
Supplementary Material: A Simple Strategy to
Provable Invariance via Orbit Mapping

Kanchana Vaishnavi Gandikota1, Jonas Geiping2, Zorah Lähner1, Adam
Czapliński1, Michael Möller1

1 University of Siegen,2 University of Maryland

1 Extension of Orbit Mapping to Equivariant Networks

The equivariance of G preserves the structure of transformations g ∈ S of input
data in the elements y ∈ Y (including, but not limited to, the case where X ≡ Y).
The equivariance of G to S is defined as

G(g(x); θ) = g(G(x; θ)) ∀x ∈ X , g ∈ S, θ ∈ Rp. (1)

We now show that equivariant networks can be designed by applying all transfor-
mations in S to the input x.

Proposition 1. Let S define a group action on X . A network G is equivariant
under the group action of S if it can be written as

G(x; θ) = G1({g(G2(g
−1(x); θ2)) | g ∈ S}; θ1) (2)

for some other arbitrary network G2 : X × Rp2 → X , and a network G1 :
2X × Rp1 → X that commutes with any element h ∈ S, i.e., for h ∈ S, and
Z ⊂ X , it satisfies G1(h(Z); θ2) = h(G1(Z; θ2)), where h(Z) denotes the set
obtained by the applying h to every element of Z.

Proof. We want to show that a network satisfying the condition (5) is equivariant.
Let h ∈ S be arbitrary. Note that

{g | g ∈ S} = {h−1g | g ∈ S} (3)

such that a substitution of variables from g ∈ S to z = h−1g ∈ S (i.e., g = hz
and z−1 = g−1h) yields

{g(G2(g
−1(h(x)); θ2)) | g ∈ S}

={h(z(G2(z
−1(x); θ2))) | z ∈ S}.

This means that we can also write

G(h(x); θ) = G1({h(z(G2(z
−1(x); θ2))) | z ∈ S}; θ1)

= G1(h({z(G2(z
−1(x); θ2)) | z ∈ S}); θ1)

= h(G1({z(G2(z
−1(x); θ2)) | z ∈ S}); θ1)

= h(G(x; θ))

which yields the desired equivariance under the assumed commutative property.

2 Gandikota et al.

The work [2] can be interpreted as an instance of the construction in Proposition 1,
where equivariant linear layers w.r.t. rotations by 90 degrees are obtained by
choosing G2 to be a simple convolution and G1 to be the summation over all
(finitely many) elements of the set. Subsequently, they nest these layers with
component-wise (and therefore inherently equivariant) non-linearities.

While Proposition 1 is stated for general groups, realizations of such construc-
tions often rely on the ability to list an entire orbit of the group. In the following
we show an efficient solution to obtain equivariant networks using orbit mapping.

Proposition 2 (Orbit mapping for equivariant networks). Let h be an
orbit mapping that satisfies h(S ·x) ∈ S ·x for all x. Any network G : X ×Rp → X
that can be written as

G(x; θ) = ĝ−1(G2(ĝ(x); θ)) (4)

for an arbitrary network G2 : X × Rp → X and ĝ ∈ S denoting the element that
satisfies ĝ(x) = h(S · x) is equivariant.

Proof. We want to show that a network satisfying the condition (4) is equivariant.
Consider an input a = r(x) to the network, where r denotes an arbitrary element
of S. We first need to determine the element g̃ ∈ S such that g̃(a) = h(S · a).
From the definition of the orbit, it follows that S · x = S · r(x), such that our
orbit mapping satisfies remains the same, i.e., h(S · x) = h(S · a) = ĝ(x). Solving
the equation g̃(a) = ĝ(x) with a = r(x), i.e., x = r−1(a) for g̃ yields g̃ = ĝr−1.
Now it follows that

G(r(x); θ) = G(a; θ) = g̃−1(G2(g̃(a); θ))

= r(ĝ−1(G2(g̃(a); θ)))

= r(ĝ−1(G2(ĝ(x); θ)))

= r(G(x; θ)),

which concludes the proof.

