Supplementary Materials for Revisiting Image
Pyramid Structure for High Resolution Salient
Object Detection

Taehun Kim?![0000-0001-9322-9741] ' Kynhee Kim?, Joonyeong Lee!, Dongmin
Cha', Jiho Lee', and Daijin Kim!

'Dept. of CSE, Pohang University of Science and Technology (POSTECH), Korea
{taehoon1018, kunkim, joonyeonglee, cardongmin, jiholee,
dkim}@postech.ac.kr
https://github.com/plemeri/InSPyReNet.git

1 Method Details

1.1 Backbone Networks

In this section, we describe how the feature maps from the backbone network is
retrieved. Since we adopt two different types of backbone networks, we explain
the minor details of each model.

For Res2Net [1] backbone network, we use 26w x 8s setting. Because the main
difference between ResNet [2] and Res2Net is a building block, the overall ar-
chitecture is identical. So, to explain where we extract the feature maps from
the Res2Net backbone, we refer to the ResNet paper. The feature map for the
Stage-1 is extracted from convl, and for Stage-j, where 7 > 1, we extract
feature maps from the last layer which has a name of convj x (e.g., conv4_6 of
Res2Net50 for Stage-4).

For Swin Transformer [3], it is slightly different from conventional CNN-
based models in the fact that they divide an image into tokens. Unlike ResNet
(or Res2Net), there is a layer which works similar to the stem layer (conv_1), a
patch partition layer which generates a size of 4 x 4 patches and aggregates to
its spatial dimension for each embedding. The feature map for the Stage-1 is ex-
tracted from the patch partition layer, and for Stage-j, where j > 1, we extract
feature maps from the last layer of stage j'. Since Vision Transformers inter-
pret an image as a sequence of patches, we rearrange patches to a 2-dimensional
feature map for each stage.

Overall, the hierarchical structure is identical to each other, so we can easily
adopt Swin Transformer to other methods, so as we mention in the main paper,
we implement 5 SotA models, Chen et al. [1], F3Net [5], LDF [6], MINet [7]
and PA-KRN [8], and conduct experiments with Res2Net and Swin Transformer
backbones.

! Note that the term ‘stage 5’ is from [3].

https://github.com/plemeri/InSPyReNet.git

h,w : height & width for train s :output stride N : number of contexts
7/ i

S H,W : height & width for inference () : matrix multiplication € : number of channel
eg b 4! concat -
L
Saliency Map Foreground Background Uncertainty N=3
Map Map Map

H W
Sh) Su x€ Rs*s*¢

"Nl &
-~ o o3 ///// ' ﬁ><ﬂ>((4
Saliency Map Foreground Background Uncertainty _ CORCat ||||I x € Rs™s
} : —_—
~Uy Nes 7
B g oW
1) —B—-aw—o—mm yest
, n y feRVXC
w c

2 W
5

€ Rs

ke
%)

Stage-2

, Stage-1

Stage-0
&

Laplacian
Saliency Map

H
ce Rs*5*V

(a) Configuration of context map ¢ (b) Illustration of SICA

Fig. 1. Context map configuration (a) and details of SICA (b).

1.2 Scale Invariant Context Attention

In this section, we provide more details of SICA. Since the overall computation
of SICA is similar to the OCRNet, we have to obtain soft object regions (or,
context maps), which is a coarse segmentation maps corresponds to each class.
However, salient object detection is a class-agnostic segmentation task, so we
only have a salient region, and its inverse area. UACANet [9] first proposed un-
certainty area to provide additional context maps, which are often related to the
object boundary region. We notice that the saliency map has an object contex-
tual information, but the Laplacian saliency map also has a boundary context.
Therefore, we design SICA with additional context clues from the Laplacian
saliency map.

