimize the model divergence between models in the neighborhood
region during optimizing for smoothing the surface around the target minima.

In our experiments, we show that NRS regularization could improve the
generalization ability for various models on different datasets. We show that NRS
regularization is compatible with other regularization techniques, which could
improve the model performance moreover. Also, we confirm that for models with
random perturbation in the neighborhood region, optimizing only the empirical
loss could not lead to flat minima, just as [9,30] suggest. We empirically show
that NRS regularization could reduce the largest eigenvalue of Hessian matrices,
indicating that NRS regularization could indeed lead to flat minima.

2 Related Works

Training to make models generalize better is a fundamental topic in deep learn-
ing, where regularization is one of the most critical techniques that are commonly
used during training.

Regularization is actually a rather broad concept involving techniques that
may be beneficial to the training process in various ways. Generally, common
regularization techniques would affect the model training from three aspects.
Firstly, some regularization expect to reduce the searching hypothesis space,
where the most conventional method is weight decay [17,19]. Secondly, some
others try to complicate the target task so that the models could learn more "suf-
ficiently". Typical methods include enlarging the input space such as cutout [5]
and auto-augmentation [4], and interfering models during training like dropout
[23], spatialdropout [24] regularization and stochastic depth regularization [14].
Thirdly, others implement normalizations, which includes batch normalization
[15], layer normalization [1] and so on.

On the other hand, for a better understanding of generalization, researchers
are also interested in studying the underlying factors that associate with the
generalization ability of models. Several characteristics are demonstrated having
impact on generalization including the flatness of minima, margins of classifiers
[22,2], sparsity [18] and degree of feature extraction [27]. In particular, regarding
the flatness of minima, despite still lack of theoretical justification and strict
definition [20], empirical evidences have been found for such phenomenon. For
example, [16] demonstrate that the reason large-batch training would lead to
worse generalization than small-batch training is because large-batch training
tends to stall at sharp minima. Moreover, by solving a minimax problem, [9,30,8]
show that training could benefit from optimizing towards flat minima. Also,
[28,29] explicitly regularize the gradient norm to bias training for the convergence
of flat minima. All of these works have shown that model performance can be
improved by adopting proper techniques that encourages flat minima.
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3 Neighborhood Region Smoothing (NRS) Regularization

3.1 Basic Background

Consider inputs x ∈ X and labels y ∈ Y which conform the distribution D and
a neural network model f parameterized by parameters θ in weight space Θ
which maps the given input space X to the corresponding output space Ŷ,

f(·;θ) : X → Ŷ (1)

For classification tasks, ŷ ∈ Ŷ could be the vector of the predicted probability
distribution of each class.

Theoretically, given a loss function L(·), we expect to minimize the expected
loss Le(θ) = Ex,y∼D [l(ŷ,y,θ)]. However, it is untractable in practice. We in-
stead seek to acquire the model via minimizing the empirical loss LS(θ) =
1
N

∑N
i=1 l(ŷi,yi,θ), where the training set S = {(xi,yi)}Ni=0 is assumed to be

drawn independently and identically from distribution D . Gap between the ex-
pected loss and the empirical loss would directly lead to generalization errors of
models.

For over-parametrized models, when minimizing the empirical loss on train-
ing set, the huge hypothesis weight space would be filled with numerous min-
ima. These minima may have approximate empirical training loss but mean-
while provide diverse generalization ability. How to discriminate which minima
are favorable to the model generalization is critical for getting better training
performance.

In particular, minima of models with better generalization are supposed to lo-
cate at flatter surfaces, and these minima are often called flat minima. Although
there may be different definitions for describing the flat minima [16,6], yet ac-
cording to [12], the core interpretation behind conveys the similar idea that "a
flat minimum is a large connected region in weight space where the error remains
approximately constant". In other words, we expect that models parametrized
by parameters in the neighborhood area of θ could yield approximate outputs
at flat minima.

3.2 Model divergence

First, we would like to clarify a basic concept, the equivalence of two models,

Definition 1. Two models f(·;θ) and f(·;θ′
) are called observationally equiv-

alent if f(x;θ) = f(x;θ
′
) for ∀ x ∈ X .

If two models are observationally equivalent, then they will definitely have
the same outputs given any input in the input space, and meanwhile will lead
to the same loss. But if the losses of two models are the same, it could not
sufficiently ensure that they are observationally equivalent. In other words, loss
is not a sufficient condition for the models to be observationally equivalent.

