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The supplementary provides more experimental results (Figures 1 and 2),
the neural architecture specification (Figure 3), and the system details (Sec-
tion 1), which are not the technical core of the paper but are included here for
reproducibility.

1 System details

1.1 Instance segmentation

We use the U-Net [4] architecture, with implementation borrowed from [1]. The
input to the network is a 256× 256× 1 grayscale blueprint crop, and the output
is a 256× 256× 8 embedding matrix.

1.2 Type classification

We use the Resnet50 [2] network architecture from the torchvision python library.
We modify the network to take in a matrix of 224×224×2, and output probability
distribution over 7 classes (ignoring the background class). We utilize a mix of
ground-truth (GT) and predicted data for training, assigning the corresponding
GT type to each predicted instance. To determine correspondence, we overlay
the predicted instance mask and the GT type segmentation, and choose the
most frequent pixel type within the overlap. One exception to this rule is with
thin and small instances, which are sometimes incorrectly assigned as rooms. To
address this, we assign room type only when 70% or more overlapped pixels are
of the type “room”, otherwise we assign the second most frequent type.

1.3 Frame detection

We again use the Resnet50 [2] network architecture, with 224 × 224 × 10 as
input and output dimension of 8. We also perform mixed GT and predicted
data training, assigning the corresponding GT connectivity vector for each pre-
dicted door/window/open-portal. To determine correspondence, we overlay the
predicted instance mask and the GT instance segmentation, and choose the GT
instance with the largest overlap and of the same type. If there is no correspon-
dence, we simply skip the predicted instance during training.
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1.4 Frame correction

We utilize the following heuristics to compute approximate centroid locations
for missing frames. Missing frames are detected when comparing an instance’s
actual and predicted connectivity vector. As an initial candidate, we consider
the side of the instance that the frame is touching (as obtained from our four-
side heuristics), and interpolate the edge half-way to obtain its mid-point. We
perform the interpolation using Shapely Python library’s interpolate function.
Given that most frames are connected to a wall, we then consider all walls
touching the corresponding side and mark the approximate centroid as the point
on the walls closest to the mid-point. If no walls are touching, then the mid-point
becomes the approximate centroid.

During generator input preprocessing, for boundary hiding we perform binary
dilation and erosion with a 3 × 3 kernel. We use the Scipy implementation of
these functions. However, erosion often removes thin and small structures. To
circumvent this: when the erosion operation removes more than 50% of the
instance, we use scikit-image’s skeletonize function to shrink the instance instead.

When painting a square mask for a missing frame or for hiding an existing
frame during training, we randomly perturb the frame centroid location by up to
two pixels in each of the four cardinal directions. This augmentation step seeks
to let the generator learn the proper location of frames, instead of simply taking
the mid-point of the square mask.

The architecture specification for our generator and discriminator are given in
Figure 3. They are very similar to HouseGAN++ [3], but with blueprint image
as an extra input. In addition, each stage of message passing receives extra
information, in contrast to HouseGAN++ where all information are inputs at
the beginning of the network.

At test time during iterative refinement, we hold constant a border of 8 pixels
around the square crop. This is to prevent our generator from distorting results
near the border, as they are ambiguous without more context.
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Fig. 1. Step-by-step visualization of our pipeline, focusing in around instances. For
step names, “I” refers to the instance segmentation and type classification, “F” refers
to the frame detection and the correction modules, and “H” refers to the heuristic
simplification.
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Fig. 2. Continued.
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Fig. 3. Generator and discriminator architectures for our frame correction module.
Square boxes indicate network layers, while rounded boxes indicate feature volumes.
“k” stands for kernel size, “s” stands for stride, all convolutional layers use padding of
1, and layer output sizes are indicated in parentheses. For all vector inputs, each vector
is copied to every pixel in the spatial dimension. Our architectures are very similar
to HouseGAN++ [3], with two notable differences: we pass in a blueprint image as
input, and provide extra information at each stage of message passing instead of at the
beginning of the networks.