However, while UACA set the threshold value as 0.5, we argue that a fixed
threshold does not guarantee the optimal saliency map. F-measure based loss
(FLoss) [10] claims that the optimal threshold obtained with an exhaustive
search on the test dataset is impractical for real-world application. While they
still used exhaustive search after applying FLoss to find the optimal threshold,
it is still clear that 0.5 is not the optimal threshold for most cases. We also claim
that the threshold needs to be adaptive for extracting context information, and
needs to be different for each stage because the saliency prediction from each
stage may have different statistics due to the scale differences. So, we choose to
learn threshold values for each stage and use them to extract meaningful context
regions. We illustrate the context map configuration details in Fig. 1a.

First, we compute context maps as follows,

Sf = maX(S - 93,0), Sb = max(&s - S, O),

1
Su = 95 — abs(S — 95), ()

Uy = max(U — 6y,0), Uy = max(0y — U, 0), (2)

where we denote trainable threshold 6g and 6y for input saliency map S and
Laplacian saliency map U, respectively, and initialize them with 0.5. S, S, and
S, are foreground, background, and uncertainty context maps from S. Likewise,

Us and U, are foreground and background context map from U. Note that

because there is no Laplacian saliency map in Stage-3, there are no Uy and U,

for SICA in Stage-2. Then, we aggregate context maps for simplicity as follows,
) [S¥, Sby Suls if Stage-2. 3)
N [St, S, Su,Us, Uy, otherwise.

c consists of three or five context maps depending on its stage (see Fig. 1a).

Then, the input feature map from the encoder and the saliency map from
the decoder are resized to the size from the training session. We denote the size
of the input image as H x W, the output stride of the current stage as s, and the
number of channels and context maps as C' and N respectively. So, the input
feature map x € R *%%C and input context maps ¢ € RE 5 XN are resized
according to the shape from training time h x w with bi-linear interpolation.
The resized feature map x’ € R$*%¥xC and context map ¢’ € R X ¥XN is used
to compute object region representation f € RV,

fr, = Z Ck(x7y)x('ray)7 (4)

(z,y)€T

where 7 is a lattice domain of S and U. Since the matrix multiplication is done
on the spatial dimension, f has a same shape with or without resize, yet has
better representation ability.

Subsequently, we compute the attention score w by computing the similarity
score between f and x(z,y),

oxp(Tu(x(2,) T Te(£))
S exp(Tu(x(2,)) T Te(£))

where Tx(+) and T¢(-) denotes transformation functions implemented by consec-
utive convolution layer, batch normalization, and ReLU activation. Lastly, with
context representation vector f and attention map w as a weighting factor, we
compute a context enhanced feature map y as follows,

()

wk(xvy) =

K
y(z,y) = Ty wilx,y)Te (£)), (6)

=1

where Ty (-) and Tp(-) are transformation functions and K = 3 if Stage-2,
otherwise, K =5 (see Eq. (3) and Fig. 1a). The input and output feature maps
of SICA are concatenated and forwarded to a simple decoder with convolution
blocks to predict the Laplacian saliency map (Fig. 1b).

1.3 Implementation of Image Pyramid Operations.

We implement EXPAND and REDUCE operations [11] in Pytorch [12]. We
provide a source code of both operations in Algorithm 1. We obtain the 1D

Algorithm 1 PyTorch pseudocode of image pyramid operations.

Module for image pyramid operations (EXPAND, REDUCE)
ksize: kernel size for Gaussian filter
sigma: standard deviation for Gaussian filter
channels: number of channels for pyramid operation
(For saliency map, set 1. For RGB image, set 3.)
class ImagePyramid:
def __init__(self, ksize=7, sigma=1, channels=1):

self .ksize = ksize

self.sigma = sigma

self.channels = channels

k = cv2.getGaussianKernel (ksize, sigma)
k = np.outer(k, k)
k = torch.tensor(k).float ()
self .kernel = k.repeat(channels, 1, 1, 1)
call to use GPU
def cuda(self):
self.kernel = self.kernel.cuda()
return self

EXPAND operation
def expand(self, x):
z torch.zeros_like (x)

x = torch.cat([x, z, z, z], dim=1)

x = F.pixel_shuffle(x, 2)

x = F.pad(x, (self.ksize // 2,) * 4, mode=’reflect’)
x = F.conv2d(x, self.kernel * 4, groups=self.channels)
return x

