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To the best of our knowledge, we are one of the first to speed up the training
of dynamic NeRF by integrating the voxel-grid optimization with a deformable
radiance field. Note that making this idea work is non-trivial. One hand, it is
difficult to optimize the voxel gird to achieve reasonable results due to its dis-
continuity nature, which requires us to design different constraints while keeping
the model capacity. On the other hand, to further speed up the training, we de-
sign a coarse-to-fine strategy with filtering strategies specifically designed for
dynamic scenes. We believe our method, which can speed up training by 70x
while maintaining comparable rendering quality, is a good step forward in the
fast optimization of dynamic view synthesis. Here, we provide more details and
analysis of the design, followed with more experiment results, to further discuss
the method we proposed.

1 More Details for the Proposed Method

1.1 Empty space filtering

The following two strategies are used to speed up the training. First, we locate
the smallest box region that fully covers the whole scene, which allows us to
make full use of the grid resolution. To achieve this, we query all grid vertices
of the coarse deformation feature grid in all training time steps to get the alpha
values. We assume a point belongs to an object point rather than the empty
space if its alpha value is larger than a predefined threshold. Using alpha values
of all grid vertices at all training time steps, we could find the smallest bounding
box for the dynamic scene.

Second, we filter out the sampled points in a ray if they are recognized as
empty points, reducing the query numbers to the light-weight MLP. For sampled
points in the deformation module, as we assume empty points to be static, we

* Authors contributed equally to this work. ¥ Yuchao Dai is the corresponding author.



2 X. Guo et al.

filter out sampled points whose alpha is always below a threshold during all
training times. For sampled points in the canonical module, we only filter out
the empty points at the canonical time.

1.2 Fine Model Design

The MLP architecture of deformation module in the fine model is the same
as in the coarse model, such that the trained network weights in the coarse
deformation module can be used for initializing the fine model. We initialize the
deformation feature grid with the optimized feature grid in the coarse model by
interpolation. This initialization can result in higher performance and shorten
the training time.

We model the view-dependent effect in the fine model by using a light-weight
MLP to decode the interpolated color feature. We also use a progressive scale
training, which doubles the voxel resolution after some training iterations [2].

1.3 Network Architecture

We show the architecture of our networks in Fig. 1. For deformation network
FHd1 , we use four layers of fully connected layer with the width set to 64. For the
input layer, the dimensions of position, time and feature are 33, 11 and 44.

For the color network Fy , we use three layers of fully connected layer with the
width set to 128. For the input layer, the dimensions of position, view direction,
and feature are 33, 27 and 12. Between the fully connected layer, we use ReLLU
as activation functions. For the occlusion output w?®® and color output c, we
apply sigmoid activation to transfer outputs into range of (0,1).

33
y(d)
27
_.
12

(a) Deformation Network Fgl (b) Color Network Fgcz

%)
>

— 128 —» 128

Fig. 1. Network Architecture. We show architectures of our light-weight deformation
network and color network.
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Fig. 2. PSNR with more training iterations

1.4 Hyper-parameter Settings in Experiments

As described in Eq. (16) of the paper, the overall loss function for the coarse
stage and the fine stage can be written as

L= Ephoto + wptc . Eptc + wbg ) ng + wdinorm . £d7norm +wd7tv . ‘Cd,tv’ (1)

where wPt wPe, wdf rorm and v are weights to balance each component.

In the coarse stage, we empirically set wP, w8, wdf_norm and df_tv t0 0.1,
0.01, 0.1, and 1, respectively. In the fine stage, these four weights were set to be
smaller values as 0.01, 0.001, 0.01, and 1, respectively. As the motions of ‘Hell
Warrior’, ‘Jumping Jacks’ and ‘T-Rex’ are larger, we used a smaller weight for
the deformation norm regularization, with wf-"°"™ equals to 0.01 and 0.001 for
the coarse and fine stage.

As shown in Fig. 2, the PSNR generally increase slightly after 20k iteratins,
but will takes significantly more iterations to reach the max. To balance the
PSNR and time consumption, we set the training iteration to 20k.