From previous demonstration, to find flat minima, we would expect that the
reference model and the neighborhood models are as observationally equivalent
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as possible. So, it is natural to optimize to reduce the gap between these models,
where we need to gauge such gap first. In general, this gap of outputs is usually
assessed via the difference in empirical loss between these models when given the
same inputs. But, this is apprarently inappropriate, because it is highly possible
for models that are not observationally equivalent yield the same loss value,
especially for categorical cross-entropy loss. Thus, minimize this loss gap could
not fully guarantee that models will convergence to flat minima.

To this end, we would measure this gap between outputs by employing the
Kullback-Leibler divergence,
Definition 2. For model f(·;θ) and model f(·;θ′

) in the same weight space Θ,
given x ∈ X , the gap of the two models in the output space could be gauged via
the Kullback-Leibler divergence,

dp(θ,θ
′
) = Ex[DKL(f(x;θ)||f(x;θ

′
))] (2)

where DKL(·||·) denotes the KL divergence. We call dp(θ,θ
′
) the model divergence

between θ and θ
′
.

Note that dp(θ,θ
′
) ≥ 0. Clearly, for dp(θ,θ

′
), the lower the value is, the

more approximate the outputs that the two models could yield. Meanwhile, it is
obvious that,
Lemma 1. The two models f(·;θ) and f(·;θ′

) are observationally equivalent if
and only if dp(θ,θ

′
) = 0.

Basically, this indicates that minimizing model divergence could in a sense serve
as a sufficient condition for converging to flat minima in optimization.

Further, we would like to discuss the interpretation of flat minima from the
perspective of model divergence. Based on information theory, KL divergence
of the two output distributions f(x;θ) and f(x;θ

′
) provides insights in regards

to how many additional bits are required to approximate the true distribution
f(x;θ) when using f(x;θ

′
). Lower divergence indicates fewer information loss

if using f(x;θ
′
) to approximate f(x;θ).

So for flat minima, since the model is expected to have approximate outputs
with models in its neighborhood region, they should have low model divergence.
This indicates that when using models f(·;θ′

) in the neighborhood to appropri-
ate the true model f(·;θ), only few extra information is required. In contrast,
high model divergence would mean more extra information is required. There-
fore, describing a flat minimum would require much fewer information than a
sharp minimum. Remarkly, based on the minimum description length (MDL)
principle, better models would benefit from simpler description. Accordingly,
compared to a sharp minimum, a flat minimum will imply better model perfor-
mance, since the required information description is shorter. This is actually in
accordance with Occam’s razor principle in deep learning.

3.3 NRS regularization

Generally, a flat minimum suggests that for ∀ δθ ∈ B(0, ε) where B(0, ε) is the
Euclidean ball centered at 0 with radius ε, the model f(·,θ) and its neighborhood
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Algorithm 1 Neighborhood Region Smoothing (NRS) Regularization
Input: Training set S = {(xi,yi)}Ni=0; loss function l(·); batch size B; learning rate η;
total steps K; neighborhood region size ε; model divergence penalty coefficient α.
Parameter: Model parameters θ.
Output: Model with final optimized weight θ̂.
1: Parameter initialization θ0; get the number of devices M .
2: for step k = 1 to K do
3: Get sample batch B = {(xi,yi)}Bi=0.
4: Shard B based on the number of devices B = B0 ∪ B1 · · · ∪ BM , where |B0| =
· · · = |BM |.

5: Do in parallel across devices.
6: Make a unique pseudo-random number generator κ.
7: Generate random perturbation δθ within area B(0, ε) based on κ.
8: Create neighborhood model f(·,θ + δθ).
9: Compute gradient ∇θL(θ) of the final loss based on batch Bi.
10: Synchronize and collect the gradient g.
11: Update parameter θk+1 = θk − η · g
12: end for

model f(·,θ + δθ) are expected to have both low model divergence and low
empirical training loss.

Therefore, we would manually add additional regularization in the loss during
training for finding flat solutions,

min
θ
LS(θ) + α · dp(θ,θ + δθ) + LS(θ + δθ) (3)

where α denotes the penalty coefficient of model divergence dp(θ,θ + δθ). In
Equation 3, the final training loss L(θ) contains three items:

– The first item is the conventional empirical training loss, denoting the gap
between the true labels and the predicted labels. Optimize this item would
drive the predicted labels towards the true labels.

– The second item is the model divergence regularization, denoting the diver-
gence between outputs yielded separately from the the models with param-
eter θ and the model θ+ δθ in the neighborhood. Optimize this item would
explicitly drive the model to yield approximate outputs in the neighborhood.

