
Appendix

Caoyun Fan1,†, Wenqing Chen2,†, Jidong Tian1, Yitian Li1, Hao He1,∗, and
Yaohui Jin1

1 Shanghai Jiao Tong University, Shanghai, China
{fcy3649, frank92, yitian_li, hehao, jinyh}@sjtu.edu.cn

2 Sun Yat-sen University, Guangzhou, China
chenwq95@mail.sysu.edu.cn

1 Validity of SGD Algorithm

The SGD process is expressed as follows:

R̂(θt) =
1

|S|
∑

(Xi,Yi)∈S

l(Fθt(Xi), Yi)

ĝS(θt) = ∇θtR̂(θt)
θt+1 = θt − η · ĝS(θt)

(1)

The validity of SGD algorithm is guaranteed:

R(θ) = 1

|S|

|S|∑
i=1

li(θ) = E
[
R̂(θ)

]

∇θR(θ) =
1

|S|

|S|∑
i=1

∇θli(θ) = E
[
∇θR̂(θ)

] (2)

Eq. 2 shows R̂(θ) and ∇θR̂(θ) are the un-biased estimations of R(θ) and
∇θR(θ).

2 Dataset Introduction

2.1 NYUv2

The NYUv2 dataset is comprised of video sequences from a variety of indoor
scenes as recorded by both the RGB and Depth cameras from the Microsoft
Kinect. It is a challenging indoor scene dataset in various room types (bathrooms,
living rooms, studies, etc.), and this dataset has three tasks: 13-class semantic
segmentation, depth estimation, and surface normal prediction.

† These authors contributed equally.
? Corresponding author.

2 Fan et al.

2.2 CityScapes

Cityscapes is a large-scale database that focuses on semantic understanding of
urban street scenes. It provides semantic, instance-wise, and dense pixel anno-
tations for 30 classes grouped into 8 categories (flat surfaces, humans, vehicles,
constructions, objects, nature, sky, and void). The dataset consists of around
5000 fine annotated images and 20000 coarse annotated ones. Data was captured
in 50 cities during several months, daytimes, and good weather conditions. It was
originally recorded as video so the frames were manually selected to have the
following features: a large number of dynamic objects, varying scene layout, and
varying background.

3 Universality of Weight Design

For the multiple losses of multi-task learning, the most popular method is to
design an appropriate weight coefficient for each task and get the final loss by
weighted sum as L =

∑T
k=1 ωkLk. In fact, for any design of loss function:

L = f(L1, L2, . . . , Ln) (3)

As long as the function satisfies strict monotonicity and continuity for each
loss {L1, L2, . . . , Ln}, it can meet the optimization requirements of BP algorithm.
When calculating the gradient for parameter, because of the chain rule, the
gradient is expressed as Eq. 4:

dL

dθ
=

n∑
i=1

dL

dLi
∗ dLi
dθ

(4)

So no matter what form of loss function, it will degenerate into a specific
weight design in BP algorithm, as shown in Eq. 5:

dL

dθ
=

n∑
i=1

ωi ∗
dLi
dθ

where ωi =
dL

dLi

(5)

4 Momentum Estimation

The gradient ĝS(θ) obtained by SGD is stochastic, so the gradient can be de-
composed into expected gradient and gradient noise:

ĝS(θ) = g(θ) + ng(θ)

where ng(θ) ∼ N (0,
C

|S|
)

(6)

Appendix 3

According to Eq. 6, the momentum gradient with noise can be expressed as:

mt = γmt−1 + (1− γ) · ĝS(θt)

≈ (1− γ)
t∑
i=1

γt−i · ĝS(θi)

= (1− γ)
t∑
i=1

γt−i · g(θi) + nmt

(7)

Since we assume that the gradient noise obeys the same distribution, and
nmt can be simplified as:

nmt
= (1− γ)

t∑
i=1

γt−i · ng(θi)

= (1− γ) N (0,

∑t
i=1 γ

2(t−i)C

|S|
)

≈ (1− γ) N (0,
C

(1− γ2) |S|
)

∴ nmt ∼
√

1− γ
1 + γ

N (0,
C

|S|
)

(8)

5 Gradient Norm

The 2-norm. The gradient noise is represented as n ∼ N (0, C/ |S|), where C/ |S|
as the covariance matrix is positive semi-definite. Thus, C/ |S| can be orthog-
onally diagonalized as C/ |S| = QTΛQ, where Λ is a non-negative diagonal
matrix, and tr(C/ |S|) = tr(C)/ |S| = tr(Λ). This means that any Gaussian
noise can be rotated to another Gaussian noise with each component orthogonal.
Therefore, the high-dimensional noise N is decomposed into multiple orthogonal
one-dimensional noises N = {n1, . . . , nn}, and E[N2] =

∑n
k=0 E[n2k]. According

to the nature of Gaussian distribution (This is the reason why we select the
2-norm.): When x ∼ N (0, σ2), E[x2] = σ2, we get E[n2k] = σ2

k. Since σ
2
k = Λkk

in the high-dimensional Gaussian distribution, E[N2] =
∑n
k=0 Λkk = tr(Λ) =

tr(C)/ |S|. We will add the explanation to the supplementary material in the
next version.

