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Abstract. In this supplementary material, the Riemannian matrix back-
propagation algorithm for training the designed DreamNet is firstly elab-
orated in Section 1. Then, Section 2.1 discusses the impact of different
data fusion methods associated with shortcut connection on the clas-
sification performance of our model. Afterward, the discussions of the
role of the trade-off parameter A and the reconstruction error term are
illustrated in Section 2.2. Next, Section 2.3 explores the classification
performance of a 182-layer DreamNet on the large-scale UAV-Human
dataset used. Finally, the comparison of the proposed Riemannian net-
work with the original residual learning framework [4] is discussed in
Section 3.

1 Riemannian Matrix Backpropagation

The studied Riemannian network in this article can be regarded as the data
embedding model (f, W), where f = fF) o f(K-Do...0 f) o f(1) signifies a
series of successive function compositions and W = {W g , W _1,...., Wo, W}
denotes the parameter tuple, satisfying the properties of metric spaces. Here,
K represents the number of layers of our DreamNet, f(*) and W, refer to the
operation function and weight parameter of the k-th layer (we use the symbol
k to denote any layer of DreamNet for simplicity), respectively. The loss of the
k-th layer can be expressed as L") = Lg o fF) o ..o f() where Lg is the
cross-entropy loss of the last (E-th) RAE.

To optimize the proposed network, two key problems need to be tackled: 1)
updating the Stiefel manifold-valued weights in the BiMap layers; 2) computing
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the gradients of the SPD matrices in the ReEig and LogEig layers. By applying
SGD settings on the Stiefel manifolds [5, 3, 1], the first issue can be solved. To
cope with the second problem, we exploit the matrix backpropagation method-
ology developed in [6] to compute the gradients of SPD matrices in the layers of
ReEig and LogEig.

BiMap Layer: Since the differentiation of X in the BiMap layer is com-
puted by:

dX ) =dWEX Wi+ WEdX ) Wi+ Wi X 1dWy, (1)

we can obtain the following chain rule on the basis of the invariance of the
first-order differential:
oLk+1) oLk L)
dX = dW :
9X, = awy TR ax

dX 1. 2)

By virtue of Eqn.(1) and the matrix inner product ”:” properties [6], the left-
hand side of Eqn.(2) can be split into the following three equations:

9Lk+1) oLF+1)
X AWTX, W = ox, Xk W: AWy, 3)
9L k+1) oL(k+1)
oL k+1) OLk+1)
X WHdX W), = W’“iaxk Wi dX, ;. (5)

In this case, the left-hand side of Eqn.(2) can be rewritten as:

oL k+1) oL(k+1)
X, Xy Wy dWy + WkTXka tdX ). (6)

As Eqn.(6) equals to the right-hand of Eqn.(2), the following partial deriva-
tives can be derived:

aL(k) 8L(k:+1) aL(k) aL(kJrl) WT

TMZQX’HW’“ 0X, ' 0Xp. < Fax, & (7)

To make readers self-contained, the updating criteria of W on the Stiefel
manifold are given below [5]:

VLW, =VLy) —vLy) wiw,, (®)
Wt = R(W, — VL)), 9)

where @ka is the tangential component to the stiefel manifold, obtained by

subtracting the normal component of the Euclidean gradient VL&,L computed
by the first term of Eqn.(7), R represents the retraction operation, WY is the
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updated weight at the t-th iteration, and n is the learning rate. For detailed
information about the optimization process, please kindly refer to [1].

ExpEig and LogEig Layers: Due to these two layers involve SVD oper-
ation, for convenience, a transition layer kT is introduced to receive Xj;_; as
input and output U and X, i.e., X+ = Uuxu”T. Accordingly, the following
chain rule can be obtained:

oLk OL*" oLk
dX g = s dU 1 dX. 10
0X, ., T U T ox (10
Since dX_; = dUXUT + UdXUT + UXdU7T, the differentiations of dU and
dX are given as [5,6]:

dU =2U (%" o (Z"UTdX ,1U)sym) (11)
A% = (UTdX,1U) diag, (12)

where o represents the Hadamard product and C,,, = (C+C")/2. Substituting
Eqn.(11) and Eqn.(12) into Eqn.(10), the partial derivative of L(*) with respect
to X_1 for the layers of ReEig and LogEig layers can be computed by:

OL®*)

0X_1 =2U(Yo (UTQ1)Sym)UT +UQ,UT, (13)
+ +
where Q, = %, Q, = (%)dmg, and W is expressed as:
1 . .
. 7 (14)
0, =7,

where o; denotes the i-th (i = 1 — dj_1) eigenvalue of X.

