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Abstract

Capturing photographs with wrong exposures remains a

major source of errors in camera-based imaging. Expo-

sure problems are categorized as either: (i) overexposed,

where the camera exposure was too long, resulting in bright

and washed-out image regions, or (ii) underexposed, where

the exposure was too short, resulting in dark regions. Both

under- and overexposure greatly reduce the contrast and vi-

sual appeal of an image. Prior work mainly focuses on un-

derexposed images or general image enhancement. In con-

trast, our proposed method targets both over- and underex-

posure errors in photographs. We formulate the exposure

correction problem as two main sub-problems: (i) color en-

hancement and (ii) detail enhancement. Accordingly, we

propose a coarse-to-fine deep neural network (DNN) model,

trainable in an end-to-end manner, that addresses each sub-

problem separately. A key aspect of our solution is a new

dataset of over 24,000 images exhibiting the broadest range

of exposure values to date with a corresponding properly

exposed image. Our method achieves results on par with ex-

isting state-of-the-art methods on underexposed images and

yields significant improvements for images suffering from

overexposure errors.

1. Introduction

The exposure used at capture time directly affects the

overall brightness of the final rendered photograph. Digital

cameras control exposure using three main factors: (i) cap-

ture shutter speed, (ii) f-number, which is the ratio of the fo-

cal length to the camera aperture diameter, and (iii) the ISO

value to control the amplification factor of the received pixel

signals. In photography, exposure settings are represented

by exposure values (EVs), where each EV refers to differ-

ent combinations of camera shutter speeds and f-numbers

that result in the same exposure effect—also referred to as

‘equivalent exposures’ in photography.

∗This work was done while Mahmoud Afifi was an intern at the SAIC.
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Figure 1: Photographs with over- and underexposure errors

and the results of our method using a single model for expo-

sure correction. These sample input images are taken from

outside our dataset to demonstrate the generalization of our

trained model.

Digital cameras can adjust the exposure value of cap-

tured images for the purpose of varying the brightness lev-

els. This adjustment can be controlled manually by users or

performed automatically in an auto-exposure (AE) mode.

When AE is used, cameras adjust the EV to compensate for

low/high levels of brightness in the captured scene using

through-the-lens (TTL) metering that measures the amount

of light received from the scene [49].

Exposure errors can occur due to several factors, such as

errors in measurements of TTL metering, hard lighting con-

ditions (e.g., very low lighting and backlighting), dramatic

changes in the brightness level of the scene, and errors made

by users in the manual mode. Such exposure errors are in-

troduced early in the capture process and are thus hard to

correct after rendering the final 8-bit image. This is due

to the highly nonlinear operations applied by the camera

image signal processor (ISP) afterwards to render the final

8-bit standard RGB (sRGB) image [31].

Fig. 1 shows typical examples of images with exposure
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errors. In Fig. 1, exposure errors result in either very bright

image regions, due to overexposure, or very dark regions,

caused by underexposure errors, in the final rendered im-

ages. Correcting images with such errors is a challeng-

ing task even for well-established image enhancement soft-

ware packages, see Fig. 9. Although both over- and un-

derexposure errors are common in photography, most prior

work is mainly focused on correcting underexposure er-

rors [23, 56, 58, 65, 66] or generic image quality enhance-

ment [11, 18].

Contributions We propose a coarse-to-fine deep learning

method for exposure error correction of both over- and un-

derexposed sRGB images. Our approach formulates the ex-

posure correction problem as two main sub-problems: (i)

color and (ii) detail enhancement. We propose a coarse-to-

fine deep neural network (DNN) model, trainable in an end-

to-end manner, that begins by correcting the global color in-

formation and subsequently refines the image details. In ad-

dition to our DNN model, a key contribution to the exposure

correction problem is a new dataset containing over 24,000

images1 rendered from raw-RGB to sRGB with different

exposure settings with broader exposure ranges than previ-

ous datasets. Each image in our dataset is provided with

a corresponding properly exposed reference image. Lastly,

we present an extensive set of evaluations and ablations of

our proposed method with comparisons to the state of the

art. We demonstrate that our method achieves results on

par with previous methods dedicated to underexposed im-

ages and yields significant improvements on overexposed

images. Furthermore, our model generalizes well to images

outside our dataset.

2. Related Work

The focus of our paper is on correcting exposure errors

in camera-rendered 8-bit sRGB images. We refer the reader

to [9, 24, 25, 38] for representative examples for rendering

linear raw-RGB images captured with low-light or exposure

errors.

Exposure Correction Traditional methods for exposure

correction and contrast enhancement rely on image his-

tograms to adjust image intensity values [8, 19, 36, 50, 69].

