
Supplementary Material for
Learning and Transforming General
Representations to Break Down
Stability-Plasticity Dilemma

Kengo Murata, Seiya Ito, and Kouzou Ohara

Aoyama Gakuin University, Kanagawa, Japan

Fig. 1. The overview of the network structure of our framework.

A Details of Our Framework

First, we describe the overall network structure of our framework. As shown in
Fig. 1, our network is composed of a feature extractor, projector, predictor, and
classifier. The feature extractor outputs two kinds of feature vectors from an
image: one is fed into the projector and predictor to calculate the self-supervised
loss as shown in Fig. 1 with blue arrows, and the other one propagates along
the classifier to calculate the other loss terms as shown in Fig. 1 with red ar-
rows. The feature extractor is composed of convolutional blocks and attention
modules. We modify batch normalization layers in convolutional blocks to deal
with different batch statistics. More specifically, our batch normalization layers
separately memorize the statistics of three types of intermediate feature vectors:
vectors through convolutional blocks, vectors to which attention mechanism ap-
plies, and vectors derived from an image used for self-supervised learning.

Next, we summarize the learning process of our framework in Algorithm 1.
The overall process is roughly divided into five steps. First, images are augmented
through complex data augmentation (line 11). Second, the self-supervised loss is
calculated from the augmented images through the feature extractor, projector,
and predictor (lines 13-17). Third, the loss term for classification is calculated
from the images to which simple data augmentation was applied (lines 19-26).
Forth, the other losses are calculated if the model has already learned at least
one task until then (lines 29-33). Finally, we backpropagate the total loss to all

2 K. Murata et al.

Algorithm 1 Pseudocode of the learning process in our framework, PyTorch-
like

1 # f: the current feature extractor
2 # f_pre: the previous feature extractor
3 # g: classifier
4 # proj: projector
5 # pred: predictor
6 # t: task index
7 # alpha: hyperparameter
8 # beta_cls_t, beta_kdl_t: scalar values
9

10 for x, y in loader: # load images x and labels y
11 x1, x2 = aug_c(x), aug_c(x) # complex data augmentation
12 # get feature vectors through the feature extractor without attention
13 f1, f2 = f(x1, attn=False), f(x2, attn=False)
14 p1, p2 = proj(f1), proj(f2) # get projected vectors
15 q1, q2 = pred(p1), pred(p2) # get predicted vectors
16 # calculate the self-supervised loss
17 L = (1 - alpha) * L_ssl(p1, p2, q1, q2)
18
19 x_cls = aug_s(x) # simple data augmentation
20 # get feature vectors and source vectors through the feature extractor
21 # with attention
22 f_cls, zs = f(x_cls, attn=True)
23 # get predicted class distributions
24 y_hat = g(f_cls)
25 # calculate the loss term for classification
26 L += alpha * L_cls(y_hat, y)
27
28 # case when training for the incremental tasks
29 if t > 1:
30 # get the previous feature vectors and source vectors
31 f_cls_pre, zs_pre = f_pre(x_cls, attn=True)
32 # calculate the other loss terms and derive the total loss
33 L = beta_cls_t * L + beta_kdl_t * (L_kdl + L_attn(zs, zs_pre)) +

L_other
34
35 L.backward() # back-propagate
36 for block in f.attn_modules(): # get attention modules
37 for param in block.parameters():
38 param.grad *= 1.0 / alpha
39 for param in g.parameters():
40 param.grad *= 1.0 / alpha
41 update(f, h, proj, pred) # SGD update

the parameters, and update them after multiplying the propagated gradient of
the parameters in our attention modules and the classifier (lines 35-41). The
multiplication is intended to deal with the decline of the gradient norm caused
by multiplication between cross-entropy loss and α. α is a hyperparameter that
controls the balance between the self-supervised loss and cross-entropy loss, and
used at lines 17 and 26 in Algorithm 1.