For the ReEig layer, it receives U and X as its input, and outputs X =
Umax(eI, X)U" . Since the variation of X, is: dX j, = 2(dUmax(eI, 2)U") g+
(UGAXU")5ym, the partial derivatives of L*") wrt U and X can be derived
by imitating the chain rule of Eqn.(10):

aL*") AL*+D
=2 I.x 1
50 ( X, >Sym Umax(el, X0), (15)
aL(k+) aL(kJrl)
oL _ qur ( ) U, (16)
ox 0X . sym

where G is the gradient of max(el, X): G;; = 1 if X;; > €, and 0 otherwise.
The variation of X, in the LogEig layer becomes: d X}, = 2(dUlog(X)U™") gym+
(U 'dxU T)sym, and the following two partial derivatives can be obtained:

8L(k+) HLk+1)
50 —2( X, >Smelog(2)7 (17)

(k1) (k+1)
oL _ sy <3L ) U. (18)
sym

0Xg
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Reconstruction Error Term: Since the reconstruction error term is de-
fined as (Eqn.(7) of the main manuscript): £2(Z;,Hg) = ||Z; — Hgl[3, the
partial derivatives of Lo w.r.t Z; and Hg can be formulated as:

dL, . oL R
= 2(Z, — Hp), 2 — _9(Z, - Hp). 19
oz, = E) prem ( E) (19)

With these ingredients, the Riemannian matriz Backpropagation algorithm
can be utilized to train the proposed network. The main implementation details
of our DreamNet are summarized into Algorithm 1.

2 Ablation Studies

2.1 Ablation Study of the Data Fusion Methods Associated with
Shortcut Connection

As mentioned in the main manuscript, we exploit the element-wise addition
(EWA) strategy to implement the shortcut connections mainly based on the fol-
lowing two considerations: 1) it introduces neither parameters nor computational
complexity; 2) it can make the resulting data points still lie on the SPD manifold.
However, the Abelian group operation (AGO) (Definition 3.1 of [2]) seems to be
a more appropriate method than EWA for SPD feature fusion. The main reason
is that it is faithful to the Riemannian geometry of SPD manifolds and demon-
strates strong theoretical and practical benefits in Riemannian data analysis
[2]. To demonstrate that using EWA is valid, we compare DreamNet-27-EWA
with DreamNet-27-AGO in terms of classification performance and computation
time, choosing the FPHA dataset as an example. From Fig. 1(b), we can find
that although the classification accuracy of DreamNet-27-AGO is 0.39% higher
than that of DreamNet-27-EWA on the FPHA dataset, its superiority in com-
putation time is not as good as DreamNet-27-EWA. In addition, Fig. 1(a) shows
that the convergence speed of DreamNet-27-EWA is a bit faster than that of
DreamNet-27-AGO. These observations suggest that it is feasible and effective
to view EWA as a compromise.

To realize the forward and backward pass of the SPD matrices in AGO, we
introduce three auxiliary layers for the proposed DreamNet. In particular, the
input SPD matrices are first mapped to the logarithmic domain using the LogFig
operation. As the mapped space conforms to the Euclidean geometry, the EWA
is utilized to perform feature fusion. Finally, the ExpEig layer is applied to embed
the fused data back onto the SPD manifold via the matrix exponential mapping,
fe. For simplicity, we formulate the ExpEig operation as: Xy = fe(Xk—1) =
Uexp(X )UT. Wherein, X;_; = UXU?" denotes the eigenvalue decomposition,
and exp(X) is a diagonal matrix composed of the eigenvalue exponentials. Due
to the variation of Xy is: dXj, = 2(dUexp(X)UT) gym + (Uexp(X)dEUT) ¢ym,
the following partial derivatives can be derived by referring to the computing
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Algorithm 1 Deep Riemannian Manifold Network for SPD Matrix Learning

Input: Training set &, training epochs 7, learning rate 7, batch size B, number of B
of a given dataset b, threshold €, number of layers K, and trade-off parameter A.

