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1 Comparisons

In Tab. 1, extra comparisons between AirBirds and other relevant datasets are
presented. AirBirds has 3 appealing merits compared to existing ones. (i) It can
be used for detection (ii) Images in our dataset are in chronological order (iii)
The data volume of AirBirds is much bigger than others.

Table 1: Comparisons of AirBirds and relevant datasets. In the Task column,
DES means the database mainly describes occurred strike accidents, CLS means
the dataset is intended for classification, and DET means the dataset can be used
for detection. Sequence means whether the images are in chronological order

Dataset Format Images Instances Task Sequence Duration Year

FAA Database text - 227,005 DES 7 30 years 1990
CUB-200-2010 [1] image 6,033 6,033 CLS 7 - 2010
CUB-200-2011 [2] image 11,788 11,788 CLS 7 - 2011
Birdsnap [3] image 49,829 49,829 CLS 7 - 2014
NABirds [4] image 48,562 48,562 CLS 7 - 2015
Wind Farm [5] image 16,200 32,000 CLS X 3 days 2015
VB100 [6] video - 1,416 CLS X - 2016

AirBirds image 118,312 409,967 DET X 1 year 2021

2 Configurations

We evaluate a wide range of detectors on the created dataset for flying bird
discovering. To reproduce the results, it is necessary to clarify the specific settings
for each detector and we conclude them in Tab. 2.

3 Analysis

Various kinds of detectors perform consistently below expectations according
to Table 2 in the main paper, even with carefully customized configurations.
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Table 2: Version indicates the specific model. Period refers to the total hours
of the model training. LR: initial learning rate

Model Version Optimizer LR Batch Size Epoch Period

FCOS[7] ResNeXt101 SGD[8] 1.0e-2 6 50 35h
EffiDet[9] EffiDet-D2 AdamW[10] 1.0e-3 4 20 50h
YOLOv3[11] DarkNet53 SGD[8] 1.0e-3 2 56 60h
YOLOv5[12] Medium-size SGD[13] 1.0e-2 4 20 48h

Faster[14] ResNet50+FPN SGD[8] 1.5e-2 4 20 20h
Cascade[15] ResNet50+FPN SGD[8] 1.5e-2 4 20 20h

DETR[16] Vanilla AdamW[10] 2.0e-4 2 100 336h
Deform[17] Vanilla SGD[8] 2.0e-4 2 32 110h

FPN[18] ResNet50 SGD[8] 1.5e-2 2 20 20h
NASFPN[19] ResNet50 SGD[8] 8.0e-2 10 50 51h

RepPoints[20] ResNet50+FPN SGD[8] 1.0e-2 2 24 23h
CornerNet[21] Hourglass104 Adam[13] 5.0e-4 3 42 68h
FreeAnchor[22] ResNet101 SGD[8] 1.0e-2 3 20 18h

HRNet[23] HRNet SGD[8] 1.5e-2 1 24 49h
DCN[24] ResNet50 SGD[8] 2.0e-2 2 24 27h
DCNv2[25] ResNet50 SGD[8] 2.0e-2 2 24 31h

Therefore, a natural question is raised, what are possible reasons that degrade
their performances on AirBirds in a dramatic way? We summarize three reasons
that cannot be overlooked.

– First, objects with small areas in a high-resolution image are usually fuzzy
in appearance and outline. For example, an object in a small area could
be a bird, a kite or a drone. Furthermore, small areas are more likely to
be confused with the background then discarded by detectors, regardless of
what object it is.

– Second, the backbone networks used in current object detection models ex-
tract and aggregate features by a series of convolution and pooling layers
with downsampling operation which even worsens the problem. For exam-
ple, a backbone of 50-layer ResNet [26] will reduce an area of 8x8 pixels
of a tiny bird in an input image to a 2x2 feature map only after the first
convolution and pooling layer.

