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A Discriminator

Considering that our generation process is an image-to-image task, we define a
U-Net based discriminator for our UDC image generation task. Compared to
other discriminators that classify the input image x into being real and fake,
our U-Net-like discriminator additionally performs this classification on a per-
pixel basis, segmenting image x into real and fake regions, along with the whole
image classification of x from the encoder part of the discriminator. Thus, the
discriminator loss is now can be computed by taking the decisions from both
encoder DU

enc and decoder DU
dec:

LDU = LDU
enc

+ LDU
dec

. (1)

The LDU
enc

follows the vanilla adversarial loss

LD = −Ex[logD
U
enc(x)]− Ez[log(1−DU

enc(G(z)))], (2)

and the loss for the decoder LDU
dec

is computed as the LSGAN [1] loss over all
pixels:
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]
,

(3)

where a = 1 and b = 0. Correspondingly, the generator objective becomes:

LG = −Ez[logD
U
enc(G(z))]− 1

2
Ez

[
(D(G(z))− c)2

]
, (4)

where c = 1. Using the powerful U-Net-like discriminator DU , we can encourage
the generator to focus on both global structures and local details, and thus
synthesizing realistic images.

Our U-Net-like discriminator consists of four encoder stages, four decoder
stages, and a bottleneck stage. Each encoder stage contains two convolutions
and one down-sampling layer, a 2×2 max pooling layer with a stride size of two.
The bottleneck stage has three convolutions. And in the middle of the bottleneck
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Table 1. The qualitative results of various restoration models trained under the same
training setting. DWFormer+ is trained using generated and real datasets.

Methods
P-OLED T-OLED Overhead

PSNR SSIM PSNR SSIM Params MACs

UNet [2] 29.31 0.934 36.60 0.971 8.94M 17.09G

SGDAN [3] 30.80 0.947 36.62 0.971 21.1M 7.25G

RDUNet [4] 30.02 0.941 38.16 0.980 47.93M 46.01G

ResUNet [4] 30.54 0.945 37.84 0.979 16.50M 15.79G

PDCRN [5] 31.04 0.958 37.83 0.978 3.65M 6.31G

DRANet [6] 31.86 0.949 38.84 0.983 79.01M 168.98G

DWFormer(Ours) 33.21 0.960 38.96 0.984 1.21M 13.46G

DWFormer+(Ours) 34.22 0.964 39.55 0.986 1.21M 13.46G

stage, we additionally use a global average pooling with a multi-layer perception
(MLP) to derive the feature vector classified as real or fake. The decoder stage
consists of two convolutions and one deconvolution up-sampling layer. And the
end of the decoder, we use a pixel-wise convolution to produce the feature map,
which has the same resolution as the original image but only one dimension for
pixel-wise classification.

B Models Comparison Under the Same Training Setup

Our work is based on the UDC 2020 Image Restoration Challenge, and the re-
port [3] shows the results of the competition and some models with promising
performance. However, these models are trained under different training set-
tings, and some used tricks, thus making unfair comparisons. Therefore, we try
to reproduce these models and compare them under the same training settings
without any tricks. Specifically, we crop both P-OLED and T-OLED datasets [2]
provided by UDC 2020 Image Restoration Challenge into patches of 256× 256.
And we set the batch size to 64 and randomly used flips and rotations for
data augmentation. All models are trained with Adam optimize (β1 = 0.9, and
β2 = 0.999) for 300 epochs. The initial learning rate is set to 2 × 10−4 and
the cosine annealing strategy is adopted to steadily decrease the learning rate
to 2× 10−6. We show the performance comparison results in Table 1. It can be
seen that some models have a significant performance drop, while our model still
has promising performance, indicating that our model converges faster. Further,
we experimentally show that the performance of our model is still optimal while
ensuring equal training overhead (the training time is the same, but the training
epoch varies for different models due to different computation costs).
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Table 2. Quantitative Evaluation On UDC Benchmark

Methods
P-OLED T-OLED

PSNR SSIM PSNR SSIM

Real 32.95 0.948 38.10 0.975

SGM 27.92 0.899 34.21 0.943

SGM + Real 31.34 0.931 37.54 0.971

U-Net 30.13 0.929 35.27 0.951

MPGNet 30.80 0.928 36.26 0.962

MPGNet + Real 34.02 0.955 39.16 0.985

C Effectiveness of MPGNet-generated Datasets

Since we use a pre-trained restoration model in the generation process, we per-
form the same experiments with other restoration models to verify the effective-
ness of the generated data. Here, we use PDCRN and RDU-Net with promising
performance on P-track and T-track, respectively, as restoration models. We first
use SGM-generated and MPGNet-generated datasets to train the restoration
models and evaluate them on the UDC benchmark. We also train the restora-
tion model with the real dataset for comparison and use the real and generated
data together to train the restoration model. The result shown in Table 2 illus-
trates the quantitative results. Our method outperforms SGM by 2.88 dB on
the P-OLED track and 2.05 dB on the T-OLED track by only using the syn-
thetic dataset, demonstrating the effectiveness of MPGNet. And when we use
the generated data together with the real data as training data, the restoration
models outperform the models trained with the real data only by 1.07 dB on
the P-OLED track and 1.06 dB on the T-OLED track. From the experimental
results, we can see that the data generated by MPGNet are much better than
those generated by SGM and are closer to the real ones. Moreover, our gener-
ated datasets are suitable for many different restoration models, indicating the
diversity and well generalization of our generated datasets.