B Details of Baselines

In this section, we first describe the details of the learning procedures of baseline
methods, including Co2L [2] that is the contrastive learning method we adopted.
Then, we explain the motivation to choose the baseline methods.

Learning and Transforming General Representations 3

B.1 Learning Procedures

Essentially, the loss functions of the baselines for learning the t-th task are
summarized as follows:

Lkd = βcls
t Lcls + βkdl

t Lkdl + Lother , (1)

where Lcls, Lkdl, and Lother denote the loss terms for classification, knowledge
distillation, and the other purposes, respectively. In addition, βcls

t and βkdl
t are

the scalar values that control the impact of each loss term depending on the
number of classes the model learned. The methods employing knowledge dis-
tillation involve two models. We refer to the model that is being updated for
the current t-th task as the current model, while the one that has already been
updated for the (t− 1)-th task as the previous model. Each model has a feature
extractor and a classifier, which we call the current feature extractor ft, the cur-
rent classifier gt, the previous feature extractor ft−1, and the previous classifier
gt−1, respectively.

IL-Baseline. IL-Baseline [12] implements the loss term Lcls as a cross-entropy
loss and the loss term Lkdl as the original knowledge distillation loss [9]. Formally,
for a training image x, its knowledge distillation loss is defined as:

Lbase
kdl = LCE

(
σ

(
(gt ◦ ft)(x)

T

)
, σ

(
(gt−1 ◦ ft−1)(x)

T

))
, (2)

where LCE and σ denote the cross-entropy loss and the softmax function, re-
spectively. In addition, T is a hyperparameter called temperature, which we set
to 2 in our experiments. To balance the impact of the cross-entropy loss and the
knowledge distillation loss, IL-Baseline sets βcls

t and βkdl
t as follows:

βcls
t = 1−

∑t−1
i=1 |Yi|∑t
i=1 |Yi|

, (3)

βkdl
t =

∑t−1
i=1 |Yi|∑t
i=1 |Yi|

, (4)

where Yi is the set of labels corresponding to the i-th task.

UCIR. UCIR [10] incorporates three components: cosine normalization, less-
forget constraint, and inter-class separation. First, cosine normalization works
on the calculation of a classifier, which includes the dot product between the
output vector of a feature extractor and the weight vectors on the classifier.
More precisely, cosine normalization adds the l2 normalization of the feature
vector and the weight vectors before calculating the dot product to deal with the
biased prediction problem mentioned in our main paper. UCIR uses the output
of the classifier to calculate the loss term Lcls, which is implemented as the

4 K. Murata et al.

cross-entropy loss. Second, the less-forget constraint is realized by introducing
the following loss term Lucir

kdl into the loss function as the implementation of Lkdl:

Lucir
kdl = λflat

kdl · Dcos(ft(x), ft−1(x)), (5)

where Dcos denotes a cosine distance between its arguments, and λflat
kdl is the

hyperparameter that controls the impact of this loss term. In addition, UCIR sets

βkdl
t as

√
(
∑t

i=1 |Yi|)/|Yt|, while setting βcls
t to 1. Third, inter-class separation is

composed of the margin ranking loss that encourages the current model to learn
well-separated features useful for distinguishing the classes in the past tasks from
the ones in the current task. Formally, for any exemplar instance (xmem, ymem),
the margin ranking loss Lucir

other is computed as:

Lucir
other = λucir

other

K∑
k=1

max(m+Dcos(θ
ymem , ft(xmem))−Dcos(θ

k, ft(xmem)), 0),

(6)

where m is the margin threshold, and λucir
other is the hyperparameter controlling

the impact of this loss term. θk is a weight vector for the classes Yt in the
classifier that is the k-th similar to ft(x) in terms of cosine similarity. We only
consider the top-K weight vectors in that similarity ranking and set the value
of K to 2 in our experiments following the original paper [10].