REDUCE operation
def reduce(self, x):
x = F.pad(x, (self.ksize // 2,) * 4, mode=’reflect’)

x = F.conv2d(x, self.kernel, groups=self.channels)
return x[:, :, ::2, ::2]
Gaussian kernel with cv2.getGaussianKernel from OpenCV [13], and use outer

operation to generate the 2D Gaussian kernel. For EXPAND operation, we use
pixel-shuffle operation from PyTorch, and we used even indices for REDUCE
operation.

For pyramid blending, we use cv2.getStructuringElement function with
cv2.MORPH_ELIPSE argument for dilation and erosion. Also, we use dilation and
erosion functions from kornia.morphology [14]. The kernel size for dilation and
erosion is set to 5, 9, and 17 for Stage-2, Stage-1, and Stage-0 respectively.

2 Experiments

2.1 Ablation Studies

Gaussian Filter in Image Pyramid. Even the kernel size k£ and the standard
deviation o of the Gaussian kernel g for image pyramid operation is usually set
to 5 and 1 respectively, we compare our image pyramid operations with different
kernel sizes and standard deviations. Results in Tab. 1 shows that when the o
gets larger, the overall performance decreases. Furthermore, when k is 7 and o
is set to 1, we obtain the best result among different settings.

Table 1. Left: Ablation study of kernel size k£ and the standard deviation o of the
Gaussian kernel G(k, o) for image pyramid operations of InSPyReNet (Res2Net50)
on DUTS-TE and DUT-OMRON. Right: Ablation study of training strategies for
InSPyReNet (SwinB) on DAVIS-S and HRSOD-TE. pred and gt denotes the image
pyramid structure applied in prediction and ground truth respectively. S.G. denotes
Stop-Gradient. £, denotes pyramidal consistency loss.

o DUTS-TE DUT-OMRON ored gt S.G. L. DAVIS-S HRSOD-TE

Sa Fmax MAE| S. Fumax MAE 982 Erel g 4 Frax T MAEL mBAT| Sy 1 Fuax T MAE| mBA{
5 1]0.902 0.890 0.037]0.839 0.783 0.059 0.935 0.937 0.016 0.693 | 0.931 0.933 0.023 0.682
5 3[0.897 0.882 0.041|0.837 0.779 0.059 v 0.937 0.939 0.014 0.714 [0.934 0.937 0.019 0.712
5 5[0.888 0.876 0.042]0.834 0.770 0.060 v 0.938 0.935 0.016 0.699 | 0.932 0.931 0.022 0.695
7 1 0.904 0.892 0.035|0.845 0.791 0.059 Vv 0.945 0942 0.014 0.719 | 0.944 0.942 0.017 0.715
7 3]0.897 0.884 0.037 |0.841 0.777 0.058 v VoY 0.955 0.959 0.010 0.727 | 0.947 0.948 0.018 0.729
7 50888 0.878 0.038]0.833 0.774 0.061 vV Vv v / 0962 0959 0.009 0.743|0.952 0.949 0.016 0.738

Training Strategies. To demonstrate the effect of our training strategies such
as supervision under image pyramid structure (pred and gt), pyramidal consis-
tency loss (£,.), stop-gradient(S.G.), we train InSPyReNet with different set-
tings and evaluate on HR benchmarks. Results in Tab. 1 shows that without
image pyramid structure on prediction branch (pred) shows unsatisfactory re-
sults in terms of mBA. This is because while other strategies (gt, S.G., L) are
considered as supervision strategies, pred is embedded as a model architecture.
With other strategies, we can notice that S.G. provides some improvements in
terms of SOD metrics, which means it gives more stable results for pyramid
blending. Also, £, shows extra improvements for mBA, which means it ensures
the image pyramid structure in a sense of high-frequency residual information
of Laplacian image.

w/ SICA w/ SICA
w/o pyramid blending w/ pyramid blending

Image w/o SICA

Fig. 2. Visual demonstration for ablation study of SICA. The sample is taken from
AIM-500 [15].

