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1 Network Architecture

Figures 1, 2, 3, 4, and 5 show the network architectures of the global feature
encoder F', the extractor S, the decoder D, the rPPG estimator E, and the
classifier C' in DG-rPPGNet.

In Fig. 1, the global feature encoder F' is a shallow module with only one
convolutional layer.
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Fig. 1: The architecture of the global feature encoder F'.

In Fig. 2, the rPPG extractor S,.ppg, the ID extractor S;q, and the domain
extractor Sgomain have the same architecture but different weights. Therefore,
the output fe:vtract here corresponds to f’I“PPG7 fid7 and fdomain in STPPG) Sida
and Sgomain, respectively.

In Fig. 3, the decoder D has two outputs (1) the reconstructed global feature

Il 1obar; and (2) the reconstructed video z’.

g
Fig. 4 is the architecture of the proposed rPPG estimator FE. Efﬁfll;‘g and

Edisent have same architecture but different weights. Here, we include the self-
attention mechanism [1] after each ST-Module to guide our rPPG estimator to

focus on skin regions instead of the background.
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Fig. 2: The architecture of the extractor S. @ indicates the element-wise addition.
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Fig. 3: The architecture of the decoder D.
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Fig. 4: The architecture of the rPPG estimator E.

Fig. 5 is the architecture of the proposed classifier C'. C;y and Cyomain have
the same architecture but different weights. Therefore, the output 3’ here corre-
sponds to y @ and y ™" in C;q and Cyomain, respectively.
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Fig. 5: The architecture of the classifier C.
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