PODNet. PODNet [6] introduces a novel classifier called a local similarity
classifier and some constraints on the intermediate feature vectors. In the local
similarity classifier, there are V weight vectors for each class, and the weighted
average cosine similarity between each weight vector and the output vector of
the feature extractor is the final output of the classifier. Formally, the calculation
of the current local similarity classifier for a class y′ is defined as:

gt(zt)
y′

=

V∑
v=1

sy
′,v

t (θy
′,v

t · zt), (7)

sy
′,v

t =
exp(θy

′,v
t · zt)∑V

i=1 exp(θ
y′,i
t · zt)

, (8)

where θy
′,v

t is the v-th weight vector for class y′, and zt denotes the output
vector of the current feature extractor ft from an image x. We set the number
of weight vectors V to 10 in our experiments following the original paper [6].
With the calculated scores gt(zt)

y′
of a training instance (x, y), the loss term Lcls

implemented based on the NCA loss [14] is calculated as follows:

Lpod
cls =

[
− log

exp(η(gt(zt)
y − δ))∑

i ̸=y exp(ηgt(zt)
i)

]
+

, (9)

Learning and Transforming General Representations 5

where [·]+ denotes a hinge function, δ is the hyperparameter called a margin,
and η is the additional learnable parameter. We set the value of δ to 0.6 in our
experiments following the original paper [6]. PODNet realizes the constraints on
the intermediate feature vectors by implementing the loss term Lkdl as follows:

Lpod
kdl = Lucir

kdl + λspatial
kdl Lspatial

kdl , (10)

Lspatial
kdl =

1

S

S∑
s=1

Lwidth
kdl (hs

t , h
s
t−1) + Lheight

kdl (hs
t , h

s
t−1) , (11)

Lwidth
kdl (hs

t , h
s
t−1) =

C∑
c=1

H∑
h=1

Dcos(

W∑
w=1

hs,c,w,h
t ,

W∑
w=1

hs,c,w,h
t−1) , (12)

Lheight
kdl (hs

t , h
s
t−1) =

C∑
c=1

W∑
w=1

Dcos(

H∑
h=1

hs,c,w,h
t ,

H∑
h=1

hs,c,w,h
t−1) , (13)

where λspatial
kdl is the hyperparameter that controls the impact of Lspatial

kdl , S is the
total number of the intermediate feature vectors on which constraints are im-
posed, and hs

t denotes the s-th constrained intermediate feature vectors derived

from the current feature extractor ft. In addition, hs,c,w,h
t denotes the element

of hs
t , where c stands for the channel and w × h for the column and row of

the spatial coordinates. C, W , and H denote the number of dimensions in each
coordinate.

BSCE. BSCE [12] has the same learning procedure as IL-Baseline [12] except
for implementing Lcls as the balanced softmax cross-entropy loss. Formally, for
a training sample (x, y), the balanced softmax cross-entropy loss is defined as:

Lbsce
cls = − log

Ny exp((gt ◦ ft)(x)y)∑
j∈

⋃t
k=1 Yk

Nj exp((gt ◦ ft)(x)j)
, (14)

where Ny denotes the number of samples belonging to the class y in the training
set, including memorized exemplars, and (gt ◦ ft)(x)y is the output score for the
class y.

Co2L. Co2L [2] employs the asymmetric supervised contrastive loss as Lcls and
instance-wise relation distillation as Lkdl. Let the incoming batch of B samples
be B = {(xi, yi)}Bi=1 and the projected vectors of an image xi be zprojt,i = (gprojt ◦
ft)(xi), where gprojt is the current projector. In addition, we let S ⊂ {1, . . . , B}
be the set of indices of the t-th task samples in the batch B. Then, for the
incoming batch B, the asymmetric supervised contrastive loss is defined as:

Lco2l
cls = −

∑
i∈S

1

|pi|
∑
j∈pi

log
exp

(
zprojt,i · zprojt,j /τ

)
∑

k ̸=i exp
(
zprojt,i · zprojt,k /τ

) , (15)