SICA. As shown in Fig. 2, methods without SICA generates unpleasant arti-
facts on the boundary areas, which can be interpreted as the failure of Laplacian
images of the saliency map from SICA. On the other hand, InSPyReNet with
SICA shows detailed predictions, but without pyramid blending, it misses some
major object parts. With SICA and pyramid blending shows best results, show-

ing less failure in terms of both capturing the whole salient object body parts
and high-frequency object boundary details.

Table 2. Quantitative results of applying pyramid blending for previous pyramid-based
SOD method (Chen et al. [1]) on three HR and two LR benchmarks. P.B. denotes
pyramid blending. 1 indicates larger the better, and | indicates smaller the better.

Algorith DAVIS-S HRSOD-TE UHRSD-TE
SOTIAMS | 6 4 Foax T MAEJ mBAT Sa T Fmax T MAE] mBA?T Sa 1T Fmax T MAE] mBAT
w /o pyramid blending
Chen et al. [1][0.934 0.925 0.018 0.697 0.915 0.907 0.032 0.684 0.915 0.919 0.034 0.712
Ours 0.953 0.949 0.013 0.705 0.945 0.941 0.019 0.700 0.927 0.932 0.032 0.724

w/ pyramid blending

0.909 0.891 0.033 0.590 (-13.7%)
0.952 0.955 0.015 0.732 ()

0.903 0.906 0.042 0.590 (-17.1%)

Chen el al. [1]]0.916 0.893 0.023 0.583 (-16.4%)
0.932 0.938 0.029 0.741 ()

Ours 0.962 0.958 0.009 0.732 ()

. RAS (SwinB)
RAS (SwinB) e e InSPyReNet

Fig. 3. Visual comparison of applying pyramid blending for previous pyramid-based
SOD method (Chen et al.) and InSPyReNet. Samples are taken from UHRSD [16].
Best viewed by zooming in.

2.2 Applying pyramid blending to previous Image Pyramid based
Model

It is easy to apply pyramid blending if the base model outputs image pyramid of
saliency map same as InSPyReNet. We choose Chen et al. [1] since it has a great
reproducibility and has a pyramid structure. We trained Chen et al. with same
backbone (SwinB) for fair comparison. As shown in Tab. 2, pyramid blending
for Chen et al. worsen results especially for the mBA measure which is a major
reason for pyramid blending. We also provide some qualitative results of Chen et
al. with pyramid blending in Fig. 3, which shows some clear degradation. Thus,
without a well-defined image pyramid based model designed for image blending,
it cannot be used for HR prediction.

2.3 Training InSPyReNet with HR datasets

To demonstrate the potential of our method, we utilize HR datasets (HRSOD-
TR, UHRSD-TR) alongside DUTS-TR for our training dataset. First, we use HR,
datasets for training with fixed LR scale (i.e., 384 x 384), meaning that we do
not use HR annotations and regard them as another LR datasets. Results show
that our method well generalizes to the HR prediction with extra LR datasets
(Tab. 3). Note that we do not include this experiments for our final results since
even we resize HR datasets into LR scale, annotations are still remains high-
quality thanks to the interpolation method, so it is not fair to claim that we are
using only LR datasets.

Table 3. Quantitative results on three HR and two LR benchmarks for training with
extra HR datasets. D: DUTS-TR, H: HRSOD-TR, U: UHRSD-TR. The best results for
each metric are denoted as bold. 1 indicates larger the better, and | indicates smaller
the better. * indicates that the dataset is resized into LR scale.

