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This supplementary material provides additional visual results that can-
not be included in the paper submission due to space limitations. In the first
section, we show visual results for sparse predictions of our method on Se-
manticKITTI dataset [1]. In the second section, we display more visual results
on SemanticKITTI dataset, including comparisons with the results of previous
methods. Moreover, a demonstration video is included in the same zip file as the
supplementary material.
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Fig. 1. Qualitative results generated on the SemanticKITTI validation set. From top
to bottom in each column, we display the input point cloud, the ground truth, the
prediction from our method, respectively.
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1 Visual Results for Sparse Predictions

In the main text, we have shown dense semantic prediction results. To fully
demonstrate the effectiveness of our model, we present sparse semantic prediction
results here.

Fig. 2. Qualitative results generated on the SemanticKITTI validation set. From top
to bottom in each column, we display the input point cloud, the 2D occupancy map,
the ground truth, the prediction from Bieder et al. [2], PillarSeg [3] and our method,
respectively. The unobserved areas were erased using the observability map as in [2]

2 Addition Visual Results on SemanticKITTI

Here we show two groups of comparisons with the results for Bieder et al. [2],
PillarSeg [3], MASS [4] and our method on SemanticKITTI. For a fair compar-
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Fig. 3. Qualitative results generated on the SemanticKITTI [1] validation set. From
top to bottom in each column, we display the input point cloud, the 2D occupancy
map, the ground truth, the prediction from Bieder et al. [2], PillarSeg [3], MASS [4]
and our method, respectively. The unobserved areas were erased using the observability
map as in [2]

ison, the unobservable regions in our predictions are also filtered out using the
observability map as in [2].
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As shown in Fig 2 and Fig 3, our method is able to produce very similar
results to the ground truth for challenging urban scenes. Compared with other
methods, our method achieves a higher level of accuracy, especially for the pre-
diction of small volume objects.
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