2 A Discussion on Isometry Invariance

Here, we will elaborate on how the functional map framework [29] can be seen as
an application of our orbit mapping for isometry invariance. Functional maps
are a widely used method to find correspondences between isometric shapes, and
we will show here that the framework fits within our proposed theory. Non-rigid
correspondence is a notoriously hard problem, and joint optimization within
a larger framework makes it even more complex. To resolve this the idea of
functional maps is to change the representation of the correspondence from point-
wise to function-wise. By choosing the eigenfunctions of the Laplace-Beltrami
operator [31] as the basis for functions on the shapes, the problem becomes a least
squares problem aligning suitable descriptor functions in the space of functions.

A Simple Strategy to Provable Invariance 3

Here, F ∈ F(X) and G ∈ F(Y) are descriptor functions on the shapes X
and Y respectively. They are assumed to take similar values on corresponding
points on X ,Y , and generate the designated orbit element within our framework.
These descriptors are projected onto the eigenfunctions of X ,Y, named Φ, Ψ
respectively. These projections are the chosen elements of the orbit we will align,
and, for isometries and sufficiently comparable descriptors, the projections can
be aligned by an orthogonal transformation generating the group action which is
exactly the functional map C. The vanilla functional map optimization looks like
this:

argmin
C∈O(k)

∥CΦ−1F − Ψ−1G∥22 (5)

Functional maps are often used when shape correspondence is required within
another framework, and has been used in many deep learning applications
[7],[16],[22]. Due to its wide application, we will not provide extra experiments
to show its efficacy but want to emphasize that this is a possible implementation
of our theory.

3 Stability of gradient based orbit mapping

In this section we analyze the stability of the proposed gradient based orbit
mapping strategy for discrete images. While the proposed gradient based orbit
mapping our approach leads to unique orientation as long as

∫
Z
∇u(z) dz is

non-zero, practically, the magnitude of
∫
Z
∇u(z) dz and interpolation artifacts

affect the stability of the orbit mapping. While one could possibly use forward or
central differences to calculate gradients at pixels along approximate circles, this
further deteriorates the stability of orbit mapping. This is seen in Tab. 1 a) which
shows the mean standard deviation orientation of orbit-mapped images when
input images rotated in steps of 1 degree using bilinear interpolation. We find that
using forward differences to approximate the gradient has the most instability.
In the following section, we derive a necessary condition for provable invariance
using general convolution kernels (instead of gradients in x and y direction),
where we show that forward differences does not satisfy these conditions for any
rotation.

Tab. 1 b) shows the histogram of standard deviations in orientation for
CIFAR10 images when calculating exact gradients along the circle. The standard
deviations of predicted orientations of over 78% of the images is less than 10
degrees, and over 44% of images is less than 4 degrees, indicating a relatively
stable orbit mapping for these images. However, a fraction of images also have
a higher variance, in predicted orientation possibly due to small values of the
integral. Tab. 1 c) shows that our gradient based orbit mapping is fairly robust
to small additive Gaussian noise.

4 Gandikota et al.

a)
Dataset Exact Central Diff. Forward Diff

CIFAR10 10.46 12.47 23.89
CUB200 9.05 14.56 24.75

c)
Dataset clean σ2=0.01 σ2=0.05 σ2=0.1

CIFAR10 10.46 11.36 14.08 16.69
CUB200 9.05 10.55 15.99 20.610

b)

Table 1: Stability and robustness of proposed gradient based Orbit Mapping strategy.
a) The mean standard deviation values of angles in degrees over the images in dataset
are reported when rotating images based on exact gradients computed along circle
using bilinear interpolation, and approximate gradients using finite differences along
pixels closest to the circle. b) The histogram of standard deviations of the predicted
orientation in degrees for CIFAR10. c) The mean standard deviation values of angles in
degrees over the images in CIFAR10 dataset are reported, for different levels of additive
Gaussian noise.