Alternatively, tone curve adjustment is used to correct im-

ages with exposure errors. This process is performed by

relying either solely on input image information [63] or

trained deep learning models [21, 46, 48, 62]. The major-

ity of prior work adopts the Retinex theory [34] by as-

suming that improperly exposed images can be formulated

as a pixel-wise multiplication of target images, captured

with correct exposure settings, by illumination maps. Thus,

the goal of these methods is to predict illumination maps

to recover the well-exposed target images. Representative

1Project page: https://github.com/mahmoudnafifi/Exposure Correction
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Figure 2: Dataset overview. Our dataset contains images

with different exposure error types and their corresponding

properly exposed reference images. Shown is a t-SNE vi-

sualization [42] of all images in our dataset and the low-

light (LOL) paired dataset (outlined in red) [58]. Notice

that LOL covers a relatively small fraction of the possible

exposure levels, as compared to our introduced dataset. Our

dataset was rendered from linear raw-RGB images taken

from the MIT-Adobe FiveK dataset [6]. Each image was

rendered with different relative exposure values (EVs) by

an accurate emulation of the camera ISP processes.

Retinex-based methods include [23, 29, 34, 44, 57, 64, 65]

and the most recent deep learning ones [56,58,66]. Most of

these methods, however, are restricted to correcting under-

exposure errors [23,56,58–60,65,66,68]. In contrast to the

majority of prior work, our work is the first deep learning

method to explicitly correct both overexposed and underex-

posed photographs with a single model.

HDR Restoration and Image Enhancement HDR

restoration is the process of reconstructing scene radiance

HDR values from one or more low dynamic range (LDR)

input images. Prior work either require access to multiple

LDR images [16, 30, 43] or use a single LDR input image,

which is converted to an HDR image by hallucinating miss-

ing information [15, 47]. Ultimately, these reconstructed

HDR images are mapped back to LDR for perceptual vi-

sualization. This mapping can be directly performed from

the input multi-LDR images [7,13], the reconstructed HDR

image [61], or directly from the single input LDR image

without the need for radiance HDR reconstruction [11, 18].

There are also methods that focus on general image en-

hancement that can be applied to enhancing images with

poor exposure. In particular, work by [26, 27] was devel-

oped primarily to enhance images captured on smartphone

cameras by mapping captured images to appear as high-

quality images captured by a DSLR. Our work does not

seek to reconstruct HDR images or general enhancement,

but instead is trained to explicitly address exposure errors.

Paired Dataset Paired datasets are crucial for supervised

learning for image enhancement tasks. Existing paired

datasets for exposure correction focus only on low-light un-

derexposed images. Representative examples include Wang

et al.’s dataset [56] and the low-light (LOL) paired dataset
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(A) Input image and the Laplacian pyramid (B) Properly exposed reference image and the 

Laplacian pyramid

(C) Reconstructed image using the pyramid 

in (A) after swapping the last level of the 

pyramid with the corresponding one in (B)

(D) Reconstructed image using the pyramid in 

(A) after swapping the last two levels of the 

pyramid with the corresponding levels in (B)
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Figure 3: Motivation behind our coarse-to-fine exposure

correction approach. Example of an overexposed image and

its corresponding properly exposed image shown in (A) and

(B), respectively. The Laplacian pyramid decomposition al-

lows us to enhance the color and detail information sequen-

tially, as shown in (C) and (D), respectively.

[58]. Unlike existing datasets for exposure correction, we

introduce a large image dataset rendered with a wide range

of exposure errors. Fig. 2 shows a comparison between our

dataset and the LOL dataset in terms of the number of im-

ages and the variety of exposure errors in each dataset. The

LOL dataset covers a relatively small fraction of the possi-

ble exposure levels, as compared to our introduced dataset.

Our dataset is based on the MIT-Adobe FiveK dataset [6]

and is accurately rendered by adjusting the high tonal val-

ues provided in camera sensor raw-RGB images to realisti-

cally emulate camera exposure errors. An alternative worth

noting is to use a large HDR dataset to produce training

data—for example, the Google HDR+ dataset [24]. One

drawback, however, is that this dataset is a composite of a

varying number of smartphone captured raw-RGB images

that were first aligned to a composite raw-RGB image. The

target ground truth image is based on an HDR-to-LDR al-

gorithm applied to this composite raw-RGB image [18,24].

We opt instead to use the FiveK dataset as it starts with a

single high-quality raw-RGB image and the ground truth

result is generated by an expert photographer.

3. Our Dataset

To train our model, we need a large number of training

images rendered with realistic over- and underexposure er-

rors and corresponding properly exposed ground truth im-

ages. As discussed in Sec. 2, such datasets are currently not

publicly available to support exposure correction research.

For this reason, our first task is to create a new dataset. Our

dataset is rendered from the MIT-Adobe FiveK dataset [6],

which has 5,000 raw-RGB images and corresponding sRGB

images rendered manually by five expert photographers [6].