HR benchmarks LR benchmarks
DAVIS-S HRSOD-TE UHRSD-TE DUTS-TE DUT-OMRON

So 1 Fmax T MAE| mBAT| S0 1 Fuax T MAE| mBAT| So 1 Fuax T MAE] mBAT| Sa 1 Fuax T MAEL| Sa1 Fuax T MAEL

PGNet [10]
HU [0954 0956 0.010 0.730 [0.938 0.930 0.020 0.727 [0.935_0.930 0.026_0.765] 0.86] 0.828 0.038 | 0.790_0.727__0.059
Ours Trained with LR scale (i.c., 384 x 384)
D, H" [0.963 0.966 0.008 0.744 | 0.958 0.958 0.014 0.752 | 0.037 0.945 0.027 0.754 |0.936 0.934 0.022]0.878 0.836 0.044
H*U® 0963 0967 0008 0.732|0.947 0945 0.020 0.741 [0.949 0.956 0.020 0.765 | 0.925 0.922 0.028 | 0.874 0.835 0.048
DH",U*[0.970 0.972 0.007 0.743 | 0.951 0.951 0.018 0.748 | 0.950 0.957 0.020 0.767 | 0.931 0.928 0.024 |0.880 0.837 0.042

Ours Trained with HR scale (i.e., 1024 x 1024)
DH [0.972 0.976 0.007 0.770[0.960 0.957 0.014 0.766 | 0.936 0.938 0.028 0.785 [0.934 0.927 0.023 | 0.859 0.799 0.049
H,U]0.973 0.977 0.007 0.770]0.956 0.956 0.018 0.771]0.953 0.957 0.020 0.812|0.936 0.932 0.024 | 0.872 0.823 0.046

Train
Datasets

Moreover, to understand the potential of InSPyReNet as is, we trained our
method with HR datasets in HR scale. In this case, we do not deploy pyra-
mid blending since we are not training in LR scale, and hence there is no LR
pyramid to merge with. For HR training, we follow the training size from [16]
(i.e., 1024 x 1024). As shown in Tab. 3, our method shows great results with
fully supervised manner for HR prediction, even we do not specifically design In-
SPyReNet for HR prediction without pyramid blending. This experiment shows
that with simple image pyramid structure from our method can further be uti-
lized for HR prediction with HR datasets. Overall, results trained with HR scale
shows better performance especially for mBA, but slightly worse on LR bench-
marks than results trained on LR scale. From this experiment, although the per-
formance on LR and HR benchmarks tends to prefer the corresponding training
scale, InSPyReNet well adopts to each other.

We also provide qualitative results in Fig. 4. Compared to the same setting
of PGNet [16] trained with HRSOD-TR and UHRSD-TR, our method substan-
tially outperforms the quality of high-frequency details of saliency maps. More-
over, we can notice that without UHRSD-TR whether we train with LR or HR
scale, we cannot expect good results for complex scenes (first and third sam-
ples in Fig. 4). This is because while DUTS-TR and HRSOD-TR are in favor of
“centered” objects (e.g., our methods without UHRSD-TR in the first sample),

Illll'l!, |

LY
“'ll

D'!

O

EANSN N e e a ra

!

'

Fig. 4. Visual comparison of PGNet [16] (H, U) and our methods trained with HR
datasets. Results are ordered as image, ground truth, PGNet, and Ours(D, H*) in the
first row, and Ours(H*, U), Ours(D, H*, U*), Ours(D, H), Ours(H, U) in the second
row from left to right for each sample. Best viewed by zooming in.

while UHRSD-TR more focus on complex details which usually cover the whole
image like thrid sample in Fig. 4.

Table 4. Quantitative results of IS-Net and our method trained with DIS5K. We
trained our model with LR scale (e.g., 384 x 384) and HR scale (e.g., 1024 x 1024).