D Different Batchsize on a Single GPU

Considering that our restoration model uses BatchNorm for normalization, thus
the size of the batch size during training will impact the performance, and we
will make an exploration here. To guarantee the consistency of the experiments
and utilize the asynchronous BN property of PyTorch, we trained part of the
experiments again with an 8-card RTX 3080 GPU to compare the impact of
different batch sizes on a single GPU with the same experimental setup. Note
that we train our original model on a 4-card RTX 3090 GPU.



4 Zhou et al.

Table 3. Performance comparison of DWFormer’s modules’ effectiveness on normal-
ization batch size (NBS).

Methods
P-OLED T-OLED

MACs
NBS=16 NBS=8 NBS=16 NBS=8

DWFormer 33.21 33.17 38.96 38.90 13.46G

ACA → None 32.62 32.47 38.45 38.35 13.42G

ACA → SE 33.00 32.89 38.72 38.63 13.43G

DWB → Swin 33.07 32.98 38.84 38.72 16.22G

BN → LN 33.11 33.10 39.90 38.90 13.46G

E Inference Time

Table 4. Runtime comparison of the models

Method Hardware
Resolution

256×256 512×512 1024×1024 1024×2048

UNet
RTX 2070 175.51 46.97 12.29 6.21

RTX 3080 369.55 105.38 26.65 13.40

SGDAN
RTX 2070 327.21 107.24 30.03 15.30

RTX 3080 486.38 233.15 58.92 30.0

RDUNet
RTX 2070 69.69 19.74 5.21 2.62

RTX 3080 147.91 45.23 11.43 5.86

ResUNet
RTX 2070 194.50 55.39 14.10 7.11

RTX 3080 362.40 117.01 31.52 15.31

PDCRN
RTX 2070 202.71 97.77 27.54 14.02

RTX 3080 215.88 139.41 51.13 25.89

DRANet
RTX 2070 11.90 3.76 0.94 0.48

RTX 3080 58.52 16.65 4.29 2.15

DWFormer
RTX 2070 145.77 72.90 18.74 9.42

RTX 3080 160.73 129.41 35.04 17.92

Considering that UDC is a technology applied in edge devices, thus the in-
ference time of the restoration models is very important. Since the inference
time is highly correlated with the GPU and its running state, we perform the
following experimental setup to avoid coincidence. We run five epochs for each
model. Each epoch contains 100 identical images to get five average inference
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times and choose the median of the results as our final inference time. We con-
ducted the inference time of our replicated models on a single NVIDIA 2070 and
3080 GPU, and we show the results in Table 4. From the results, we can see that
our DWFormer can restore the image of size 1024× 2048 less than 0.1s on both
NVIDIA 2070 and 3080 GPU, locating in the third rank of all models. Although
our model’s inference speed is not the fastest, our model has promising results
on both the P-OLED track and the T-OLED track, so only one model needs to
be deployed while using different parameters. Therefore, our model achieves a
balance between performance and practical deployment.

F MPGNet Composition Exploration

Considering that the quantization noise of StarLight [7] is fixed during image
generation, we explore the impact of signal-dependent quantization noise and
the location of quantization noise (see Table 5).

Table 5. Ablation study of quantization noise type and location. Dep means we utilize
input to estimate the quantization noise distribution parameters, and LA means we
add the quantization noise after the signal-dependent and signal-independent noise.

Methods
P-OLED T-OLED

PSNR SSIM PSNR SSIM

MPGNet 31.92 0.940 37.31 0.969
→ Dep 31.94↑0.02 0.940↑0.000 37.32↑0.01 0.970↑0.001
→ LA 31.91↓0.01 0.940↓0.000 37.29↓0.02 0.968↓0.001
→ Dep and LA 31.95↑0.03 0.941↑0.001 37.33↑0.02 0.970↑0.001

Also, we replace our MPGNet’s module with BNCR-GAN’s [8] blur and
noise modules to build generators (see Table 6). Results show that our MPGNet
performs best, which indicates the effectiveness of our noise and blur module.

Table 6. Ablation study of different types of degradation modules. We use blur and
noise in BNCR-GAN to build generators.

Methods
P-OLED T-OLED

PSNR SSIM PSNR SSIM

MPGNet 31.92 0.940 37.31 0.969
w/ BNCR-GAN Noise 31.30↓0.62 0.934↓0.006 36.66↓0.65 0.962↓0.007
w/ BNCR-GAN Blur 31.01↓0.91 0.931↓0.009 36.61↓0.70 0.962↓0.007
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