For each raw-RGB image, we use the Adobe Camera

Raw SDK [1] to emulate different EVs as would be applied

by a camera [53]. Adobe Camera Raw accurately emulates

the nonlinear camera rendering procedures using metadata

embedded in each DNG raw file [2, 53]. We render each

raw-RGB image with different digital EVs to mimic real

exposure errors. Specifically, we use the relative EVs −1.5,

−1, +0, +1, and +1.5 to render images with underexposure

errors, a zero gain of the original EV, and overexposure er-

rors, respectively. The zero-gain relative EV is equivalent

to the original exposure settings applied onboard the cam-

era during capture time.

As the ground truth images, we use images that were

manually retouched by an expert photographer (referred to

as Expert C in [6]) as our target correctly exposed images,

rather than using our rendered images with +0 relative EV.

The reason behind this choice is that a significant number

of images contain backlighting or partial exposure errors in

the original exposure capture settings. The expert adjusted

images were performed in ProPhoto RGB color space [6]

(rather than raw-RGB), which we converted to a standard

8-bit sRGB color space encoding.

In total, our dataset contains 24,330 8-bit sRGB images

with different digital exposure settings. We discarded a

small number of images that had misalignment with their

corresponding ground truth image. These misalignments

are due to different usage of the DNG crop area metadata

by Adobe Camera Raw SDK and the expert. Our dataset is

divided into three sets: (i) training set of 17,675 images, (ii)

validation set of 750 images, and (iii) testing set of 5,905

images. The training, validation, and testing sets do not

share any scenes in common. Fig. 2 shows examples of our

generated 8-bit sRGB images and the corresponding prop-

erly exposed 8-bit sRGB reference images.

4. Our Method

Given an 8-bit sRGB input image, I, rendered with the

incorrect exposure setting, our method aims to produce an

output image, Y, with fewer exposure errors than those in I.

As we simultaneously target both over- and underexposed

errors, our input image, I, is expected to contain regions of

nearly over- or under-saturated values with corrupted color

and detail information. We propose to correct color and

detail errors of I in a sequential manner. Specifically, we

process a multi-resolution representation of I, rather than

directly dealing with the original form of I. We use the

Laplacian pyramid [4] as our multiresolution decomposi-

tion, which is derived from the Gaussian pyramid [5] of I.
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Figure 4: Overview of our image exposure correction architecture. We propose a coarse-to-fine deep network to progressively

correct exposure errors in 8-bit sRGB images. Our network first corrects the global color captured at the final level of the

Laplacian pyramid and then the subsequent frequency layers.

4.1. CoarsetoFine Exposure Correction

Let X represent the Laplacian pyramid of I with n lev-

els, such that X(l) is the lth level of X. The last level of

this pyramid (i.e., X(n)) captures low-frequency informa-

tion of I, while the first level (i.e., X(1)) captures the high-

frequency information. Such frequency levels can be cat-

egorized into: (i) global color information of I stored in

the low-frequency level and (ii) image coarse-to-fine details

stored in the mid- and high-frequency levels. These levels

can be later used to reconstruct the full-color image I.

Fig. 3 motivates our coarse-to-fine approach to exposure

correction. Figs. 3-(A) and (B) show an example over-

exposed image and its corresponding well-exposed target,

respectively. As observed, a significant exposure correc-

tion can be obtained by using only the low-frequency layer

(i.e., the global color information) of the target image in

the Laplacian pyramid reconstruction process, as shown in

Fig. 3-(C). We can then improve the final image by enhanc-

ing the details in a sequential way by correcting each level

of the Laplacian pyramid, as shown in Fig. 3-(D). Practi-

cally, we do not have access to the properly exposed image

in Fig. 3-(B) at the inference stage, and thus our goal is to

predict the missing color/detail information of each level in

the Laplacian pyramid.

Inspired by this observation and the success of coarse-

to-fine architectures for various other computer vision tasks

(e.g., [14, 33, 41, 54]), we design a DNN that corrects the

global color and detail information of I in a sequential man-

ner using the Laplacian pyramid decomposition. The re-

maining parts of this section explain the technical details of

our model (Sec. 4.2), including details of the losses (Sec.

4.3), inference phase (Sec. 4.4), and training (Sec. 4.5).