4 Invariance to image rotations using convolution kernels

Following the notation from the paper, let u(z) denote the continuous image
function with z ∈ R2 representing the spatial coordinates of an image. The
invariance set for the orbit of continuous image rotations is

S = {g : X → X | g(u)(z) = (u ◦ r(α))(z), for α ∈ R},

and r(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
is the rotation matrix.

Let us consider two kernels ki : R2 → R, i = {1, 2}. We now investigate the
convolution of a kernel with a rotated image (u ◦ r(α))(z)

(ki ∗ u ◦ r(α)) (z) =
∫
R2

ki(x)(u ◦ r(α))(z − x)dx

=

∫
R2

ki(x)u(r(α)z − r(α)x)dx

=

∫
R2

ki(r
Tφ)u(r(α)z − φ)dφ

with φ = r(α)x

Now assume (
k1(r

T (α)φ)
k2(r

T (α)φ)

)
= rT (α)

(
k1(φ)
k2(φ)

)
. (6)

A Simple Strategy to Provable Invariance 5

Then (
(k1 ∗ (u ◦ r(α))) (z)
(k2 ∗ (u ◦ r(α))) (z)

)
=

∫
R2

rT (α)

(
k1(φ)
k2(φ)

)
u(r(α)z − φ)dφ.

= rT (α)

(
(k1 ∗ u)(r(α)z)
(k2 ∗ u)(r(α)z)

)
Then for a suitable set Z which makes the integral rotationally invariant, (e.g.
circles around image center)∫

Z

(
(k1 ∗ (u ◦ r(α))) (z)
(k2 ∗ (u ◦ r(α))) (z)

)
dz = rT (α)

∫
Z

(
(k1 ∗ u)(φ)
(k2 ∗ u)(φ)

)
dφ (7)

And we can determine the optimal rotation as solution to

ĝ = argmaxg∈S

〈(
1
0

)
,

∫
Z

(
k1 ∗ u
k2 ∗ u

)
(z) dz

〉
(8)

whose solution is given by α̂ such that

(
cos α̂
sin α̂

)
=

∫
Z

(
k1 ∗ u
k2 ∗ u

)
(z) dz∥∥∥∥∫Z (

k1 ∗ u
k2 ∗ u

)
(z) dz

∥∥∥∥ (9)

We can see that (6) is a necessary condition to ensure invariance to image
rotations using orbit mapping with (9) employing convolution kernels k1 and
k2. For discrete convolution kernels, eq. (6) is not exactly satisfied for arbitrary
rotations due to discretization problem. We can deduce necessary conditions on
discrete kernels k1 and k2 to satisfy eq. (6) for rotations in multiples of 90o. For
square kernels k1 and k2 of size N ×N , we find that

k1[i, j] = k1[N − i+ 1, N − j + 1] and (10)

k2 = k1 ◦ r(−90o) (11)

are necessary to satisfy the condition (6) for α = 90o.
For N = 2, this gives kernels of the form

k1 =

(
a b
−b −a

)
and k2 =

(
−b a
−a b

)
For N = 3,

k1 =

 a b c
d 0 −d
−c −b −a

 and k2 =

−c d a
−b 0 b
−a −d c


Note that computing gradients using central differences satisfies (10) and (11),
whereas using forward differences does not satisfy these conditions. Therefore,
we observe more instabilities in orbit mapping when forward differences are used
for gradient computation, see Tab. 1.

6 Gandikota et al.

5 Details about the Experimental Setting

In the following we provide the detailed training settings used in our experiments.