DIS-TE4
Sa 1 Fuax T HCE, | mBAt

DIS-VD DIS-TE1 DIS-TE2 DIS-TE3
Sat Fuax T HCE, | mBAT| Sat Fuux t HCE, | mBAT| Sat Fuux t HCE, | mBAT| Sat Fuwt HCE, | mBAT
TS-Net [1]

0813 07911116 0.741 [0787 0.740___149__ 0.736 [0.823_0.799 340 0.740 | 0.836_0.830 67 _ 0.746 | 0.830 0.827 2888 0.743
Ours Trained with LR scale (i.e., 384 x 384)

0.887_0.876__ 005 0.765 [0.862_0.834___148__ 0.745 [0.893_0.581 _ 316__ 0.7 [0002 0.04 _ 582 0.774 | 0.891_0.802__ 2243 0.779
QOurs Trained with HR scale (i.e., 1024 x 1024)

0.900 0.889 904 0.800‘&873 0.845 110 0.797‘0305 0.894 255 0.803‘0.918 0.919 522 0.808‘(}.905 0.905 2336 0.799

2.4 Dichotomous Image Segmentation (DIS5K)

We trained our model and compare to the baseline model of DIS5K, IS-Net [17]
which is currently shows SotA performance. To demonstrate the potential of our
method which can be trained with LR scale (e.g., 384 x 384) to boost up training
time and reduce required resources, we trained our model with both LR and
HR scales. In Tab. 4, our method shows regardless of training scale shows great
performance compared to the baseline model, IS-Net [17]. Moreover, in Fig. 5, we
provide qualitative results to demonstrate that our model can produce detailed
output regardless of the training scale.

3 Discussion

Table 5. Comparison of boundary quality measures (BDE [18], mBA [19], BIoU [20])
with HR SOD methods. D: DUTS-TR, H: HRSOD-TR, U: UHRSD-TR. Three best
results in order except our method are colored as red, blue, and

Algorithms | i DAVIS-S HRSOD-TE
Datasets| BDE mBA BloU| BDE mBA BloU
Zeng et al. [21]| D, H [44.359 0.618 0.662[88.017 0.623 0.659
Tang et al. [22]| D, H [14.266 0.716 46.495 0.744
PGNet [16] D |34.957 0.769
PGNet [16] D, H 0.716 0.790|45.292 0.714 0.772
PGNet [16] H, U |12.725 0.730 0.814|57.147 0.727 0.781

Ours \ D - 0.743 0.850 - 0.738 0.826

10

SENC) 8

N
|)“ s .

"

InSPyReNet InSPyReNet

Image IS-Net [57] (Trained with LR scale) (Trained with HR scale)
Fig. 5. Visual comparison of IS-Net [17] and our method trained with DIS5K. We

trained our model with both LR and HR scales each. Best viewed by zooming in.

11

3.1 Selection of Boundary Metrics

Although many SOD methods dedicated to the HR benchmarks [16,21,22] use
Boundary Displacement Error (BDE) [18], we suggest to use mean boundary
accuracy (mBA) [19] instead for following reasons. First, it is substantially out-
dated metric for measuring boundary quality since BDE was proposed in 2002,
when image segmentation methods highly depended on low-level signal analysis
of the given image. Now we’re in the era of deep learning. We can easily generate
more accurate, high-quality segmentation results, and hence need to use metrics
like mBA or Boundary IoU (BIoU) [20]. Second, we could not find any of offi-
cial, non-official implementation related to the BDE, and the only source that we
found is unable to access. While, mBA and BloU have official implementations.
We report mBA in the main paper because it does not require modification for
SOD since [19] also works for a binary segmentation map like SOD, while BloU
requires major modification since the official code only provides BloU embed-
ded in the evaluation codes for Average Precision and Panoptic Quality. Third,
the evaluation results with BDE shows inconsistent while mBA and BloU shows
consistent results as shown in Tab. 5. On the other hand, mBA and BloU shows
consistent results across different HR methods. Thus, we use mBA for boundary
metric.

/N

rond Truth Prediction

Fig. 6. Visual illustration for the failure case (first row: global context failure, second
row: local detail failure) of InSPyReNet. Best viewed by zooming in.