4.2. CoarsetoFine Network

Our image exposure correction architecture sequentially

processes the n-level Laplacian pyramid, X, of the input

image, I, to produce the final corrected image, Y. The

proposed model consists of n sub-networks. Each of these

sub-networks is a U-Net-like architecture [52] with untied

weights. We allocate the network capacity in the form of

weights based on how significantly each sub-problem (i.e.,

global color correction and detail enhancement) contributes

to our final result. Fig. 4 provides an overview of our net-

work. As shown, the largest (in terms of weights) sub-

network in our architecture is dedicated to processing the

global color information in I (i.e., X(n)). This sub-network

(shown in yellow in Fig. 4) processes the low-frequency

level X(n) and produces an upscaled image Y(n). The up-

scaling process scales up the output of our sub-network by

a factor of two using strided transposed convolution with

trainable weights. Next, we add the first mid-frequency

level X(n−1) to Y(n) to be processed by the second sub-

network in our model. This sub-network enhances the cor-

responding details of the current level and produces a resid-

ual layer that is then added to Y(n)+X(n−1) to reconstruct

image Y(n−1), which is equivalent to the corresponding

Gaussian pyramid level n− 1. This refinement-upsampling

process proceeds until the final output image, Y, is pro-

duced. Our network is fully differentiable and thus can be

trained in an end-to-end manner. Additional details of our

network are provided in the supplementary materials.

4.3. Losses

We train our model end-to-end to minimize the following

loss function:

L = Lrec + Lpyr + Ladv, (1)

where Lrec denotes the reconstruction loss, Lpyr the pyramid

loss, and Ladv the adversarial loss. The individual losses are

defined next.
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Reconstruction Loss We use the L1 loss function be-

tween the reconstructed and properly exposed reference im-

ages. This loss can be expressed as follows:

Lrec =
3hw
∑

p=1

|Y(p)−T(p)| , (2)

where h and w denote the height and width of the train-

ing image, respectively, and p is the index of each pixel in

our corrected image, Y, and the corresponding properly ex-

posed reference image, T, respectively.

Pyramid Loss To guide each sub-network to follow the

Laplacian pyramid reconstruction procedure, we introduce

dedicated losses at each pyramid level. Let T(l) denote the

lth level of the Gaussian pyramid of our reference image,

T, after upsampling by a factor of two. We use a simple in-

terpolation process for the upsampling operation [43]. Our

pyramid loss is computed as follows:

Lpyr =
n
∑

l=2

2(l−2)
3hlwl
∑

p=1

∣

∣Y(l)(p)−T(l)(p)
∣

∣ , (3)

where hl and wl are twice the height and width of the lth

level in the Laplacian pyramid of the training image, re-

spectively, and p is the index of each pixel in our corrected

image at the lth level Y(l) and the properly exposed refer-

ence image at the same level T(l), respectively. The pyra-

mid loss not only gives a principled interpretation of the

task of each sub-network but also results in less visual ar-

tifacts compared to training using only the reconstruction

loss, as can be seen in Fig. 5. Notice that without the in-

termediate pyramid losses, the output of each sub-network,

shown in Fig. 5 (top), deviates widely from the intermedi-

ate Gaussian targets compared to using the pyramid loss at

each scale, as shown in Fig. 5 (bottom). We provide sup-

porting justification for this loss with an ablation study in

the supplementary materials.

Adversarial Loss To perceptually enhance the recon-

struction of the corrected image output in terms of realism
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Figure 5: Multiscale losses. Shown are the output of each

sub-net trained with and without the pyramid loss (Eq. 3).

Example input image

with poor exposure

Result obtained

by our method

Results are evaluated against each of the five experts results 

from the MIT-Adobe FiveK dataset [6]

Expert A Expert B Expert C

Expert D Expert E

Figure 6: We evaluate the results of input images against all

five expert photographers’ edits from the FiveK dataset [6].

and appeal, we also consider an adversarial loss as a regu-

larizer. This adversarial loss term can be described by the

following equation [20]:

Ladv = −3hwn log (S (D (Y))) , (4)

where S is the sigmoid function and D is a discriminator

DNN that is trained together with our main network. We

provide the details of our discriminator network and visual

comparisons between our results using non-adversarial and

adversarial training in the supplementary materials.

4.4. Inference Stage

Our network is fully convolutional and can process in-

put images with different resolutions. While our model re-

quires a reasonable memory size (∼7M parameters), pro-

cessing high-resolution images requires a high computa-

tional power that may not always be available. Further-

more, processing images with considerably higher resolu-

tion (e.g., 16-megapixel) than the range of resolutions used

in the training process can affect our model’s robustness

with large homogeneous image regions. This issue arises

because our network was trained on a certain range of ef-

fective receptive fields, which is very low compared to the

receptive fields required for images with very high resolu-

tion. To that end, we use the bilateral guided upsampling

method [10] to process high-resolution images. First, we

resize the input test image to have a maximum dimension

of 512 pixels. Then, we process the downsampled version

of the input image using our model, followed by applying

the fast upsampling technique [10] with a bilateral grid of

22×22×8 cells. This process allows us to process a 16-

megapixel image in ∼4.5 seconds on average. This time

includes ∼0.5 seconds to run our network on an NVIDIAr

GeForce GTX 1080TM GPU and ∼4 seconds on an Intelr

Xeonr E5-1607 @ 3.10 GHz machine for the guided up-

sampling process. Note the runtime of the guided upsam-

pling step can be significantly improved with a Halide im-

plementation [51].