5.1 Rotation invariance for images

For our experiments with image rotational invariance, we used Pytorch(v.1.8.1),
python(v.3.8.8), torchvision(v.0.9.1). The exact training protocol is provided
below.
CIFAR10 We trained a Resnet18 [4] on the CIFAR 10 dataset, using stochastic
gradient descent with initial learning rate 0.1, momentum 0.9, and weight decay
5e-4. Additionally, we trained a small Convnet and a linear model which used
an initial learning rate of 0.01. For all the models, the learning rate is decayed
by a factor of 0.5 whenever the validation loss does not decrease for 5 epochs.
Training data is augmented using random horizontal flips, random crops of size
32 after zero-padding by 4 pixels. We divide the training data into train (80%)
and validation (20%) sets. Networks are trained for 150 epochs with a batch
size of 128 and we report the results on the test set using the model with best
validation accuracy. The experiments with CIFAR10 were performed partially
on a machine with one Nvidia TITAN RTX, and partially on machine with 4
NVIDIA GeForce RTX 2080 GPUs.
HAM10000 We fine-tuned an imagenet pretrained1 NFNet-F0 [1] on HAM10000
dataset [9]. The dataset is split into 8912 train and 1103 validation images using
stratified split, ensuring there are no duplicates with the same lesion ids in the
train and validation sets. Training data is augmented using random horizontal
and vertical flips and color jitter, and randomly oversample the minority classes to
mitigate class imbalance. The network is finetuned for 5 epochs, with a batch size
of 128 and learning rate of 1e-4, weight decay of 5e-4 using Adam optimizer [5]
with exponential learning rate decay, with factor 0.2. For training using TI-pool
which uses 4 rotated copies of images, we reduce the batch size to 32 to fit
the GPU memory. For experiments with STN we use a 3 layered CNN with
convolution filers of size 3 × 3 followed by 2 fully connected layers for pose
prediction. For experiment with ETN we use a CNN with 4 conv layers with
64 channels and 2 fully connected layers for pose prediction. We report results
using final iterate on the validation set. The experiments with HAM10000 dataset
were partially performed on a machine with one NVIDIA TITAN RTX card, and
partially on machine with 4 NVIDIA GeForce RTX 2080 GPUs.
CUB200 This is a small dataset containing 11,788 images of birds, split into
5994 images for training and 5794 test images. Since training a network from
scratch gives low accuracies (around 35% clean accuracy with Resnet-50), we
instead perform finetuning using an imagenet pretrained Resnet-50 from pytorch
torchvision (v.0.9.1) on CUB-200 dataset [10]. The training data is augmented
using random horizontal flips, random resized crops of size 224. The network

1 pretrained model from https://github.com/rwightman/pytorch-image-models li-
censed Apache 2.0

https://github.com/rwightman/pytorch-image-models

A Simple Strategy to Provable Invariance 7

is finetuned for 60 epochs with batch size of 128 and initial learning rate of
1e-4, using Adam optimizer [5] , weight decay of 5e-4, with exponential learning
rate decay, with factor 0.9. . For training using TI-pool which uses4 rotated
copies of images, we reduce the batch size to 64 to fit in the GPU memory. For
experiment with ETN we use a CNN with 4 conv layers with 64 channels and
2 fully connected layers for pose prediction. We report the accuracies using the
final iterate on the test set. The experiments on CUB-200 dataset were performed
on machine with 4 NVIDIA GeForce RTX 2080 GPUs.

All the three image datasets including HAM10000 dataset [9] used in our
experiments are publicly available and widely used in machine learning literature.
To the best of our knowledge these do not contain offensive content or personally
identifiable information.

5.2 Rotation and Scale invariance for 3D point clouds

We investigate invariance to rotations and scale for 3D point clouds with the task
of point cloud classification on the modelnet40 dataset [11]. For this dataset note
the asset descriptions at https://modelnet.cs.princeton.edu/: ”All CAD
models are downloaded from the Internet and the original authors hold the
copyright of the CAD models. The label of the data was obtained by us via
Amazon Mechanical Turk service and it is provided freely. This dataset is provided
for the convenience of academic research only.” We use the resampled version of
shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip. We
follow the hyperparameters of [7,8] with improvements from the implementation
of [12] on which we base our experiments. We train a standard PointNet for 200
epochs with a batch size of 24 with Adam [5] with base learning rate of 0.001,
weight decay of 0.0001. During training we sample 1024 3D points from every
example in modelnet40, randomly scale with a scale from the interval [0.8, 1.25],
and randomly translate by an offset of up to 0.1 - if not otherwise mentioned in
our experiments. This is the training procedure proposed in [12]. However, we
always train the model for the the full 200 epochs and report final class accuracy
based on the final result - we do not report instance accuracy. We further report
invariance tests based on the final model.