6 K. Murata et al.

where pi is the index set of positive samples with respect to a sample (xi, yi),
defined as:

pi = {j ∈ {1,B}| j ̸= i, yj = yi}. (16)

Instance-wise relation distillation is implemented as the dissimilarity between
instance-wise similarity vectors derived through the current and previous models.
Formally, for a scalar value κ′, the instance-wise similarity vector d(zprojt,i ;κ′) is
defined as:

d(zprojt,i ;κ′) = [dt,i,1, · · · , dt,i,i−1, dt,i,i+1, · · · , dt,i,B] , (17)

dt,i,j =
exp(zprojt,i · zprojt,j /κ′)∑
k ̸=i exp(z

proj
t,i · zprojt,k /κ′)

. (18)

(19)

Then, the instance-wise relation distillation loss is defined as:

Lco2l
kdl = −

B∑
i=1

d(zprojt−1,i;κ
∗) log d(zprojt,i ;κ) , (20)

where κ∗ and κ are hyperparameters.

B.2 Motivation

We chose IL-Baseline, UCIR, PODNet, and BSCE as baselines so that we can
involve various knowledge distillation loss and bias correction methods in order
to evaluate the flexibility of our framework. In fact, they involve three types
of knowledge distillation loss, i.e., the constraints on the output probabilities
(IL-Baseline and BSCE), the output vectors of the feature extractor (UCIR and
PODNet), and the intermediate feature vectors (PODNet). Also, they employ
three types of bias correction methods, i.e., no bias correction (IL-Baseline), co-
sine normalization (UCIR and PODNet), and the imbalance-aware loss function
(BSCE). In addition, we included Co2L as the baseline in our experiment to ver-
ify whether our framework positively affects the contrastive learning methods.

C Details of Experimental Settings

C.1 Dataset

We mainly employed two image datasets for our experiments: CIFAR100 [13]
and ImageNet100 [5, 10]. CIFAR100 contains 60,000 images of size 32× 32 from
100 classes, and each class includes 500 training samples and 100 test samples.
ImageNet100 is a subset of ImageNet1000 [5] with 100 classes randomly selected
from it. ImageNet100 was constructed through Continuum [7], a python library
for continual learning.

Learning and Transforming General Representations 7

Table 1. The configuration of our feature extractor for each dataset (left: CIFAR100,
right: ImageNet100). The settings of a residual block are shown in brackets with the
number of blocks stacked. The setting of a convolutional layer is written as “conv,
kernel size, the number of channel”. Similary, “max pool, x×y” means the max pooling
operation with kernel size of x×y. The inner brackets following fc indicate the output
dimensions of the two fully connected layers in our attention module.

output size layers

32× 32 conv, 3× 3, 64

32× 32

 conv, 3× 3, 64
conv, 3× 3, 64
fc, [4, 64]

× 2

16× 16

 conv, 3× 3, 128
conv, 3× 3, 128
fc, [8, 128]

× 2

8× 8

 conv, 3× 3, 256
conv, 3× 3, 256
fc, [16, 256]

× 2

4× 4

 conv, 3× 3, 512
conv, 3× 3, 512
fc, [32, 512]

× 2

Output size Layers

112× 112 conv, 7× 7, 64

56× 56

max pool, 3× 3 conv, 3× 3, 64
conv, 3× 3, 64
fc, [4, 64]

× 2

28× 28

 conv, 3× 3, 128
conv, 3× 3, 128
fc, [8, 128]

× 2

14× 14

 conv, 3× 3, 256
conv, 3× 3, 256
fc, [16, 256]

× 2

7× 7

 conv, 3× 3, 512
conv, 3× 3, 512
fc, [32, 512]

× 2

C.2 Data Augmentation

In our framework, two kinds of data augmentation are utilized: one for the cal-
culation of the self-supervised loss and the other for the calculation of the other
loss functions. We refer to the former as the complex data augmentation and
the latter as the simple data augmentation, respectively. We utilized the data
augmentation techniques used in SimSiam [4] as the complex data augmentation
and the ones used in PODNet [6] as the simple data augmentation. In the fol-
lowing, we describe the details of the data augmentation for each dataset using
the PyTorch [15] notations.