4.5. Training Details

In our implementation, we use a Laplacian pyramid with

four levels (i.e., n = 4) and thus we have four sub-networks

in our model—an ablation study evaluating the effect on the
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Input images DPED [26] Ours Ref. images Input images Deep UPE [11] Ours Ref. images

Figure 7: Qualitative results of correcting images with exposure errors. Shown are the input images from our test set, results

from the DPED [26], results from the Deep UPE [11], our results, and the corresponding ground truth images.

number of Laplacian levels, including a comparison with a

vanilla U-Net architecture, is presented in the supplemen-

tary materials. We trained our model on patches randomly

extracted from training images with different dimensions.

We first train on patches of size 128×128 pixels. Next, we

continue training on 256×256 patches, followed by train-

ing on 512×512 patches. We use the Adam optimizer [32]

to minimize our loss function in Eq. 1. Inspired by pre-

vious work [40], we initially train without the adversarial

loss term Ladv to speed up the convergence of our main net-

work. Upon convergence, we then add the adversarial loss

term Ladv and fine-tune our network to enhance our initial

results. Additional training details are provided in the sup-

plementary materials.

5. Empirical Evaluation

We compare our method against a broad range of exist-

ing methods for exposure correction and image enhance-

ment. We first present quantitative results and comparisons

in Sec. 5.1, followed by qualitative comparisons in Sec. 5.2.

5.1. Quantitative Results

To evaluate our method, we use our test set, which con-

sists of 5,905 images rendered with different exposure set-

tings, as described in Sec. 3. Specifically, our test set

includes 3,543 well-exposed/overexposed images rendered

with +0, +1, and +1.5 relative EVs, and 2,362 underex-

posed images rendered with −1 and −1.5 relative EVs.

We adopt the following three standard metrics to evalu-

ate the pixel-wise accuracy and the perceptual quality of our

results: (i) peak signal-to-noise ratio (PSNR), (ii) structural

similarity index measure (SSIM) [67], and (iii) perceptual

index (PI) [3]. The PI is given by:

PI = 0.5(10− Ma+ NIQE), (5)

where both Ma [39] and NIQE [45] are no-reference image

quality metrics.

Input image Photoshop HDR [12] Ours

By Justin Chiaratti (Flickr: CC BY-NC-SA 2.0)

DPE [11]

Figure 8: Qualitative comparison with Adobe Photoshop’s

local adaptation HDR function [12] and DPE [11]. Input

images are taken from Flickr.

For the pixel-wise error metrics – namely, PSNR and

SSIM – we compare the results not only against the properly

exposed rendered images by Expert C but also with all five

expert photographers in the MIT-Adobe FiveK dataset [6].

Though the expert photographers may render the same im-

age in different ways due to differences in the camera-based

rendering settings (e.g., white balance and tone mapping),

a common characteristic over all rendered images by the

expert photographers is that they all have fairly proper ex-

posure settings [6] (see Fig. 6). For this reason, we evaluate

our method against the five expert rendered images as they

all represent satisfactory exposed reference images.

We also evaluate a variety of previous non-learning and

learning-based methods on our test set for comparison: his-

togram equalization (HE) [19], contrast-limited adaptive

histogram equalization (CLAHE) [69], the weighted vari-

ational model (WVM) [17], the low-light image enhance-

ment method (LIME) [22, 23], HDR CNN [15], DPED

models [26], deep photo enhancer (DPE) models [11],

the high-quality exposure correction method (HQEC) [65],

RetinexNet [58], deep underexposed photo enhancer (UPE)

[56], and the zero-reference deep curve estimation method

(Zero-DCE) [21]. To render the reconstructed HDR im-

ages generated by the HDR CNN method [15] back into

LDR, we tested both the deep reciprocating HDR transfor-

mation method (RHT) [61], and Adobe Photoshop’s (PS)

HDR tool [12].

Table 1 summarizes the quantitative results obtained by

each method. As shown in the top portion of the table, our

method achieves the best results for overexposed images un-

der all metrics. In the underexposed image correction set-
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Table 1: Quantitative evaluation on our introduced test set. The best results are highlighted with green and bold. The

second- and third-best results are highlighted in yellow and red, respectively. We compare each method with properly

exposed reference image sets rendered by five expert photographers [6]. For each method, we present peak signal-to-noise

ratio (PSNR), structural similarity index measure (SSIM) [67], and perceptual index (PI) [3]. We denote methods designed for

underexposure correction in gray. Non-deep learning methods are marked by ∗. The terms U and S stand for unsupervised

and supervised, respectively. Notice that higher PSNR and SSIM values are better, while lower PI values indicate better

perceptual quality.