As described in the main body, we evaluate rotational invariance by testing on
16×16 regularly spaced angles from [0, 2π], rotating along xy and yz axes. We eval-
uate scaling invariance by testing the scales {0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10, 100, 1000}.
All experiments for this dataset were run on three single GPU office machines,
containing an NVIDIA TITAN Xp, and two GTX 2080ti, respectively.

6 Additional Numerical Results

6.1 Invariance to continous image rotations

Discretization effects in CUB200 We further investigate the effect of dis-
cretization using different interpolation schemes for rotation on higher resolution

https://modelnet.cs.princeton.edu/
shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip

8 Gandikota et al.

on the CUB-200 dataset (trained at 224x224 resolution) fine-tuned using Resnet-
50. Tab. 2 shows the results of different training schemes with and without
our orbit mapping (OM) obtained when using different interpolation schemes
for rotation. Besides standard training (Std.), we use rotation augmentation
(RA), and the adversarial training and regularization from [3,13]. Even for this
higher resolution dataset, the worst-case accuracies between different types of
interpolation may differ by more than 15%.

Train OM Clean. Average Worst-case
Nearest Bilinear Bicubic Nearest Bilinear Bicubic

Std.
✗ 77.41±0.33 37.67±0.35 52.45±0.29 51.87±0.31 3.19±0.49 8.07±0.35 8.16±0.33
✓Train+Test 71.19±0.34 63.35±0.30 71.56±0.34 70.93±0.35 40.63±0.48 58.80±0.39 59.02±0.41

RA.
✗ 69.89±0.28 67.61±0.33 70.12±0.34 68.83±0.37 34.88±0.47 41.01±0.41 40.50±0.43
✓Test 69.41±0.31 69.19±0.32 69.27±0.29 68.53±0.38 48.63±0.43 56.28±0.39 55.86±0.40
✓Train+Test 70.35±0.46 69.41±0.23 70.72±0.18 70.37±0.34 47.92±0.26 57.54±0.39 57.62±0.14

Advers. ✗ 64.54±0.17 53.74±0.65 64.07±0.25 63.22±0.54 26.63±0.79 42.82±0.60 42.44±0.55
Mixed ✗ 68.56±0.46 57.17±0.60 65.91±0.42 65.76±0.51 28.06±0.58 42.87±0.32 42.92±0.38
Advers.-KL ✗ 64.47±0.35 53.93±0.35 64.65±0.26 64.02±0.34 26.94±0.46 43.04±0.63 42.61±0.37
Advers.-ALP ✗ 64.63±0.31 55.56±0.67 64.34±0.17 63.21±0.24 29.55±0.69 43.63±0.21 43.48±0.32
ETN ✗ 64.14±0.24 64.26±0.65 66.95±0.42 64.32±0.62 43.33±1.01 52.85±1.12 49.72±1.31
TIpool ✗ 76.80±0.25 60.67±0.79 74.90±0.15 74.82±0.24 36.06±1.12 59.04±0.37 59.50±0.41
TIpool-RA ✗ 73.47±0.48 72.30±0.51 74.71±0.29 73.65±0.36 57.22±0.64 62.82±0.56 62.31±0.42
TIpool ✓Train+Test 76.82±0.15 68.50±0.58 77.18±0.18 77.04±0.16 49.85±0.65 69.19±0.36 69.64±0.33
TIpool-RA ✓Train+Test 74.78±0.20 73.79±0.48 75.89±0.17 75.07±0.16 59.57±0.57 67.78±0.20 67.64±0.18

Table 2: Effect of augmentation and including gradient based orbit mapping (OM) on
robustness to rotations with different interpolations for CUB200 classification using
Resnet50. Shown are clean accuracy on standard test set and average and worst-case
accuracies on rotated test set. Mean and standard deviations over 5 runs are reported.