CIFAR100. The complex data augmentation was composed of the following
data augmentation techniques:

– RandomResizedCrop with scale in [0.2, 1.0];

– RandomHorizontalFlip with a probability of 0.5;

– ColorJitter that changes brightness, contrast, saturation, hue strength of
{0.4, 0.4, 0.4, 0.1} with an applying probability of 0.8; and

– RandomGrayScale with an applying probability of 0.2.

As for the simple data augmentation, we applied RandomCrop with the padding
size of 4 and RandomHorizontalFlip with a probability of 0.5.

8 K. Murata et al.

Table 2. The parameter spaces for hyperparameter tuning. The first column indicates
the method involving the corresponding hyperparameters. “Common” is the method
name assigned to hyperparameters that are involved in every method for the sake of
expediency.

method hyperparameter parameter space

UCIR
λflat
kdl {0.5 · i | i ∈ [1, 20]}

λucir
other {0.5 · i | i ∈ [1, 5]}
m {0.1, 0.3, 0.5, 0.7}

PODNet
λflat
kdl {0.5 · i | i ∈ [1, 20]}

λspatial
kdl {0.5 · i | i ∈ [1, 20]}

Our framework

α {0.3, 0.5, 0.7}
λmap,new
attn {0.5 · i | i ∈ [1, 20]}
λmap,old
attn {0.5 · i | i ∈ [1, 20]}
λsource
attn {0.5 · i | i ∈ [1, 20]}

Common lrcont {2e-4, 1e-3, 2e-3, 1e-2, 2e-2}

ImageNet100. As for the complex data augmentation, GaussianBlur with a
standard deviation in [0.1, 0.2] was applied in conjunction with the ones applied
to CIFAR100. The simple data augmentation was composed of the following
data augmentation techniques:

– RandomResizedCrop with an output size of 224;

– RandomHorizontalFlip with a probability of 0.5; and

– ColorJitter that only changes a brightness strength of 63/255.

C.3 Network Structure

We used ResNet18 [8] as the Convolutional Neural Network (CNN) backbone of
the feature extractor. Our attention modules were attached to residual blocks in
a similar manner to SE-ResNet18 [11], and composed of a fully connected layer
with D units following a fully connected layer with D/r units where D and r de-
note the output channels and a reduction ratio, respectively. The reduction ratio
was set to 16. Table 1 shows the configuration of our feature extractor for each
dataset. We used a slightly different network structure from the settings shown
in Table 1 for PODNet [6] when applying it to ImageNet100 according to its offi-
cial implementation1. More specifically, the kernel size of the first convolutional
layer was set to 3 × 3. As for a projector and predictor, we used Multi-Layer
Perceptrons (MLPs) with one hidden layer. The projector was composed of two
fully connected layers with 2048 units. On the other hand, the predictor was
formed as a bottleneck structure by setting the hidden layer dimension to 512
while the output layer dimension to 2048.

1 https://github.com/arthurdouillard/incremental learning.pytorch

Learning and Transforming General Representations 9

Table 3. The values of hyperparameters for each dataset.

method hyperparameter value (CIFAR100) value (ImageNet100)