1.5 Discussion of Tips to Speed Up Training

The purpose to use coarse-to-fine training is that we could get a relative good
geometry and motion model quickly and other strategy like empty-space filtering
is built on this coarse model to save training time in fine stage. In Table 1,
NDGV (/o filter) does not use any speed-up strategies and directly optimizes fine
model without filtering. Under this setting, training speed, render speed and
PSNR are all clearly worse than our full model NDGV g,1y. On the other hand,
the train speed of NDGV y /o filter) is on the same level with NDGV g1y, which
means these tips are not the main factors to speed up training.

1.6 Illustration of Empty Space Filtering

As described in Section 4.2 of the paper, we speed up the training with the empty
space filtering strategy. Here, we visualize our empty space filtering strategy in
Fig. 3. We first locate the smallest box region that fully covers the whole scene,
which is denoted as coarse geometry prior (see Fig. 3 (a)-(c)). We obtain the
coarse geometry prior by warping object points in a canonical space into all
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Table 1. More results of ablations (half:400x400, full:800x800)

Metrics DNeRF NDGV NDGV NDGV NDGV

(half) (half) (full, w/o filter) (full, w/o grid) (full)

train speed (s/scene) 99034 1380 2487 1450 2087

render speed (s/image) 8.7 0.4 3.5 1.3 1.7
model size (M) 13.2 9958 988.3 668.1 994.2
PSNR 30.02  30.32 27.85 30.62 31.08

w/o filter: without any filter methods w/o grid: without deformation grid

other times, so that we can identify all possible positions that could be object
points in the world coordinates. With this coarse geometry prior, we could reduce
the volume of the grid in fine stage to avoid as many empty point as possible.

Second, we filter out the sampled points in a ray if they are recognized
as empty points, reducing the query numbers to the light-weight MLP (see
Fig. 3 (d)-(f)). Specifically, we filter our sampled points whose alpha values
are always below a threshold during all training times. All these operations sig-
nificantly reduce the time consumption of training and rendering.

2 DMore Analysis for the Proposed Method

2.1 Training, Rendering Speed and Model Size

We show the training and render speed of different settings in Table 1. To speed
up training, we need to use a very small size MLP, which could harm the image
quality. This is why we use a deformation feature grid to embed more information
without adding too much complexity to the system. We can see that adding a
deformation feature grid increases the PSNR at the cost of slightly more training
time and bigger model size, which we believe is reasonable to balance these
metrics.

We report model size in Table 1. The model size of DNeRF is the smallest
thanks to the compact representation of MLP, but it doesn’t mean it is faster
and cheaper to train. In fact, we could train faster on the same device compared
with DNeRF and set a much bigger batch size with a resolution of around 1503
in our experiments.

In addition, We further show the training speed of each submodule in our
system in Table 2. According to Table 2, we can notice a dramatic increase of
time consumption of query deformation feature, deformation network forward
and gradient computation process without our empty space filtering mechanism,
since more empty points are involved in the optimization process without filter-
ing.
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Fig. 3. Illustration of Empty Space Filtering. (a) warps the learnt canonical ge-
ometry during coarse training stage into other times. Be aware of the moving part in
red circle. (b) combines object points in all times to form a coarse geometry prior,
indicating all possible positions that could be an object point along all times. (c¢) with
coarse geometry prior, find a smallest bounding box which could cover all possible
object points. The volume of the grid is significantly reduced. (d) shows a example of
sampled point in Coarse Stage masked by coarse bounding box. (e) shows a example of
sampled point in Fine Stage masked by fine bounding box. (f) shows sampled points in
(e) but filtered by coarse geometry prior. Be aware that the sampled points in empty
space are marked with lighter gray color.

2.2 Ablation Study of Losses

We establish the ablation study of the losses we use during training. We show
the results of models trained without the total variation loss £1-* and without
the deformation normalization loss £3-"°" in Table 3. According to Table 3,
there is a significant drop without £4-*. It is worth to mention that, even it
achieve slightly better results without deformation normalization loss £d-1orm,
the geometry of canonical module degenerated due to lack of normalization of the
canonical space, which is show in Fig. 4. As shown in Fig. 4, without £4-t, the
canonical images are shattered without this spatial smooth term. Also, without
L£4-morm the canonical images are distorted. Since there are no constraints on
deformation estimation, there is more freedom of the deformation between spaces
at other times and the canonical space, which could cause distortions in the
canonical space.