In particular, adversarial training with bi-linear interpolation is still more
vulnerable to image rotations with nearest neighbor interpolation. Even the
learned ETN also exhibits similar behavior. While our approach is also affected
by the interpolation effects, the vulnerability to nearest neighbor interpolation
is ameliorated when using rotation augmentation. We obtain best results using
orbit mapping in conjunction with the discrete invariant approach [6]

Effect of Network architecture for CIFAR10 To investigate the effectiveness
of our approach, we experiment three different network architectures: i) a linear
network, ii) a 5-layer convnet ii) a Resnet18. We compare the performance of
our orbit mapping approach with training schemes, i.e. augmentation and adver-
sarial training for rotational invariance in Tab. 3. For all the three architectures
considered, our orbit mapping together with rotation augmentation consistently
results in the most accurate predictions in the worst case.

Comparing Computation Complexity for CIFAR10 In Tab. 4, the training
times using different approaches are compared for rotation-invariant CIFAR10
classification. It can be noted that the proposed gradient based orbit mapping
is significantly easier and computationally cheaper to train in comparison with
other approaches for incorporating invariance. In contrast, adversarial training is
the most computationally expensive approach.

A Simple Strategy to Provable Invariance 9

Network Train OM Std. Average Worst-case
Nearest Bilinear Bicubic Nearest Bilinear Bicubic

Linear

Std.
✗ 38.89±0.17 25.31±0.21 25.57±0.22 25.48±0.24 2.50±0.11 3.56±0.17 3.26±0.11
✓Train+Test 31.87±0.10 31.25±0.04 31.58±0.05 31.33±0.04 13.08±0.23 18.85±0.21 18.21±0.21

RA
✗ 29.73±0.18 30.66±0.03 30.77±0.03 30.72±0.03 14.30±0.42 18.31±0.29 16.94±0.37
✓Test 30.60±0.13 30.52±0.07 30.65±0.08 30.54±0.09 16.83±0.47 21.17±0.28 20.37±0.26
✓Train+Test 31.06±0.26 31.07±0.11 31.27±0.10 31.13±0.09 19.19±0.28 24.25±0.31 23.68±0.31

Advers. ✗ 28.82±0.77 29.46±0.60 29.62±0.56 29.36±0.56 11.45±0.81 14.20±0.93 13.65±0.55

Convnet

Std.
✗ 86.12±0.33 32.01±0.32 35.97±0.26 38.15±0.36 0.85±0.09 0.57±0.06 0.89±0.14
✓Train+Test 76.13±0.96 64.34±0.35 71.21±0.96 74.61±0.84 25.78±0.49 49.60±0.79 55.57±0.81

RA
✗ 75.03±0.99 71.77±0.84 65.45±0.66 70.22±0.66 27.96±0.50 27.06±0.61 32.51±0.53
✓Test 70.12±0.64 67.64±0.55 61.03±0.67 66.09±0.71 39.01±0.57 42.88±0.90 49.39±0.68
✓Train+Test 74.30±0.77 73.24±0.58 69.52±0.53 73.38±0.59 46.25±0.54 53.36±0.57 59.04±0.53

Advers. ✗ 72.96±0.95 62.08±0.59 74.29±0.88 73.86±0.76 26.24±0.43 50.99±0.54 52.46±0.51

Resnet18

Std.
✗ 93.98±0.32 35.12±0.81 40.06±0.44 42.81±0.50 0.79±0.38 1.31±0.13 2.22±0.17
✓ Train+Test 87.99±0.43 72.40±0.33 84.12±0.55 86.61±0.49 34.57±0.94 68.60±0.81 74.49±0.84