– The third item is the empirical training loss of the neighborhood model,
denoting the gap between true labels and the labels predicted by this neigh-
borhood model. Optimize this item would explicitly force the neighborhood
also learn to predict the true labels.

Compared to minimize only the empirical loss of perturbed models L(θ+δθ),
Equation 3 imposes much more rigorous constraint for models in the neighbor-
hood region. This also leads to allow us to be relaxing on model selection in the
neighborhood, which enables to perform a simple random perturbation.

In order to provide sufficient δθ samples in neighborhood B(0, ε), it is best
to train each input sample with a distinct δθ. However, this would not fit in
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the general mini-batch parallel training paradigm well in practice because this
would require extra computation graphs for each distinct δθ when deploying
using common deep learning framework like Tensorflow, Jax and Pytorch. For
balancing the computation accuracy and efficiency, we would generate a unique
δθ for each training device instead of for each input sample. In this way, each
device need to generate only one neighborhood model, indicating that they will
use the same computation graph for samples loaded on this device. All the mini-
batch samples would fully enjoy the parallel computing in each device, which
would significantly decrease the computation budget compared to training each
input sample with a distinct δθ.

Algorithm 1 concludes the pseudo-code of the full implementation of NRS
regularization. In Algorithm 1, the default optimizer is stochastic gradient de-
scent. We will show the effectiveness of NRS algorithm in the following experi-
mental section.

4 Experimental Results

In this section, we are going to demonstrate the effectiveness of NRS regular-
ization by studying the image classification performances on commonly-used
datasets with extensive model architectures. In our experiments, the datasets
include Cifar10, Cifar100 and ImageNet, and the model architectures include
VGG [21], ResNet [11], WideResNet [25], PyramidNet [10] and Vision Trans-
former [7]. All the models are trained from scratch to convergence, which are
implemented using Jax framework on the NVIDIA DGX Station A100 with four
NVIDIA A100 GPUs.

4.1 Cifar10 and Cifar100

We would start our investigation of NRS from evaluating its effect on the gen-
eralization ability of models on Cifar10 and Cifar100 dataset. Five network ar-
chitectures would be trained from scratch, including both CNN models and
ViT models, which are VGG16, ResNet18, WideResNet-28-10, PyramidNet-164
and Vision Transformer family2. For datasets, we would adopt several different
augmentation strategies. One is the Basic strategy, which follows the conven-
tional four-pixel extra padding, random cropping and horizontal random flipping.
Meanwhile, other than the basic strategy, we would also perform more complex
data augmentations to show that NRS would not conflict with other regulariza-
tion techniques. Specifically, we would adopt the Cutout strategy when training
CNN models, which would additionally perform cutout regularization [5]. But
when training ViT models, we would instead adopt a Heavy strategy, which will
additionally perform mixup regularization and train much longer compared to
the Basic strategy.

2 The names of all the mentioned model architectures is the same as them in their
original papers.
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CNN Models Cifar10 Cifar100