2.3 Deformation Grid Resolution

We test the different deformation grid resolution (total voxel number) and anal-
ysis the corresponding images quality and training time consumption, which is
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Table 2. Detailed Training Time of Each Module. We report the training time in
details of each module in second/iteration. Query Feat is query the deformation
feature grid. Deform Net means deformation network forward. Canonical Module
means the whole process in canonical module. Render means the render process after
get the densities and colors of all sampled points. Loss means the computation of loss.
Backward means the computation of the gradients. Optimization is the process of
optimizing all parameters.

Methods Deformation Module Canonical Module Render Loss Backward Optimization

Query Feat Deform Net

NDVG (full) 9.23e-4 5.06e-3 5.28¢e-3 1.02e-3 5.61e-3  3.50e-2 7.23e-3
NDVG (w/o filter) 3.28e-3 2.82e-2 4.93e-3 1.08e-3 5.36e-3 6.68e-2 7.36e-3

Table 3. Ablation Study of Losses.

Methods PSNR1 SSIMt LPIPS|

NDVG (w/o £9-%) 3045 0.963 0.061
NDVG (w/o £9-P"™) 31.54 0.971 0.039
NDVG (full) 31.08 0.970 0.039

show in Fig. 5. With the total number of voxels is increasing, the overall trends
of PSNR and training time consumption are also increase. We choose the fi-
nal number of voxels as 1903 to balance the image quality and training time
consumption.

2.4 Visualization of the Feature Grid

The feature grids, including deformation feature grid in Deformation Module and
color feature grid in Canonical Module, play important roles in our pipeline. We
show the ablation study in paper with quantitative results. Here we visualize the
feature learnt from training in Fig. 6. As shown of the first row in Fig. 6, we slice
the feature grid along the axis . We then treat the sliced feature slice as stacked
rgb images and visualize them after normalization. In terms of deformation of
feature grid slices, some of the columns (like the 4th and 5th) show clean clues of
objects. Other columns (like the 6th and 7th), show clean clues of deformations
of the objects (bouncing trajectory). In terms of color feature grid slices, the
visualizations show clean clues of objects and no clues of movements, because it
is defined in canonical space.

3 More Results

First, we show some of the test images of real scenes dataset synthesised by
our method in Figure 7. The visual results demonstrate that our model could
learn reasonable representation for the real dynamic scenes and enable novel
view synthesis with fast optimization.
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Fig. 4. The Reconstructed Canonical space with different Losses.
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Fig. 5. Effects of Using Different Resolutions for the Deformation Grid.

Then, we present more results for the learned geometries in Fig. 8. Our
method can reconstruct accurate canonical geometry and render high-quality
images for different time steps. We notice that the reconstructed canonical ge-
ometry of ‘Bouncing Balls’ has some missing parts in the white plate. One of
the main reasons is that the background for this scene is white, and the plate
has a color similar to the background. The image reconstruction error for this
region is low even if the learned density of the plate is close to zero. Then, these
low-density regions might be filtered out by our empty space filtering strategy.
This problem can be easily alleviated by using a background with different color
or disabling the filtering strategy.

Finally, we compare the results rendered by the coarse stage and fine stage
in Fig. 9, and we show more results to compare our method with D-NeRF [1] in
Fig. 10.
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Fig. 6. Visualization of Feature Grid. We slice the feature grid along the axis to get

feature slices. Then we visualize the feature slices every three dimension as rgb images
after normalization. Best viewed in color and zoom in for details.
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Fig. 8. More Results for the Learned Geometry. We show examples of geometries
learned by our model. For each, we show rendered images and corresponding disparity
under two novel views and six time steps.
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Fig.9. Comparison of Results of Coarse and Fine Stage. Synthesized images
rendered by modules trained from coarse stage and fine stage. The images of coarse
stage module is relative over smoothed compared with images of fine stage module.

Best viewed in color and zoom in for details.
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Fig. 10. More Qualitative Comparison. Synthesized images on test set of the

dataset. For each scene, we show an image rendered at novel view, and followed by

zoom in of ground truth, our NDVG, and D-NeRF [1]. Best viewed in color and zoom
in for details.
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