Method
Expert A Expert B Expert C Expert D Expert E Avg.

PI
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

+0, +1, and +1.5 relative EVs (3,543 properly exposed and overexposed images)

HE [19] ∗ 16.140 0.686 16.277 0.672 16.531 0.699 16.643 0.669 17.321 0.691 16.582 0.683 2.351

CLAHE [69] ∗ 13.934 0.568 14.689 0.586 14.453 0.584 15.116 0.593 15.850 0.612 14.808 0.589 2.270

WVM [17] ∗ 12.355 0.624 13.147 0.656 12.748 0.645 14.059 0.669 15.207 0.690 13.503 0.657 2.342

LIME [22, 23] ∗ 09.627 0.549 10.096 0.569 9.875 0.570 10.936 0.597 11.903 0.626 10.487 0.582 2.412

HDR CNN [15] w/ RHT [61] 13.151 0.475 13.637 0.478 13.622 0.497 14.177 0.479 14.625 0.503 13.842 0.486 4.284

HDR CNN [15] w/ PS [12] 14.804 0.651 15.622 0.689 15.348 0.670 16.583 0.685 18.022 0.703 16.076 0.680 2.248

DPED (iPhone) [26] 12.680 0.562 13.422 0.586 13.135 0.581 14.477 0.596 15.702 0.630 13.883 0.591 2.909

DPED (BlackBerry) [26] 15.170 0.621 16.193 0.691 15.781 0.642 17.042 0.677 18.035 0.678 16.444 0.662 2.518

DPED (Sony) [26] 16.398 0.672 17.679 0.707 17.378 0.697 17.997 0.685 18.685 0.700 17.627 0.692 2.740

DPE (HDR) [11] 14.399 0.572 15.219 0.573 15.091 0.593 15.692 0.581 16.640 0.626 15.408 0.589 2.417

DPE (U-FiveK) [11] 14.314 0.615 14.958 0.628 15.075 0.645 15.987 0.647 16.931 0.667 15.453 0.640 2.630

DPE (S-FiveK) [11] 14.786 0.638 15.519 0.649 15.625 0.668 16.586 0.664 17.661 0.684 16.035 0.661 2.621

HQEC [65] ∗ 11.775 0.607 12.536 0.631 12.127 0.627 13.424 0.652 14.511 0.675 12.875 0.638 2.387

RetinexNet [58] 10.149 0.570 10.880 0.586 10.471 0.595 11.498 0.613 12.295 0.635 11.059 0.600 2.933

Deep UPE [56] 10.047 0.532 10.462 0.568 10.307 0.557 11.583 0.591 12.639 0.619 11.008 0.573 2.428

Zero-DCE [21] 10.116 0.503 10.767 0.502 10.395 0.514 11.471 0.522 12.354 0.557 11.0206 0.5196 2.774

Our method w/o Ladv 18.976 0.743 19.767 0.731 19.980 0.768 18.966 0.716 19.056 0.727 19.349 0.737 2.189

Our method w/ Ladv 18.874 0.738 19.569 0.718 19.788 0.760 18.823 0.705 18.936 0.719 19.198 0.728 2.183

−1 and −1.5 relative EVs (2,362 underexposed images)

HE [19] ∗ 16.158 0.683 16.293 0.669 16.517 0.692 16.632 0.665 17.280 0.684 16.576 0.679 2.486

CLAHE [69] ∗ 16.310 0.619 17.140 0.646 16.779 0.621 15.955 0.613 15.568 0.608 16.350 0.621 2.387

WVM [17] ∗ 17.686 0.728 19.787 0.764 18.670 0.728 18.568 0.729 18.362 0.724 18.615 0.735 2.525

LIME [22, 23] ∗ 13.444 0.653 14.426 0.672 13.980 0.663 15.190 0.673 16.177 0.694 14.643 0.671 2.462

HDR CNN [15] w/ RHT [61] 14.547 0.456 14.347 0.427 14.068 0.441 13.025 0.398 11.957 0.379 13.589 0.420 5.072

HDR CNN [15] w/ PS [12] 17.324 0.692 18.992 0.714 18.047 0.696 18.377 0.689 19.593 0.701 18.467 0.698 2.294

DPED (iPhone) [26] 18.814 0.680 21.129 0.712 20.064 0.683 19.711 0.675 19.574 0.676 19.858 0.685 2.894

DPED (BlackBerry) [26] 19.519 0.673 22.333 0.745 20.342 0.669 19.611 0.683 18.489 0.653 20.059 0.685 2.633