VGG16 Basic Cutout Basic Cutout

Baseline 93.12±0.08 93.95±0.11 72.28±0.17 73.34±0.22

RPR 93.14±0.21 93.91±0.17 72.31±0.21 73.29±0.19

NRS 93.79±0.11 94.77±0.17 73.61±0.20 75.32±0.19

ResNet18 Basic Cutout Basic Cutout

Baseline 94.88±0.12 95.45±0.16 76.19±0.21 77.03±0.11

RPR 94.90±0.24 95.41±0.23 76.25±0.31 76.98±0.18

NRS 95.84±0.15 96.47±0.10 78.67±0.17 79.88±0.14

WideResNet-28-10 Basic Cutout Basic Cutout

Baseline 96.17±0.12 97.09±0.17 80.91±0.13 82.25±0.15

RPR 96.14±0.11 97.02±0.15 80.94±0.19 82.19±0.24

NRS 96.94±0.17 97.55±0.13 82.77±0.16 83.94±0.16

PyramidNet-164 Basic Cutout Basic Cutout

Baseline 96.32±0.15 97.11±0.12 82.33±0.19 83.50±0.17

RPR 96.31±0.19 97.09±0.19 82.25±0.24 83.58±0.22

NRS 97.23±0.19 97.72±0.11 84.61±0.24 86.29±0.18

ViT Models Cifar10 Cifar100

ViT-TI16 Basic Heavy Basic Heavy

Baseline 83.07±0.08 89.22±0.18 60.12±0.15 65.44±0.20

RPR 83.02±0.13 89.28±0.14 60.18±0.21 65.21±0.17

NRS 84.17±0.09 90.47±0.14 61.29±0.13 66.84±0.22

ViT-S16 Basic Heavy Basic Heavy

Baseline 85.14±0.11 92.49±0.09 61.83±0.20 72.40±0.17

RPR 85.17±0.13 92.12±0.11 61.92±0.14 72.33±0.17

NRS 85.86±0.10 93.55±0.16 62.59±0.17 73.17±0.14

ViT-B16 Basic Heavy Basic Heavy

Baseline 88.42±0.12 91.54±0.11 63.49±0.17 72.32±0.21

RPR 88.39±0.14 91.57±0.12 63.38±0.15 72.35±0.17

NRS 89.09±0.08 92.23±0.14 64.46±0.17 73.11±0.13

Table 1. Testing accuracy of various models on Cifar10 and Cifar100 when using the
three training strategies.

We would focus our investigations on the comparisons between three training
schemes. The first one would train with the standard categorical cross-entropy
loss, which is minθ L(θ). This is our baseline. The second training scheme is
to optimize the same cross-entropy loss of the models with random pertur-
bation (RPR) in the neighborhood region instead of the true model, which is
minθ L(θ+δθ). This one is for confirming that minimizing the loss of simple ran-
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dom perturbations could not be helpful to the generalization ability of models,
just as papers [9,30] suggest. The last training scheme would be training with
our NRS regularization. It should be noted that we would keep any other deploy-
ment the same for the three schemes during training except for the techniques
mentioned in specific scheme.

For the common training hyperparameters, we would perform a grid search
for acquiring the best performance for CNN models. Specifically, the base learn-
ing rate is searched over {0.01, 0.05, 0.1, 0.2}, the weight decay coefficient is
searched over {0.0005, 0.001} and the batch size is searched over {128, 256}.
Also, we would adopt cosine learning rate schedule and SGD optimizer with 0.9
momentum during training. As for ViT models, we use fixed hyperparameters
and use different hyperparameter deployments for the two data augmentation
strategies. For Basic strategy, learning rate is 0.001, weight decay is 0.3, training
epoch is 300, batch size is 256 and the patch size is 4 × 4 while learning rate
is 2e − 4, weight decay is 0.03 and training epoch is 1200 for Heavy strategy.
Meanwhile, we would adopt the Adam optimizer during training. Additionally,
for all the CNN and ViT models, we would use three different random seeds and
report the average mean and variance across the testing accuracies of the three
seeds.

For RPR scheme, it involves one extra hyperparameter, which represents the
radius of the neighborhood region ε. So similarly, we would perform a grid search
over {0.05, 0.1, 0.5} as well. As for NRS strategy, it involves two extra hyperpa-
rameters, the radius of the neighborhood region ε and the penalty coefficient of
model divergence α. We would adopt the same search for ε, and α is searched
over {0.5, 1.0, 2.0}. Notably, grid search of ε and α in both RPR and NRS would
be performed on the basis of hyperparameters of the best model acquired by the
first training strategy.

Table 1 shows the corresponding testing accuracies of Cifar10 and Cifar100,
where all the reported results are the best results during the grid search of
hyperparameters. We could see that in the table, all the testing accuracies have
been improved by NRS regularization to some extent compared to the baseline,
which confirms its benefit for model training. We also try NRS regularization on
the recent Vision Transformer model. We could find that when performing Basic
augmentation, the testing accuracy of ViT models would be much lower than
that of CNN models. This is because training ViT models generally requires
plenty of input samples. In this case, NRS could also improve the generalization
ability of the such models. And when performing Heavy augmentation, training
performance would be improved significantly, where again, performance could
be improved further when training with the NRS scheme.

From the results, we could find that NRS regularization would not conflict
with optimizers and current regularizations like dropout (in VGG16) and batch
normalization, which is important for practical implementation. Additionally, we
also confirm that simply optimizing the models with neighborhood random per-
turbation like RPR could indeed have no effect on improving the generalization
ability of models.
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ImageNet

VGG16 Top-1 Accuray Top-5 Accuray

Baseline 73.11±0.08 91.12±0.08

NRS 73.52±0.09 91.39±0.09

ResNet50 Top-1 Accuray Top-5 Accuray

Baseline 75.45±0.15 93.04±0.07

NRS 76.29±0.13 93.53±0.10

ResNet101 Top-1 Accuray Top-5 Accuray

Baseline 77.15±0.11 93.91±0.07

NRS 78.02±0.10 94.44±0.08

Table 2. Testing accuracy of various models on ImageNet dataset when using standard
training strategy (Baseline) and NRS regularization strategy.

