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1 Related work

In this section, we will introduce recent cross-modal hashing strategies, which
can be roughly categorized into supervised methods and unsupervised methods
according to whether they employ labelled information in training process.

Supervised cross-modal hashing. Recent years have witnessed the great
success of supervised cross modal hashing [T2I26/T8ITI2/T5H20/34/24/29/32)]. Zhang
et al. [42] employed the labeled information to restrict the learning of hash codes,
which have shown great success in cross-modal retrieval task. SDMH [23] pro-
poses an efficient augmented Lagrangian multiplier (ALM) based discrete hash
optimization method to optimize the hash code learning process. Hu et al. [12]
utilized an efficient iterative algorithm for hash code optimization by incorpo-
rating the code balance and uncorrelation criteria into the objective function.
Mandal et al. [26] learned the optimum hash codes for the two modalities at the
same time, by preserving the semantic similarity between the data points, and
then learned the hash functions to map the features into the hash codes. Su-
pervised Robust Discrete Multimodal Hashing (SRDMH) adopts a flexible loss
with nonlinear kernel embedding [I8] . [6] designs a two-stream ConvNet archi-
tecture to learn hash codes with class-specific representation centers for image
retrieval. [B] focus on zero-shot sketch-based image retrieval task and proposes
an method aligning the sketch and image features to semantic features. Xie et al.
[36] designed Multi-Task Consistency-Preserving Adversarial Hashing (CPAH)
composing of a consistency refined module (CR) and a multi-task adversarial
learning module (MA). CR divides the representations of different modality in-
to two irrelevant parts and MA constrains the modality-common representation
of different modalities close to each other on feature distribution and semantic
consistency.
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Unsupervised cross-modal hashing. A large amount of unsupervised
cross-modal hashing [TTI8HA0/TOIT7I37I4TI28/2214335] have been proposed in the
past few years. The earlier shallow schemes, e.g., both Cross-view hashing (CVH)
[16] and Inter-Media Hashing (IMH) [30], can be viewed as the extension of
Spectral Hashing [33] from single-modal hashing to cross-modal hashing sce-
nario. These methods restrict hash codes by solving the eigenvalue decomposi-
tion with constructed affinity graph. Employing matrix factorization methods,
Collective Matrix Factorization Hashing (CMFH) [7] bridges the modality gap
by embedding different modal information into a latent common space. Latent
Semantic Sparse Hashing (LSSH) [44] extends CMFH to utilizing sparse cod-
ing in extracting latent feature process of both two modals at the same time.
And subsequently LSSH employs the latent features to restrict hash code learn-
ing. However, above shallow methods are difficult to extract the heterogeneous
relationships from different modalities for using hand-crafted features. As the
progress of deep neural networks have made in exploring nonlinear relationship-
s, many methods [4J40I39/T4] capture more semantic relevant features to learn
hash code in an end-to-end training model. Most of them utilize similarity graphs
generated from intrinsic data directly and obtain superior performances in some
cross-modal retrieval tasks. [9] utilizes the adaptive tanh function which has
concise derivation and can be used in objective function directly. [35] makes
use of the matrix factorization with Laplacian constraint in training process to
constraint the hash code generation, which consequently preserves the neighbor
affinity information of original features in their own space. Liu et al [2I] designed
Joint-modal Distribution-based Similarity Hashing (JDSH), which capture the
joint similarity matrix for information maintain. [41] utilized three types of sim-
ilar information and keep real value in optimization for hash code learning. [38]
aligns the feature between the visual information and textual information.

Though impressive progress have these models made, there are still a few
challenges to be solved that are mentioned in Section (1). In this paper, we
focus on improving the retrieval performance of unsupervised deep cross-modal
hashing in terms: (1) With the intention to extract similarity information from
both visual and textual modalities, the sparse affinity graph, which tackles the
problem of lacking label information, can be evolved to a dense form for fully
preserve the the similarity information in hash codes. (2) To generate more
discriminative hash codes for cross-modal retrieval.

2 Algorithm

In summary, the produce for solving the proposed problem in Eq. 9 is listed in
Algorithm [I]

3 Datasets

Wiki [27]: This dataset consists of 2,866 samples in total with 10 classes. Each
image is described by a paragraph which represents related image, from 1 to
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Algorithm 1 Algorithm process of generating unified sparse affinity graph.

Input:
Image features FT € R™*%; text features F7 € R™*47;
the number of clusters ¢, the number of neighbours k£ and hyper-parameter \i, Ao;
Output:
The learned Z € [0, 1]™*™.
Initialize ST and ST by using Eq. 5;
Initialize the weight for both visual and textual modal, w! = w? = 1/2;
Initialize U by w! 8T + wTST;
Initialize D by solving Eq. 8 ;
while the dimension of the nullspace of L not equals the number of connected
components of Z or the maximum iteration unreached, do
Fixw!, w”, Z and D, update ST and ST by using Eq. 20;
Fix Z, D, ST and ST, update w’, w” by using Eq. 23;
Fix w!, wT, D, 87 and ST, update Z by using Eq. 28;
Fix w!, w?, Z, 87 and ST, update D, which is formed by the ¢ eigenvectors of
L corresponding to the ¢ smallest eigenvalues;
10: end while
11: return The learned Z with clustering result.

10. In our experiment, we randomly select 500 from the total dataset as the
query set, and the remaining samples form the training set as well as retrieval
database.