IL-Baseline w/ Ours

lrcont 2e-2 2e-3
α 0.7 0.3

λmap,new
attn 1.5 7.0

λmap,old
attn 4.5 6.0
λsource
attn 4.5 7.5

UCIR
λflat
kdl 7.5 -

λucir
other 2.0 -
m 0.7 -

UCIR w/ Ours

lrcont 2e-2 2e-3

λflat
kdl 2.5 3.5

λucir
other 1.0 1.5
m 0.7 0.5
α 0.7 0.3

λmap,new
attn 2.0 2.0

λmap,old
attn 3.5 0.5
λsource
attn 4.0 2.0

PODNet
λflat
kdl 2.5 -

λspatial
kdl 2.0 -

PODNet w/ Ours

lrcont 2e-2 1e-3

λflat
kdl 1.0 3.0

λspatial
kdl 2.0 4.5
α 0.7 0.3

λmap,new
attn 9.0 4.5

λmap,old
attn 4.0 9.5
λsource
attn 7.5 10.0

BSCE w/ Ours

lrcont 2e-2 2e-2
α 0.7 0.7

λmap,new
attn 2.5 3.0

λmap,old
attn 1.5 7.5
λsource
attn 4.0 0.5

C.4 Hyperparameter Tuning

We tuned hyperparameters through a pseudo-task sequence based on the exist-
ing hyperparameter tuning process [3] for the class incremental learning scenario.
Specifically, we constructed the pseudo-task sequence by dividing the classes be-
longing to the first task into three sub-tasks consisting of 30, 10, and 10 classes,
respectively. Through this pseudo-task sequence, we performed a hold-out vali-
dation for hyperparameters of each method. The learning rate lrcont was tuned
only for the tasks excluding the first one. We searched optimal hyperparameters
from the parameter spaces shown in Table 2 using Optuna [1]. Note that we ex-
cluded the learning rate lrcont from the search targets in the case of CIFAR100
to shrink the search space and set it to 2e-2. Table 3 shows the resulting hyper-

10 K. Murata et al.

parameters. IL-Baseline and BSCE are not listed in Table 3 because they do not
have any hyperparameters to tune.

C.5 Evaluation Metrics

We mainly evaluated models through average incremental accuracy (AIA) [16]
for an evaluation set, which is defined as:

AIA =
1

N

N∑
i=1

1∑i
k=1 |Dev

k |

i∑
j=1

Ri,j , (21)

where N denotes the length of a task sequence, Dev
k denotes the evaluation set

of the k-th task, and Ri,j denotes the number of samples in Dev
j whose class

labels were correctly predicted by the model that has been optimized for the
i-th task. In addition, we used the average accuracy for the first task AAold

and the average accuracy for the new tasks AAnew as the additional evaluation
metrics. Formally, they are defined as:

AAold =
1

N − 1

N∑
i=2

Ri,1

|Dev
1 |

, (22)

AAnew =
1

N − 1

N∑
i=2

Ri,i

|Dev
i |

. (23)

In addition, the last accuracy LA is defined as:

LA =
1∑N

k=1 |Dev
k |

N∑
j=1

RN,j . (24)

C.6 Configurations of Comparison Experiment with Co2L

To verify the effect of our framework on contrastive learning methods, we re-
ported the comparison experiment between two kinds of Co2L [2] with and
without our framework on CIFAR10 with 200 exemplars in our main paper. In
that experiment, we adopted exactly the same experimental configurations as the
ones of the original paper [2]. More specifically, we constructed a task sequence
by equally dividing the whole class set into five, meaning each task contained
two classes. As for the network structure, we used ResNet18 and 2-layer MLP
as the feature extractor and projector for supervised contrastive learning. The
projector has 512 and 128 units in its hidden and output layers, respectively.
We note that this projector is entirely different from a projector used for self-
supervised learning. All parameters were optimized through stochastic gradient
descent (SGD) with a momentum of 0.9. For the first task, the network was
trained with 500 epochs using a cosine learning rate decay for the base learning
rate of 0.5 and weight decay of 1e-4. Then, it was further optimized using the

Learning and Transforming General Representations 11

Table 4. The search spaces for hyperparameters of Co2L with our framework and the
values resulting from the search.

hyperparameter parameter space value

τ {0.1, 0.5, 1.0} 0.5
κ {0.1, 0.2} 0.2
κ∗ {0.01, 0.05, 0.1} 0.1
α {0.3, 0.5, 0.7} 0.5