DPED (Sony) [26] 18.952 0.679 20.072 0.691 18.982 0.662 17.450 0.629 15.857 0.601 18.263 0.652 2.905

DPE (HDR) [11] 17.625 0.675 18.542 0.705 18.127 0.677 16.831 0.665 15.891 0.643 17.403 0.673 2.340

DPE (U-FiveK) [11] 19.130 0.709 19.574 0.674 19.479 0.711 17.924 0.665 16.370 0.625 18.495 0.677 2.571

DPE (S-FiveK) [11] 20.153 0.738 20.973 0.697 20.915 0.738 19.050 0.688 17.510 0.648 19.720 0.702 2.564

HQEC [65] ∗ 15.801 0.692 17.371 0.718 16.587 0.700 17.090 0.705 17.675 0.716 16.905 0.706 2.532

RetinexNet [58] 11.676 0.607 12.711 0.611 12.132 0.621 12.720 0.618 13.233 0.637 12.494 0.619 3.362

Deep UPE [56] 17.832 0.728 19.059 0.754 18.763 0.745 19.641 0.737 20.237 0.740 19.106 0.741 2.371

Zero-DCE [21] 13.935 0.585 15.239 0.593 14.552 0.589 15.202 0.587 15.893 0.614 14.9642 0.5936 3.001

Our method w/o Ladv 19.432 0.750 20.590 0.739 20.542 0.770 18.989 0.723 18.874 0.727 19.685 0.742 2.344

Our method w/ Ladv 19.475 0.751 20.546 0.730 20.518 0.768 18.935 0.715 18.756 0.719 19.646 0.737 2.342

Combined over and underexposed images (5,905 images)

HE [19] ∗ 16.148 0.685 16.283 0.671 16.525 0.696 16.639 0.668 17.305 0.688 16.580 0.682 2.405

CLAHE [69] ∗ 14.884 0.589 15.669 0.610 15.383 0.599 15.452 0.601 15.737 0.610 15.425 0.602 2.317

WVM [17] ∗ 14.488 0.665 15.803 0.699 15.117 0.678 15.863 0.693 16.469 0.704 15.548 0.688 2.415

LIME [22, 23] 11.154 0.591 11.828 0.610 11.517 0.607 12.638 0.628 13.613 0.653 12.150 0.618 2.432

HDR CNN [15] w/ RHT [61] 13.709 0.467 13.921 0.458 13.800 0.474 13.716 0.446 13.558 0.454 13.741 0.460 4.599

HDR CNN [15] w/ PS [12] 15.812 0.667 16.970 0.699 16.428 0.681 17.301 0.687 18.650 0.702 17.032 0.687 2.267

DPED (iPhone) [26] 15.134 0.609 16.505 0.636 15.907 0.622 16.571 0.627 17.251 0.649 16.274 0.629 2.903

DPED (BlackBerry) [26] 16.910 0.642 18.649 0.713 17.606 0.653 18.070 0.679 18.217 0.668 17.890 0.671 2.564

DPED (Sony) [26] 17.419 0.675 18.636 0.701 18.020 0.683 17.554 0.660 17.778 0.663 17.881 0.676 2.806

DPE (HDR) [11] 15.690 0.614 16.548 0.626 16.305 0.626 16.147 0.615 16.341 0.633 16.206 0.623 2.417

DPE (U-FiveK) [11] 16.240 0.653 16.805 0.646 16.837 0.671 16.762 0.654 16.707 0.650 16.670 0.655 2.606

DPE (S-FiveK) [11] 16.933 0.678 17.701 0.668 17.741 0.696 17.572 0.674 17.601 0.670 17.510 0.677 2.621

HQEC [65] ∗ 13.385 0.641 14.470 0.666 13.911 0.656 14.891 0.674 15.777 0.692 14.487 0.666 2.445

RetinexNet [58] 10.759 0.585 11.613 0.596 11.135 0.605 11.987 0.615 12.671 0.636 11.633 0.607 3.105

Deep UPE [56] 13.161 0.610 13.901 0.642 13.689 0.632 14.806 0.649 15.678 0.667 14.247 0.640 2.405

Zero-DCE [21] 11.643 0.536 12.555 0.539 12.058 0.544 12.964 0.548 13.769 0.580 12.5978 0.5494 2.865

Our method w/o Ladv 19.158 0.746 20.096 0.734 20.205 0.769 18.975 0.719 18.983 0.727 19.483 0.739 2.251

Our method w/ Ladv 19.114 0.743 19.960 0.723 20.080 0.763 18.868 0.709 18.864 0.719 19.377 0.731 2.247

ting, our results (middle portion of table) are on par with the

state-of-the-art methods. Finally, in contrast to most of the

existing methods, the results in the bottom portion of the

table show that our method can effectively deal with both

types of exposure errors.