RA
✗ 85.54±0.72 80.47±0.74 75.99±0.72 79.47±0.65 45.50±0.83 44.71±0.74 50.50±0.78
✓ Test 79.26±0.42 74.93±0.51 69.31±0.65 73.94±0.63 48.93±0.75 52.18±0.91 58.69±0.78
✓ Train+Test 85.40±0.57 84.37±0.58 81.82±0.59 84.82±0.52 66.22±0.75 71.09±1.01 76.44±0.89

Advers. ✗ 69.32±1.61 61.73±1.12 68.54±0.68 68.00±0.31 36.95±0.97 50.21±0.55 49.73±0.98

Table 3: Comparing rotational invariance using training schemes vs. orbit mapping
for CIFAR10 classification using i) Linear network ii) 5-layer Convnet iii) Resnet18.
Shown are the mean clean accuracy and the average and worst case accuracies when
test images are rotated in steps of 1 degree. The mean and standard deviation values
over 5 runs are reported.

Method Std. STN ETN Adv. OM

Train-time/epoch 18.05±0.05 18.90±0.05 18.89±0.07 72.09±0.18 18.59±0.04
Table 4: Average training time per epoch in seconds for different approaches to incorpo-
rate rotation invariance, with Resnet18 as base architecture for CIFAR10 classification.
Training time correspond to runs on a machine with single Titan-RTX GPU.

Comparing Computational Complexity of ROTMNIST Tab. 5 compares
the computational complexity of the D4/C4 and D16/C16 models. The D16/C16
model has significantly higher computational complexity than the D4/C4 model,
though the number of learnable parameters is nearly same. The network size of
D16/C16 network s higher due to more rotated copies of the filters, resulting in
larger training and inference times. Orbit mapping adds no learnable parameters
and increases training time very marginally (∼0.3 seconds/epoch). Training times
correspond to runs on a machine with single Titan-RTX GPU.

References

1. Brock, A., De, S., Smith, S.L., Simonyan, K.: High-performance large-scale image
recognition without normalization. arXiv preprint arXiv:2102.06171 (2021)

2. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: International
conference on machine learning. pp. 2990–2999 (2016)

10 Gandikota et al.

OM
D4/C4 D16/C16

Train-time/epoch Train-time/epoch

✗ 4.47 s 41.89 s
✓ 4.78 s 42.08 s

Table 5: Comparing computational complexity of D4/C4 and D16/C16 models. Orbit
mapping adds no learnable parameters and increases training time very marginally
(∼0.3 seconds/epoch). Training times correspond to runs on a machine with single
Titan-RTX GPU.

3. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape
of spatial robustness. In: International Conference on Machine Learning. pp. 1802–
1811 (2019)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

6. Laptev, D., Savinov, N., Buhmann, J.M., Pollefeys, M.: Ti-pooling: transformation-
invariant pooling for feature learning in convolutional neural networks. In: IEEE
conference on computer vision and pattern recognition. pp. 289–297 (2016)

7. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Conference on Computer Vision and Pattern
Recognition (CVPR) (2017)

8. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In: Advances in Neural information processing
systems (2017)

9. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Scientific
data 5(1), 1–9 (2018)

10. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset (2011)

11. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A
deep representation for volumetric shapes. In: IEEE conference on computer vision
and pattern recognition. pp. 1912–1920 (2015)

12. Yan, X.: Pointnet/pointnet++ pytorch.
https://github.com/yanx27/Pointnet Pointnet2 pytorch (2019)

13. Yang, F., Wang, Z., Heinze-Deml, C.: Invariance-inducing regularization using worst-
case transformations suffices to boost accuracy and spatial robustness. Advances in
Neural information processing systems pp. 14757–14768 (2019)

	Supplementary Material: A Simple Strategy to Provable Invariance via Orbit Mapping