λmap,new
attn {0.5 · i | i ∈ [1, 20]} 1.0

λmap,old
attn {0.5 · i | i ∈ [1, 20]} 3.5
λsource
attn {0.5 · i | i ∈ [1, 20]} 0.5

remaining tasks one by one with 100 epochs per task. Note that a classifier needs
to be optimized independently because the supervised contrastive learning does
not contain the optimization of the classifier. Thus, we trained the classifier after
the optimization of other network components with a class-balanced sampling
strategy. It was optimized with 100 epochs using the exponential learning rate
decay for the base learning rate of 1.0 and no weight decay. Training images
were augmented through the complex data augmentation, which we used on the
CIFAR100 experiments, and passed to the network with a batch size of 512. The
hyperparameters were selected through the training on the entire task sequence
using Optuna [1] based on the last accuracy for the validation set consisting of
10% of the training samples randomly drawn. It is noted that although this tun-
ing procedure is not realistic due to using all the training samples, we dared to
use it because it was adopted in the original paper [2]. Table 4 shows the search
spaces for the hyperparameters of Co2L with our framework and the values re-
sulting from the search. We configured the hyperparameters of Co2L without
our framework following the paper [2]. Namely, τ , κ, and κ∗ were set to 0.5, 0.2,
and 0.01, respectively.

D Supplementary Experiments

D.1 The Effect of Attention and Data Augmentation

Our framework introduces attention techniques and complex data augmentation,
neither of which is employed by the baseline methods. Since they might affect
the resulting values of AIA, we compared the baseline methods with and with-
out attention techniques and additional data augmentation on CIFAR100. To
this end, we used SE-ResNet18 [11] as the feature extractor employing attention
techniques, which contains the same number of parameters as our feature extrac-
tor. Table 5 shows the comparison results, where the scores in the first row of
the four rows corresponding to each baseline are the same as the baseline scores
reported in our main paper. As shown in Table 5, there exist some cases in which
introducing attention techniques and the complex data augmentation increases
AIA. However, we emphasize that the improvements in AIA are significantly

12 K. Murata et al.

Table 5. Average incremental accuracy of the baselines with and without attention
techniques and additional data augmentation on CIFAR100. “SE-ResNet18 (modified)”
is the same network structure as SE-ResNet18 except that the SE block is modified for
our framework. The third column indicates whether the complex data augmentation
described in section C.2 is applied. Each result is in the form of the average ± standard
deviation obtained from three independent trials using different random seeds.

method network complex DA 5-phase 10-phase

IL-Baseline

ResNet18 52.92 ±0.15 43.14 ±0.31

SE-ResNet18 51.74 ±0.17 42.78 ±0.13

ResNet18 ✓ 51.02 ±0.07 42.42 ±0.31

SE-ResNet18 ✓ 53.27 ±0.40 44.21 ±0.21

IL-Baseline w/ Ours SE-ResNet18 (modified) ✓ 56.49 ±0.20 48.13 ±0.51

UCIR

ResNet18 69.29 ±0.15 63.16 ±0.12

SE-ResNet18 69.15 ±0.17 62.26 ±0.14

ResNet18 ✓ 66.31 ±0.32 63.01 ±0.24

SE-ResNet18 ✓ 66.78 ±0.33 64.01 ±0.18

UCIR w/ Ours SE-ResNet18 (modified) ✓ 71.03 ±0.28 66.24 ±0.42

PODNet

ResNet18 68.99 ±0.36 66.64 ±0.15

SE-ResNet18 69.43 ±0.18 66.70 ±0.21

ResNet18 ✓ 64.14 ±0.34 62.20 ±0.39

SE-ResNet18 ✓ 64.62 ±0.08 62.72 ±0.09

PODNet w/ Ours SE-ResNet18 (modified) ✓ 70.61 ±0.12 69.02 ±0.05

BSCE

ResNet18 71.64 ±0.16 64.87 ±0.39

SE-ResNet18 71.36 ±0.12 65.01 ±0.25

ResNet18 ✓ 70.64 ±0.30 65.54 ±0.15

SE-ResNet18 ✓ 71.64 ±0.21 66.48 ±0.15

BSCE w/ Ours SE-ResNet18 (modified) ✓ 74.09 ±0.24 70.30 ±0.38

smaller than those made by our framework. Actually, the maximum increase in
AIA resulting from the introduction of attention techniques and complex data
augmentation is only 1.61 points that is observed for BSCE in the 10-phase
setup, whereas our framework increases the AIA of BSCE by 5.43 points in the
same setup.