Generalization We further evaluate the generalization abil-

ity of our method on the following standard image datasets

used by previous low-light image enhancement methods: (i)

LIME (10 images) [23], (ii) NPE (75 images) [57], (iii) VV

(24 images) [55], and DICM (44 images) [35]. Note that in

these experiments, we report results of our model trained on

our training set without further tuning or re-training on any

of these datasets. Similar to previous methods, we use the

NIQE perceptual score [45] for evaluation. Table 2 com-
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Input image Photoshop HDR [12] iPhone Photo 

Enhancer

OursGoogle Photo 

Enhancer

By Rodrigo Valla (Flickr: CC BY-NC 2.0)

By Joe (Flickr: CC BY 2.0)

Figure 9: Comparisons with commercial software pack-

ages. The input images are taken from Flickr.

pares results by our method and the following methods:

LIME [22, 23], WVM [17], RetinexNet (RNet) [58], “kin-

dling the darkness” (KinD) [66], enlighten GAN (EGAN)

[28], and deep bright-channel prior (BCP) [37]. As can be

seen in Table 2, our method generally achieves perceptually

superior results in correcting low-light 8-bit images of other

datasets.

5.2. Qualitative Results

We compare our method qualitatively with a variety of

previous methods. Note we show results using the model

trained with the adversarial loss term, as it produces per-

ceptually superior results (see the perceptual metric results

in Tables 1 and 2).

Fig. 7 shows our results on different overexposed and

underexposed images. As shown, our results are arguably

visually superior to the other methods, even when input im-

ages have hard backlight conditions, as shown in the second

row in Fig. 7 (right).

Generalization We also ran our model on several im-

ages from Flickr that are outside our introduced dataset, as

shown in Figs. 1, 8, and 9. As with the images from our

introduced dataset, our results on the Flickr images are ar-

guably superior to the compared methods. Additional qual-

itative results and comparisons are provided in the supple-

mentary materials.

5.3. Limitations

Our method may produce unsatisfactory results in re-

gions that have insufficient semantic information, as shown

in Fig. 10. For example, the input image shown in the first

row in Fig. 10 is completely saturated and contains almost

no details in the region of the man’s face. We can see that

our network cannot constrain the color inside the face re-

gion due to the lack of semantic information. In the supple-

mentary materials, we provide a way to interactively con-

trol the output results by scaling each layer of the Lapla-

Input image Photoshop HDR [12] Ours

By Dr. D. (Flickr: CC BY-NC-SA 2.0)

By eviljohnius (Flickr: CC BY 2.0)

Zero-DCE [21]

Photoshop HDR [12] DPE [11] OursInput image

Figure 10: Failure examples of correcting (top) overex-

posed and (bottom) underexposed images. The input im-

ages are taken from Flickr.

Table 2: Perceptual quality evaluation. Summary of NIQE

scores [45] on different low-light image datasets. In these

datasets, there are no ground-truth images provided for full-

reference quality metrics (e.g., PSNR). Highlights are in the

same format as Table 1.

Method LIME [23] NPE [57] VV [55] DICM [35] Avg.

NPE [57] ∗ 3.91 3.95 2.52 3.76 3.54

LIME [23] ∗ 4.16 4.26 2.49 3.85 3.69

WVM [17] ∗ 3.79 3.99 2.85 3.90 3.63

RNet [58] 4.42 4.49 2.60 4.20 3.93

KinD [66] 3.72 3.88 - - 3.80

EGAN [28] 3.72 4.11 2.58 - 3.50

DBCP [37] 3.78 3.18 - 3.57 3.48

Ours w/o Ladv 3.76 3.20 2.28 2.55 2.95

Ours w/ Ladv 3.76 3.18 2.28 2.50 2.93

cian pyramid before feeding them to the network. In that

way, one can control the output results to reduce such color

bleeding problems. It also can be observed that our method

may introduce noise when the input image has extreme dark

regions, as shown in the second example in Fig. 10. These

challenging conditions prove difficult for other methods as

well.

6. Concluding Remarks

We proposed a single coarse-to-fine deep learning model

for overexposed and underexposed image correction. We

employed the Laplacian pyramid decomposition to process

input images in different frequency bands. Our method is

designed to sequentially correct each of the Laplacian pyra-

mid levels in a multi-scale manner, starting with the global

color in the image and progressively addressing the image

details. Our method is enabled by a new dataset of over

24,000 images rendered with the broadest range of expo-

sure errors to date. Each image in our introduced dataset

has a reference image properly rendered by a well-trained

photographer with well-exposure compensation. Through

extensive evaluation, we showed that our method produces

compelling results compared to available solutions for cor-

recting images rendered with exposure errors and it general-

izes well. We believe that our dataset will help future work

on improving exposure correction for photographs.
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