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Abstract

Recently, person re-identification (ReID) has vastly ben-

efited from the surging waves of data-driven methods. How-

ever, these methods are still not reliable enough for real-

world deployments, due to the insufficient generalization

capability of the models learned on existing benchmarks

that have limitations in multiple aspects, including limited

data scale, capture condition variations, and appearance

diversities. To this end, we collect a new dataset named

Person30K with the following distinct features: 1) a very

large scale containing 1.38 million images of 30K identi-

ties, 2) a large capture system containing 6,497 cameras de-

ployed at 89 different sites, 3) abundant sample diversities

including varied backgrounds and diverse person poses.

Furthermore, we propose a domain generalization ReID

method, dual-meta generalization network (DMG-Net), to

exploit the merits of meta-learning in both the training

procedure and the metric space learning. Concretely, we

design a “learning then generalization evaluation” meta-

training procedure and a meta-discrimination loss to en-

hance model generalization and discrimination capabili-

ties. Comprehensive experiments validate the effectiveness

of our DMG-Net.

1. Introduction

Person re-identification (ReID) targets at matching peo-

ple across different cameras. Recent years have witnessed

remarkable progress of learning-based person ReID meth-

ods [5, 14, 20, 24, 34, 37], which have achieved promising

performances when the training and testing sets are col-

lected from the same scenarios or camera sets. However,

they are often confronted with an inevitable accuracy drop

when handling unseen cameras [3, 38]. This performance

disparity reveals the problem of their limited generaliza-

tion capability against data domain gaps, which are usually

∗Ling-Yu Duan is the corresponding author.

Figure 1. Comparison among samples from our Person30K,

Matket1501 [47], Dukemtmc [28], and MSMT17 [38] datasets.

Our Person30K covers more varied backgrounds, illumination

conditions, person poses, and capture viewpoints.

caused by different capture viewpoints, camera types, back-

grounds and illumination conditions. Therefore, the study

on enhancing ReID model’s generalization ability is of great

potential to explore for better practical deployment.

Particularly, the benchmark dataset plays a crucial role

in model training and comprehensive evaluation. How-

ever, the existing person ReID datasets still have many

limitations, such as: (1) limited image samples and anno-

tated identities (∼4K only); (2) very few capturing cam-

eras (2∼15 only) involved in data collection; (3) less varied

scenes and environmental conditions, such as backgrounds

and illumination; (4) monotonous pedestrian poses, usu-

ally covering walking poses only. These limitations over-

simplify the challenges of real-world person ReID, and re-

strict the representation and generalization capability of the

models developed on these datasets.

To facilitate person ReID, we create a new dataset,

named Person30K, with a very large scale and high data

diversity. Our dataset has the following major advantages

over existing benchmarks: (1) It contains 1.38 million im-

ages of 30K identities, 11 times the scale of the existing

largest benchmark MSMT17 [38]. (2) The images in our

Person30K are collected from 6,497 cameras deployed at 89
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different sites, far exceeding the 15-camera setting used by

MSMT17 [38]. (3) Person30K is captured both indoors and

outdoors from multiple supermarkets and shopping malls,

covering various scenes, e.g., supermarket aisles, cashiers,

mall corridors, restaurants, streets, and parking lots. (4) The

person samples present very diversified postures and dress-

ing styles. (5) We provide rich annotations for each sample,

including person ID, camera ID, site ID, and scenario cate-

gory (e.g., supermarket and shopping mall). Moreover, our

Person30K dataset can be used to evaluate model general-

ization at different domain gap levels with different testing

subset divisions, according to varied training-testing data

capture settings, such as the “same-site”, “same-scenario”,

and “different-scenarios” configurations.

Based on the proposed Person30K dataset, in this paper,

we focus on the domain generalizable person ReID. We aim

to learn a model on a set of source domains/cameras, which

can generalize well to other unseen domains/cameras with-

out further fine-tuning. Unlike unsupervised domain adap-

tation methods [3, 38, 48] that still require using unlabeled

target samples to adapt the model to target domain, the gen-

eralizable person ReID [13, 31, 49] is more convenient for

practical deployment, for being free from the reliance on

target domain samples. For example, for a large-scale ReID

system deployed at chain supermarkets, generally it is unaf-

fordable to go through the repetitive data re-collection, an-

notation, and model fine-tuning for every single supermar-

ket. Therefore, we expect a generalizable ReID system to

work out-of-the-box for widespread deployment.

For domain generalizable person ReID, we propose

a novel Dual-Meta Generalization Network (DMG-Net),

which is the first approach to exploit the meta-learning

scheme in model training procedure and metric space

learning simultaneously. Meta-learning, also referred to

as learning to learn, aims at obtaining knowledge from

“tasks/experiences”. Such “tasks” generally mimic the

target testing scenarios in model training process [4, 30].

We aim to exploit such a task construction and mimick-

ing scheme in generalizable ReID scenario. Concretely,

for our proposed meta-learning training procedure, we con-

struct the tasks through a virtual “learning then generaliza-

tion evaluation” process. We divide the training data into

support sets (for virtual training) and query sets (for virtual

evaluation) to mimic the domain generalization scenarios,

where the support and query sets do not share any over-

lapping cameras. We train a base model on support sets

and then evaluate its performance generalized on query sets.

Thereby, based on the evaluation results/losses, we can up-

date the model towards better generalization. Besides, to

enhance model discrimination, we further propose a meta-

discrimination loss to obtain a better metric space. We con-

struct discrimination oriented meta tasks by explicitly mim-

icking the cross-camera sample matching process. Specif-

ically, we compute feature-based centers to represent the

identities in the support set, and conduct a matching pro-

cess between the query samples and support centers. Over-

all, with the proposed dual meta-learning scheme, DMG-

Net can strengthen model generalization on the unseen do-

main data, as well as model discrimination for cross-camera

matching in person ReID.

