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A Results of 5-fold Cross-validation

In the experiment section, we evaluate our APAUNet using 5-fold cross validation
on MSD-Liver and MSD-Pancreas, here we present the complete results in Tab. 1.
The mean results of our APAUNet on the Liver dataset are 95.56, 71.99 and 83.78
respectively, and the standard deviations are 0.35, 0.81 and 0.35 respectively.

Similarly, on the Pancreas dataset, our APAUNet achieves the mean results
of 82.29, 54.93 and 68.61 respectively and the standard deviations are 1.73, 1.64
and 1.63 respectively. The standard deviations are slightly higher than those on
the Liver dataset, since the target size of the Pancreas dataset is much smaller
than that of the Liver dataset. Overall, the results of experiments demonstrate
the effectiveness and stability of our APAUNet.

Table 1. The complete segmentation results of 5-fold validation on the Liver and
Pancreas Tumour datasets.

Method liver Pancreas
Organ Cancer Avg Organ Cancer Avg

fold-1 96.10 72.50 84.30 83.05 55.21 69.13
fold-2 96.23 71.45 83.84 80.16 53.20 66.68
fold-3 94.87 70.66 82.77 83.40 56.66 70.03
fold-4 95.48 72.66 84.07 81.88 54.30 68.09
fold-5 95.12 72.69 83.91 82.94 55.27 69.11
Mean 95.56 71.99 83.78 82.29 54.93 68.61
STD ±0.35 ±0.81 ±0.35 ±1.73 ±1.64 ±1.63

B Detailed Computational Analysis

Here we show the computational cost analysis in Tab. 2. The inference time
is measured by a sliding window inference with patch size of 96 on GPU. Our
APAUNet has a similar training GPU memory with HFA-Net/UNETR and a
similar inference GPU with UTNet/CoTr, and achieves the lowest inference time.

C Effect of Each Strategy

In this section, we conduct several ablation studies by adding our strategies
step by step. The results are shown in Tab. 3. It can be observed that all the
strategies are necessary for the final performance. Combining all the proposed
strategies, our model achieves the new state-of-the-art performance. In addition,
our projection strategy has lower memory consumption despite it needs replicate
the 3D fused features three times.
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Table 2. Computational analysis of our APAUNet and other methods. Parameters
(M), training/inference GPU consumption (G) and inference time (s).

Method Param.(M) Training GPU(G) Inference GPU(G) Inference time(s)
UNet3+ 94.67 30.37 14.33 39.65
HFA-Net 40.7 12.02 8.54 24.80
UTNet 35.26 9.72 6.01 18.16
UNETR 92.24 13.78 3.87 13.46

CoTr 41.86 8.69 6.91 21.77
APAUNet 76.94 11.74 6.42 13.36

Table 3. Ablation experiments under different settings. OP - orthogonal projection,
DH - dimension hybridization, MRF - multi-resolution fusion.

Settings OP DH MRF GPU (G) Liver Pancreas
Organ Cancer Avg Organ Cancer Avg

1 ✓ × × 11.75 87.42 63.88 75.65 75.40 46.28 60.84
2 × × ✓ 13.02 90.15 62.41 76.28 76.80 47.13 61.97
3 ✓ ✓ × 11.72 94.81 69.32 82.07 80.30 53.92 67.11
4 ✓ × ✓ 11.71 92.76 67.88 80.32 77.83 49.03 63.43

APAUNet ✓ ✓ ✓ 11.74 96.10 72.50 84.30 83.05 55.21 69.13

D Weighted Importance of Projection

As we mentioned in the main paper, adding learnable weights could lead to a
performance boost. In this part, we present the detailed results of the learnable
weights on the Liver and Pancreas datasets. Tab. 4 shows the weights learned
after the training process on Liver and Pancreas dataset, respectively. It can be
observed from the results that the weights of the shallow encoders (1-3) in all
directions are relatively balanced, while the encoders of deep level may selectively
emphasize a certain projection axis, e.g., 0.63 of Encoder-4 on axial -axis on the
Liver dataset and 0.46 of Encoder-4 on sagittal -axis on the Pancreas dataset.
We conjecture that the encoder path is mainly used for feature extraction and
analysis, thus the importance weight will not be particularly inclined to a certain
projection axis.

While on the decoder path, the phenomenons of importance selection are
more obvious. Most decoders will tend to choose one or two of the projection
dimensions, e.g., sagittal -axis of Decoder-2 and axial -axis of Decoder-3 on the
Liver dataset, axial -axis of Decoder-1 and Decoder-2 on the Pancreas dataset.
We analyze that the decoder path is used to synthesize multi-scale features to
obtain the segmentation prediction, thus it may highlight more salient features
and filter the redundant information.
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Table 4. The detailed results of learned importance weights.

Dataset Level Sagittal Axial Coronal

Liver

Encoder-1 0.28 0.37 0.35
Encoder-2 0.31 0.34 0.35
Encoder-3 0.31 0.30 0.38
Encoder-4 0.27 0.63 0.10
Encoder-5 0.20 0.39 0.39
Decoder-1 0.36 0.30 0.34
Decoder-2 0.70 0.16 0.14
Decoder-3 0.09 0.78 0.13
Decoder-4 0.30 0.42 0.28

Pancreas

Encoder-1 0.33 0.34 0.33
Encoder-2 0.22 0.38 0.40
Encoder-3 0.30 0.37 0.33
Encoder-4 0.46 0.24 0.30
Encoder-5 0.18 0.44 0.38
Decoder-1 0.17 0.52 0.31
Decoder-2 0.22 0.67 0.11
Decoder-3 0.31 0.18 0.51
Decoder-4 0.27 0.34 0.37

E More Visualization Results

In this part, we demonstrate more visualization results of our APAUNet on
MSD-Liver, MSD-Pancreas and BTCV in Fig. 1, Fig. 2 and Fig. 3.
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Fig. 1. More visualization results of our APAUNet and comparison methods on Liver.
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Fig. 2. More visualization results of our APAUNet and comparison methods on Pan-
creas.

Fig. 3. More visualization results of our APAUNet and comparison methods on BTCV.