4.2 ImageNet

Next, we would check the effectiveness of NRS regularization on a large-scale
dataset, ImageNet. Here, we would take VGG16, ResNet50 and ResNet101 model
architectures as our experimental targets. For datasets, all the images would be
resized and cropped to 224 × 224, and then randomly flipped in the horizontal
direction. For common hyperparameters, instead of performing a grid search, we
would fix the batch size to 512, the base learning rate to 0.2, the weight decay
coefficient to 0.0001. During training, we would smooth the label with 0.1. All
models would be trained for a total of 100 epochs with three different seeds.

Our investigation would focus on the comparisons between two training
strategies. One is the standard training with categorical cross-entropy loss, which
is our baseline. The other one is trained with NRS regularization. For hyperpa-
rameters in NRS regularization, we would fix the ε to 0.1 and α to 1.0 according
to previous tuning experience. Table 2 shows the corresponding results.

As we could see in Table 2, the testing accuracy could be improved again
to some extent when using NRS regularization. This further confirms that NRS
regularization could be beneficial to the generalization ability of models.

5 Further Studies of NRS

5.1 Parameter Selection in NRS

In this section, we would investigate the influence of the two parameters ε and α
in NRS regularization on the results. The investigation is conducted on Cifar10
and Cifar100 using WideResNet-28-10. We train the models from scratch using
NSR with the same common hyperparameters of the best models acquired by
the baseline strategy. And then, we would perform the grid search for the two
parameters using the same scheme as in previous section.
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Fig. 2. Evolutions of testing accuracy on Cifar10 and Cifar100 during training when
trained with different parameters in NRS. The black dash lines refer to the reference
lines which are the best testing accuracy trained using standard strategy.

Figure 2 shows the evolution of testing accuracy during training when using
the corresponding different parameters. We could see that actually for all the
deployed ε and α, the generalization ability could be somewhat improved on both
Cifar10 and Cifar100 datasets compared to the baseline (the black reference line
in the figure). This again demonstrates the effectiveness of NRS regularization.
From the figure, we could find that the model could achieve the best performance
when ε = 0.1 and α = 1.0 for Cifar10 dataset and ε = 0.2 and α = 1.0 for
Cifar100 dataset. Also, we could find that the generalization improvement on
Cifar100 would generally be larger than that on Cifar10.

5.2 Eigenvalues of Hessian Matrix

In this section, we would investigate the intrinsic change of models when using
the NSR regularization. In general, the eigenvalues of Hessian matrix are con-
sidered to have connections with the flatness of minima. Specifically, the largest
eigenvalue of Hessian matrix of flat minima could be larger than that of sharp
minima.

Since the dimension of the weight space is so huge, solving the Hessian matrix
in a direct manner is nearly impossible. Therefore, we would employ the approxi-
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mate method introduced in [3]. It calculates the diagonal block of Hessian matrix
recursively from the deep layers to the shallower layers.

We would still use WideResNet-28-10 model and Cifar10 as our investigation
target. We would use the best models acquired by the three training strategies in
the previous section. Also, we would calculate the eigenvalues of Hessian matrix
for the last layer in each model. Table 3 reports the results.

WideResNet-28-10 λmax

Baseline 49.15
RPR 51.79
NRS 12.42

Table 3. The largest eigenvalue of Hessian matrix of models trained with three different
strategies.

As can be seen from the table, using NRS regularization can significantly
reduce the largest eigenvalue of the Hessian matrix compared to using the other
two strategies. Also, using RPR strategy indeed could not lead to flat minima.
This again verify that using NRS regularization would find flat minima during
training.

6 Conclusion

In this paper, we propose a simple yet effective regularization technique, called
Neighborhood Region Smoothing, for finding flat minima during training. The
key idea of NRS is regularizing the neighborhood region of models to yield ap-
proximate outputs. Using outputs in NRS could give stronger regularization
than using loss values, so simple random perturbation in the neighborhood re-
gion would be effective. We define model divergence to gauge the gap between
outputs of models in the neighborhood region. In this way, NRS regularization
is achieved by explicitly minimizing both the empirical loss and the model diver-
gence. In our experiments, we show that using NRS regularization could improve
the generalization ability of a wide range of models on diverse datasets compared
to two other training strategies. We also investigate to give the best hyperpa-
rameters in NRS on Cifar10 and Cifar100 dataset. Finally, smaller eigenvalue of
Hessian matrix confirms that NRS regularization could indeed to flat minima.
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