Initialization:
1: for i+ 1to N do:
2: Computing X; from S; via X; = ﬁ Z;L;I(Sj — )85 — p,i)T
3: Using X; + X; + al, to ensure that X; is SPD.
4:
5: for k+ 1to K do:
6:  The SVD operation is applied to initialize W, of the BiMap layer.
7
Training:
8: for r < 1to T do:
9: Randomly and equally divide the new training set X into b batches:
X =random[X 1, Xo, ..., Xy].
10:  for h < 1to b do:
11: for k< 1to K do:
Forward Pass:
case 'BiMap layer’
12: Xy =W, Xpo1) = WEX 1 Wy
case 'ReFig layer’
13: X, = (X p-1) = Umax(el, Z)UT.
case ’LogEig layer’
14: X, = [P (X 1) = Ulog(Z)UT.
case ’Cross-Entropy loss’
15: Lo=—N_ S 7(lit) x log(P(t| X))
case 'Reconstruction error term’
16: Lo(Z:,HEg) = ||Z: — Hil|3.
Backward Pass:
case 'BiMap layer’
17: Updating W, using Eqn.(8), Eqn.(9), and the first term of Eqn.(7).
case 'ReFig layer’
18: Computing % using Eqn.(13), Eqn.(15), and Eqn.(16).
case ’LogFEig layer’
19: Computing 66)?:?1 using Eqn.(13), Eqn.(17), and Eqn.(18).
case ’Cross-Entropy layer’
. aL(K) N
20: X = P(t|X;) — 1.
case "Reconstruction error term’ ~
21: 5 = (Z; — Hg), ﬁ =—-2(Z;, — Hg)..
22: end
23:
24: end

Output: W = {WK, ‘/‘/}(_17 ceny W27 Wl}

process of the ReEig and LogEig layers:

oLk HLk+1D)
U —2( X, )SmeeXp(Z’), (20)

7,(kT) 7,(k+1)
0 = exp(X)UT (6 ) U. (21)
sym

ox 00X
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(a): Convergence behavior
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(b): Comparison under different data fusion methods
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Fig. 1. Comparison of DreamNet-27-EWA and DreamNet-27-AGO on the FPHA
dataset.
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Fig. 2. Comparison of DreamNet-27/47 on the AFEW dataset.

With the above three auxiliary layers, according to Eqn.(20), Eqn.(21), and
the backpropagation algorithm introduced in Section 1, the forward and back-
ward pass of the SPD matrices in AGO can be achieved.

2.2 Ablation Study of the Role of the Trade-off Parameter A and
the Reconstruction Error Term

To measure the effectiveness of the reconstruction error term (RT) defined in
Eqn.(7) of the main article, we select the AFEW dataset as an example to
conduct the experiments. From Fig. 2(a), we have some interesting findings.
Firstly, the performance of DreamNet-47 is better than that of DreamNet-27
in almost all cases, again demonstrating the benefits of increasing the network
depth. Secondly, the classification accuracy of 27/47-layer DreamNets shows an
increasing trend first and then decreasing. This is mainly attributed to the fact
that the loss function of our DreamNet has two goals: 1) supervising the network
to generate deep representations with richly structured semantic information; 2)
enabling the network to reconstruct the input data better. Note that a large value
of A would make the network focus on deep reconstruction learning, which is not
conducive to the training of effective classifiers. However, when A\ takes values
in the range of {0, 0.0001, 0.001}, the performance of 27/47-layer DreamNets
is slightly improved. This supports our assertion that the RT helps to fine-tune
the classification performance. In any case, our method is not very sensitive to
this trade-off parameter.
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Fig. 3. The classification error of 27/47/92/182-layer DreamNets versus the number
of training epochs on the UAV-Human dataset.