– Third, the predictions for small-size objects are prone to interesting with
ground-truth boxes with lower IoUs than those for medium or large objects.
Fig. 1 illustrates this case, there are large(100x100), medium(40x40) and
small(8x8) types of objects. Green boxes are groundtruth, red boxes are
predictions given by a detector and all of them offset 4 pixels from the
groundtruth. As observed from left to right, their IoUs are 85.5%, 68.1% and
14.3%, respectively. It means an offset of a few pixels caused by the detector
will dramatically degrade the IoU score for small objects. However, the lower



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ACCV2022

#471
ACCV2022

#471
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ACCV-22 submission ID 471 3

Fig. 1: Influence of the object size on IoU. Red boxes are predictions and green
boxes are ground truth. Under the same offset, the IoUs between predictions
and ground truth of large(100x100), medium(40x40) and small(8x8) objects are
0.855, 0.681 and 0.143, respectively

bound of IoU in current elevation metrics of COCO is 50%, increasing to 95%
with a stride of 5%. It is non-trivial for the IoUs between predictions and
annotations in AirBirds to touch that lower bound, thus previous decent
detectors struggle.

We believe the above reasons illustrate low APs scores for most detectors and
argue that it is unfair to emphasize IoU when evaluating small object detection,
specifically for flying birds discovering in real-world airports.

4 Visualization

Visualization is an essential tool to explore a dataset. In this section, we firstly
investigate what the detectors learned from AirBirds by visualizing a series of
feature maps. Secondly, common examples are presented to give readers an in-
tuitive idea about the developed dataset.

4.1 Feature Maps

In order to figure out what those models have learned from AirBirds, we take
YOLOv5 as an example since it outperforms others according to Table 2 in the
main paper. Multiple feature maps of the convolution layers in YOLOv5 are
visualized, referring to Fig. 2c. By comparing the input image in Fig. 2a with
these feature maps, a clear message is that the model has recognized a borderline
that segments the sky and the ground. And small light patches in feature maps
are all above that borderline and they probably convert to final predictions. For
example, in Fig. 2b a bird discovered by YOLOv5 corresponds to a light patch
in the feature maps of the second row.
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(a) input image to YOLOv5 (b) prediction(s) of YOLOv5

(c) multiple feature maps of the convolution layers of YOLOv5

Fig. 2: (a) A test image for YOLOv5 (b) Prediction(s) output by YOLOv5 (c)
Visualization of the feature maps of the layers in stage16 of YOLOv5

4.2 Gallery

We select some examples of AirBirds to open a window of exploring this chal-
lenging and diverse dataset intuitively. Birds in the images are highlighted by
red bounding boxes, referring to Fig. 3.

In the first row, a bird flies to the left. Similarly, another bird appears at the
top of the monitoring view in the second row, gliding from right to left. Both
images in the first and second row are sampled from August 2021, but the dif-
ference in color tone is noticeable. It is a struggle for readers to distinguish tiny
birds in the images of remaining rows while they appear. As stated in the paper,
88% of all instances are smaller than 10 pixels and the rest of 12% are mainly in
the interval [10, 50). These examples provide you with an intuitive impression.
Images from rows between 3 and 6 are taken in spring, summer, fall and winter,
respectively, where birds appear in dark blue sky in silent spring, soar around
clouds in vibrant summer, sprint towards sunset in golden autumn and fly in
flocks in cold winter. The penultimate row shows complex background, where
clouds move rapidly and light conditions change dramatically, making discover-
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Fig. 3: Examples in AirBirds.

ing flying birds harder. Scenarios in the last row are captured near nightfall, and
birds are flying under the airport lights.

In short, samples exhibited here are only a small portion of 118,312 images
and we hope they open a window of exploring the scenario-diverse dataset for
the research of bird strike prevention. This dataset also reveals the challenges
of flying bird discovery in real-world airports and tiny object detection in other
scenes, which deserve further investigation.

5 Discussion

To the best of our knowledge, AirBirds is the first large-scale challenging image
dataset for bird strike prevention in real airports. Due to taking directly from
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real-world datasets, we should be aware of its possible limitations. AirBirds does
not provide species names of birds because they are often too small to distin-
guish the specific species, even for domain experts. Unlike previous work CUB
series [2, 1], Birdsnap [3] and NABirds [4], they are dedicated for fine-grained
classification through the collection of tailor-made images. Meanwhile, we think
species information can be supplemented by other sources, such as seasons, liter-
ate in the domain and existing databases. As we know, birds usually migrate with
seasons and extensive literature documents desirable contents. Another typical
source is FAA wildlife strike database, the bird species is one of the columns in
the returned sheet after a user enters the airport name to start a query1.

AirBirds is free of use for researchers and the license is Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2.
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