NUS-WIDE [3]: It consists of 269,648 multi-modal instances, each of which
contains an image and the related captions with 81 class labels. Following pre-
vious methods, the top 10 largest categories is selected which contain over 186
thousand instances and randomly choose 2,000 from them as query set of this
paper, and employ the others as retrieval database. Given the huge storage ex-
pense in generating unified sparse semantic graph on the whole instances, we
randomly select 20,000 image-text pairs from the original data as training set to
relief the storage cost.

MIRFlickr-25K [I3]: The original training set and validation set contains more
than 25 thousand samples from 38 categories. The class labels are represented
as one-hot form where 1 represents the image belongs to this class while 0 is the
opposite. We randomly choose 1,000 samples as the query set and set the others
as the retrieval database.

MSCOCO [19]: The dataset contains more than 123 thousand images-caption
pairs from real-world with 80 class labels. We randomly choose 2,000 from them
as query set and the others as retrieval database. And the way of building training
database is the same as NUS-WIDE.

4 Evaluation metrics

To evaluate the efficiency of our method and the baseline approaches, we employ
several frequently used evaluation metrics:
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Mean Average Precision (MAP): MAP is a metric for evaluating the
retrieval task performance and the definition is formulated as:

| M|

1 1«
M; ;;Pm‘ ) (1)

where r is the number of correct items returned from the dataset corresponding
to the ith query items, p; ; means the precision of the jth correct item retrieved
among all returned items, and | M| is the size of the query set. In addition, the
performance of all baselines and the proposed method are evaluated on 16 bit,
32 bit and 64 bit hash codes.

Precision-Recall (P-R curve):This curve show the precision and recall
rates at several hamming radius r = {0,1,2,--- ,€}. It is worthy noting that the
beginning plot of curve means the precision and recall rate of the retrieval under
the condition that the binary codes of both query and returned items are the
same.

Precision-Number of retrieved points (P-N curve): This curve shows
the precision of the top N retrieved samples.

5 Experiments

5.1 Performance on mAP@50

We compare the mAP results with CVH [16], IMH [30], CMFH [7], LSSH [44],
DBRC [9] and UDCMH |35], DJSRH [31], DSAH [38|, JDSH [21], DGCPN [41]
conducted on MIRFlickr and NUS-WIDE datasets, with the retrieved number
is set as 50 (i.e., mAP@50). All the compared method are conducted according
to their released codes or description in their original papers, and the results are
listed in Tab. [

5.2 Precision@top-N

Fig.[[]shows the precision@top-N curves among recent methods. As shown in fig-
ures, SGEH outperforms the other recent unsupervised methods which strongly
demonstrate the effectiveness of the proposed method.

5.3 Distribution of the generated hash codes

To further show the superiority of the proposed method, we also demonstrate
the distributions of the generated hash codes of Wiki with t-SNE [25] in Fig.
From this figure, we can clearly observe that the generated data can be easily
distinguished by classes, and it shows better clustering performance than the
other illustrated methods.
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Fig. 2. Illustration of the distribution of the generated codes from images with t-SNE
for 32-bit codes on the dataset Wiki.
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Table 1. The mAP@50 results on image query text (I — 7T') and text query image
(T — 1) retrieval tasks at various encoding lengths and datasets. The best perfor-
mances are shown as bold.

MIRFlickr-25K NUS-WIDE

16bit 32bit 64bit | 16bit 32bit 64bit
CVH |[0.606 0.599 0.596|0.372 0.362 0.406
IMH |0.612 0.601 0.592|0.470 0.473 0.476
CMFH |0.621 0.624 0.625|0.455 0.459 0.465
I —T| LSSH |0.584 0.599 0.602|0.481 0.489 0.507
DBRC |0.617 0.619 0.620|0.424 0.459 0.447
UDCMH|0.689 0.698 0.714|0.511 0.519 0.524
DJSRH |0.810 0.843 0.862|0.624 0.673 0.688
DGCPN|0.752 0.794 0.861|0.606 0.650 0.676
DSAH |0.763 0.834 0.864|0.617 0.672 0.704
JDSH [0.787 0.837 0.863(0.653 0.669 0.698
SGEH |0.821 0.851 0.866|0.644 0.662 0.695

CVH |[0.591 0.583 0.576|0.401 0.384 0.442
IMH ]0.603 0.595 0.589]0.478 0.483 0.472
CMFH |0.642 0.662 0.676|0.529 0.577 0.614
T — 1| LSSH [0.637 0.659 0.659|0.577 0.617 0.645
DBRC |0.618 0.626 0.626|0.455 0.459 0.468
UDCMH|0.692 0.704 0.718|0.637 0.653 0.695
DJSRH [0.786 0.822 0.835|0.612 0.644 0.671
DGCPN|0.671 0.818 0.855(0.595 0.652 0.692
DSAH |0.769 0.827 0.860|0.632 0.677 0.697
JDSH |0.806 0.840 0.856(0.670 0.681 0.703
SGEH |0.811 0.855 0.859|0.651 0.682 0.710

Task |Method

5.4 Parameter Sensitivity

In this section we discuss the influence of core hyper-parameters, namely, the
clustering centres ¢ and the number of neighbours p on the NUSWIDE dataset
with the 32 bits hash code. We fix ¢ at 5 and vary p from 1000 to 12000. Then,
we fix p at 10000 and vary ¢ from 3 to 20, and record the results in Fig. [3] From
this figure, we can discover that although the best results are achieved when p is
10000 and c is 5, these curves are relatively flat. This phenomenon reveals that
the number of clusters and the number of neighbours only have a little impact
on the final performance of the proposed method.
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