Based on the above results, we connected all the input layers of the remaining
E-1 RAEs to the final layer of SRAE to include more RTs in DreamNet. Fig.
2(b) shows that this operation results in a relatively higher accuracy of 27/47-
layer DreamNets, compared to Table 2 of the main paper. The main reason is
that the multiple reconstruction learning helps high-level features capture the
pivotal geometric structures conveyed by the raw data, thus facilitating effec-
tive classification. Meanwhile, the training time has not increased significantly.
Nevertheless, as the number of hyperparameters (#h-params) of our network
increases, we suggest using just one RT shown in Fig.2 of the main paper as a
compromise. Considering the computational burden of DreamNet-92, we have
not explored it here. All in all, these experimental evidences confirm the efficacy
of the RT in guiding the proposed model to solve the degradation problem and
to yield useful deep features.

2.3 Investigating the Classification Performance of a 182-layer
DreamNet

In this subsection, we explore an aggressively deep Riemannian network of over
180 layers. We set E = 20 (the number of stacked RAEs) that leads to a 182-
layer DreamNet, which is trained with the Riemannian matrix backpropagation
algorithm introduced above. According to Fig. 3, we can note that this 182-layer
DreamNet exhibits no optimization difficulty, and its test accuracy (46.03%) is
still higher than that of the competitors listed in Table 5 of the main paper.

In spite of this, the test result of DreamNet-182 is somewhat lower than
that of DreamNet-92, although both have similar training error. We believe that
one of the reasons for this phenomenon is overfitting. This 182-layer DreamNet
may be a bit large (0.63M) for the UAV-Human dataset. For the basic reason
of the inferiority of DreamNet-182 compared to DreamNet-92, we argue that
it is due to the loss of some pivotal structural information embedded in the
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input SPD matrices during multi-stage SRAE transformation. Since the recon-
struction loss is introduced as a learning objective, the solution for the early
stages of SRAE network will tend to diagonalise the respective SPD matrices
(the visualized feature maps in Fig. 4(a), Fig. 4(b), and Fig. 4(c) of the main
article support this notion experimentally). This follows from the well known
fact that the optimal solution to the problem of minimising the signal (video
clip, image set, or point cloud) approximation error using a reduced number of
basis functions are the eigenvectors of the signal covariance matrix associated
with the largest eigenvalues. The SPD matrix reconstruction problem is a proxy
to the signal approximation problem. However, once an off-diagonal element of
an SPD matrix becomes zero, it will never contribute to the generation of the
lower-dimensional SPD matrices. This will considerably reduce the number of
variables involved in the generation of these matrices. Although the used eigen-
value regularization (ReEig layer) allows the off-diagonal elements to contribute
to the learning process, it will gradually exacerbate the amount of adjustment
to the input SPD matrices with increasing the number E of the stacked RAEs.
In this scenario, the more transformation stages of SRAE, the more distortion
of the original data structure will be. This is also the fundamental reason why
the classification score of DreamNet-92 on the FPHA dataset (shown in Table 3
of the main manuscript) is not as good as that of DreamNet-47.

3 Comparison with the Original Residual Learning
Framework

According to the analysis in the main paper, we can speculate that the Rieman-
nian residual functions learnt in this paper may not approach a zero mapping,
which is different from the hypothesis verified in ResNet [4], i.e., the residual
functions might be generally close to zero. The basic reason is that the semi-
orthogonality of W, makes it impossible for the Riemannian solver to drive the
weights of multiple layers towards zero. The incremental information conveyed by
the visualized feature maps in Fig. 4 of the main paper confirms our speculation,
experimentally. Other differences include: 1) both the inputs and outputs of our
model are structured SPD matrices, rather than the image features of ResNet.
In other words, the suggested architecture is strictly defined on the Riemannian
manifolds, other than the Euclidean space; 2) the parameter optimization of
our DreamNet is realized by exploiting the stochastic gradient descent (SGD)
setting on the Stiefel manifolds with the Riemannian matrix backpropagation
(Section 1) for preserving the Riemannian geometry of SPD data points, while
the Euclidean SGD-based backpropagation is used in ResNet.
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