3.2 Potential Vulnerability of InSPyReNet

While we show that our InSPyReNet can produce high-quality results in HR
benchmarks, we can notice that there are some failure cases in terms of two
different aspects. First, as shown in the first row from Fig. 6, if the LR branch

12

in pyramid blending fails to predict the saliency object, it suffers from global
context failure. Second, even if the LR branch in pyramid blending successfully
predict the saliency branch, we still have a chance to fail reconstructing local
details when the HR branch fails to generate high-frequency details. In the second
row from Fig. 6, the LR branch detected the body part of the bicycle, but from
HR branch, it fails to predict spokes of the wheel and details of the front basket.

References

10.

11.

12.

13.

14.

15.

16.

Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2net:
A new multi-scale backbone architecture. IEEE TPAMI 43 (2021) 652-662 1

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. (2016) 770-778 1

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030 (2021) 1

Chen, S., Tan, X., Wang, B., Hu, X.: Reverse attention for salient object detection.
In: ECCV. (2018) 234-250 1, 6

Wei, J., Wang, S., Huang, Q.: F®net: Fusion, feedback and focus for salient object
detection. In: AAAIL Volume 34. (2020) 1232112328 1

Wei, J., Wang, S., Wu, Z., Su, C., Huang, Q., Tian, Q.: Label decoupling framework
for salient object detection. In: CVPR. (2020) 13025-13034 1

Pang, Y., Zhao, X., Zhang, L., Lu, H.: Multi-scale interactive network for salient
object detection. In: CVPR. (2020) 9413-9422 1

Xu, B., Liang, H., Liang, R., Chen, P.: Locate globally, segment locally: A pro-
gressive architecture with knowledge review network for salient object detection.
In: AAAL (2021) 3004-3012 1

Kim, T., Lee, H., Kim, D.: Uacanet: Uncertainty augmented context attention for
polyp segmentation. In: ACM MM. (2021) 2167-2175 2

Zhao, K., Gao, S., Wang, W., Cheng, M.M.: Optimizing the f-measure for
threshold-free salient object detection. In: ICCV. (2019) 8849-8857 2

Burt, P., Adelson, E.: The laplacian pyramid as a compact image code. IEEE
Transactions on Communications 31 (1983) 532-540 3

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T,
Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019) 3

Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
4

Riba, E., Mishkin, D., Ponsa, D., Rublee, E., Bradski, G.: Kornia: an open
source differentiable computer vision library for pytorch. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. (2020) 3674—
3683 4

Li, J., Zhang, J., Tao, D.: Deep automatic natural image matting. In: IJCALIL
(2021) 800-806 5

Xie, C., Xia, C., Ma, M., Zhao, Z., Chen, X., Li, J.: Pyramid grafting network
for one-stage high resolution saliency detection. arXiv preprint arXiv:2204.05041
(2022) 6,7, 8,9, 11

17.

18.

19.

20.

21.

22.

13

Qin, X., Dai, H., Hu, X., Fan, D.P., Shao, L., Van Gool, L.: Highly accurate
dichotomous image segmentation. In: ECCV, Springer (2022) 38-56 9, 10
Freixenet, J., Munoz, X., Raba, D., Marti, J., Cufi, X.: Yet another survey on
image segmentation: Region and boundary information integration. In: ECCV,
Springer (2002) 408-422 9, 11

Cheng, H.K., Chung, J., Tai, Y.W., Tang, C.K.: Cascadepsp: Toward class-agnostic
and very high-resolution segmentation via global and local refinement. In: CVPR.
(2020) 8890-8899 9, 11

Cheng, B., Girshick, R., Dollar, P., Berg, A.C., Kirillov, A.: Boundary iou: Improv-
ing object-centric image segmentation evaluation. In: CVPR. (2021) 15334-15342
9, 11

Zeng, Y., Zhang, P., Zhang, J., Lin, Z., Lu, H.: Towards high-resolution salient
object detection. In: ICCV. (2019) 7234-7243 9, 11

Tang, L., Li, B., Zhong, Y., Ding, S., Song, M.: Disentangled high quality salient
object detection. In: ICCV. (2021) 3580-3590 9, 11

	Supplementary Materials for Revisiting Image Pyramid Structure for High Resolution Salient Object Detection