Next, we compared ResNet18 and SE-ResNet18 in average accuracy for the
first task to confirm whether the original SE block decreases stability. As shown
in Table 6, ResNet18 achieves higher average accuracies than SE-ResNet18 does
except for the case of PODNet in the 5-phase setup. This decrease in accuracy
implies that the introduction of the SE block could decline the stability of a
model, while it could be avoided by sophisticated CIL methods such as PODNet.

D.2 Sensitivity Analysis

To verify the sensitivity of hyperparameters of our framework, we compared var-
ious hyperparameter settings on CIFAR100 with the 5-phase setup. Comparing
the results in Fig. 2, we can confirm that the range of the change of AIA is

Learning and Transforming General Representations 13

Table 6. The comparison between ResNet18 and SE-ResNet18 on CIFAR100 in aver-
age accuracy for the first task. Each result is in the form of the average ± standard
deviation obtained from three independent trials using different random seeds.

method network 5-phase 10-phase

IL-Baseline
ResNet18 38.09 ±0.34 32.26 ±0.40

SE-ResNet18 36.04 ±0.28 31.72 ±0.09

UCIR
ResNet18 66.82 ±0.23 60.26 ±0.09

SE-ResNet18 66.75 ±0.33 58.88 ±0.31

PODNet
ResNet18 68.38 ±0.50 66.84 ±0.15

SE-ResNet18 69.06 ±0.37 66.82 ±0.32

BSCE
ResNet18 68.95 ±0.49 62.29 ±0.76

SE-ResNet18 67.83 ±0.26 61.81 ±0.42

around 3 for α, while around 0.4 for the other parameters. Thus, we can say
AIA is sensitive to the value of α but not to the values of the other parameters.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation
hyperparameter optimization framework. In: ACM SIGKDD. pp. 2623–2631 (2019)

2. Cha, H., Lee, J., Shin, J.: Co2l: Contrastive continual learning. In: ICCV. pp.
9516–9525 (2021)

3. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning
with A-GEM. In: ICLR (2019)

4. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR. pp.
15750–15758 (2021)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR. pp. 248–255 (2009)

6. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: Podnet: Pooled outputs
distillation for small-tasks incremental learning. In: ECCV. pp. 86–102 (2020)

7. Douillard, A., Lesort, T.: Continuum: Simple management of complex continual
learning scenarios. arXiv preprint arXiv:2102.06253 (2021)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

10. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incre-
mentally via rebalancing. In: CVPR. pp. 831–839 (2019)

11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR. pp. 7132–
7141 (2018)

12. Jodelet, Q., Liu, X., Murata, T.: Balanced softmax cross-entropy for incremental
learning. In: ICANN. vol. 12892, pp. 385–396 (2021)

13. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.,
University of Toronto (2009)

14. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss dis-
tance metric learning using proxies. In: ICCV. pp. 360–368 (2017)

14 K. Murata et al.

Fig. 2. The change of AIA of BSCE with our framework on CIFAR100 in the 5-phase
setup when varying its hyperparameters α, λsource

attn , λmap,old
attn , and λmap,new

attn . In each plot,
the values of the other parameters than the one specified at the horizontal axis are the
same as the ones in Table 3.

15. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: NeurIPS. vol. 32, pp. 8026–8037 (2019)

16. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. In: CVPR. pp. 2001–2010 (2017)