Our major contributions are as follows. (1) We create

a large-scale person ReID benchmark, Person30K, which

contains 1.38 million images of 30K identities, collected

from 6,497 cameras deployed at 85 supermarkets and 4

large shopping malls. We used one full year to collect

Person30K and it cost us 130 man-months’ labor to clean

and annotate it. (2) We propose a DMG-Net for generaliz-

able person ReID which exploits the meta-learning scheme

in both the training procedure and metric space learning.

A “learning then generalization evaluation” training proce-

dure is designed to extend model generalization to unseen

domains. And a discrimination loss is also incorporated for

enhancing model discrimination in cross-camera matching.

2. Related Work

2.1. Person ReID Datasets

Benchmark datasets play a crucial role for model

training and evaluation. Recently released person ReID

datasets, including MSMT17 [38], Market1501 [47],

Dukemtmc [28], and CUHK03 [18], are evolving towards

larger scale than VIPeR [7], PRID [10] GRID [22] and

i-LIDS [39]. Specifically, MSMT17 [38] contains the

largest number of identities (∼4K) among these widely

used datasets, as shown in Table 1. Though considerable

person ReID accuracy has been achieved on these datasets,

models trained on them are still not powerful enough due to

the following limitations: 1) The limited data scale of ex-

isting ReID datasets, especially the limited sample numbers

and person identities (1K∼4K only), understates the diffi-

culty of the similar person retrieval problem in practice. 2)

Generally, there are only 2∼15 cameras involved in their

data collections, resulting in insufficiency of capture condi-

tion variations, e.g., backgrounds and illuminations. 3) The

person samples are mainly pedestrians, usually presenting

monotonous walking poses, which limits model generaliza-

tion potential towards handling samples with very different

poses. 4) Existing datasets cover limited scenes captured

by a single camera system. Owing to the limitations above,

these datasets are not powerful enough for evaluating the

representation and generalization capabilities of models.

2.2. Person ReID Methods

Supervised person ReID. For fully supervised person

ReID, the training samples are all annotated with identity

labels, and the training and testing data are captured by the
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same camera system. Lots of efforts have been put into

integrating effective mechanisms into supervised learning

framework to extract more discriminative features for per-

son ReID, including spatial alignment [34,45], visual atten-

tion [19,20], semantic segmentation [14,37], and generative

data augmentation [21, 24]. However, such full supervision

methods often underperform when they are directly applied

to new domains/camera sets [3, 5].

Domain adaptation for person ReID. Domain adap-

tation generally has a labeled source dataset and an unla-

beled target dataset as the fundamental setup, and aims to

obtain a discriminative model on the target domain. Adap-

tation based methods usually transfer the attributes or styles

from labeled source data to unlabeled target domain to nar-

row down the domain gap [3, 11, 38, 48], or discover proper

pseudo labels for target samples in training [5, 6, 32, 42].

However, it is overly tedious in application to treat each new

camera/site as a new domain to conduct model adaptation,

considering the difficulty of obtaining data from all domains

beforehand and the cost of repetitive adaptation [13, 31].

Therefore, the domain generalization capability of ReID

models starts to draw increasing attention.

Domain generalization for person ReID. Domain gen-

eralization aims to improve the generalization capability of

the models trained on source data to unseen target domains,

involving no target data in training. Such a new setup has

been introduced to person ReID recently. Jin et.al. [13]

proposed a style normalization and restitution module to

distill identity-relevant features to bypass the domain gap

issue. Zhuang et.al. [49] proposed a camera-based batch

normalization to shrink the distribution gaps between differ-

ent cameras. Besides, Song et.al. [31] proposed a domain-

invariant mapping network to learn a mapping between a

person sample and its identity classifier by a memory bank.

Specifically, its sampling process followed a meta-learning

pipeline by treating a subset of IDs as a learning task. Dif-

ferent from [31], we propose a novel dual-meta generaliza-

tion network exploiting the merits of meta-learning in both

the training procedure and metric space learning.

2.3. MetaLearning

Meta-learning, also known as learning to learn, focuses

on improving model proficiency by learning more experi-

ence from the process of mimicking the target testing sce-

narios. The well-received application of meta-learning is

few-shot learning, which can be roughly categorized into

optimization-based and metric-based approaches. Most

of the optimization-based methods are model-agnostic [4],

which focus on designing a training process to learn a good

weight initialization for fast adaptation on a new task, such

as MAML [4] and its variants [15,26,27]. The metric-based

methods aim to learn a good representation in feature space,

and thereby the model can be directly used for a new task

without further adaptation [30, 36]. Recently, there also

arise several methods using meta-learning for generic do-

main generalization [8, 16]. MLDG [16] first proposed a

model-agnostic training strategy for domain generalization,

but it cannot be directly applied to person ReID, because it

assumed that the source and target domains shared the same

label space and was designed for a small scale classification

(7 classes only). Besides, MFR [8] used the MLDG training

scheme in face recognition.

Different from these methods, we propose a dual-meta

generalization method, which is the first approach to exploit

the optimization-based training strategy and metric-based

feature space learning within a unified ReID framework. By

such a new attempt, the domain generalization and model

discrimination can be improved at the same time.

3. Dataset

3.1. Description of Person30K Dataset

We collect a new dataset, named Person30K, containing

1.38 million images of 30K different identities. The dataset

collection spanned across one full year, covering all sea-

sons. We spent 130 man-months’ labor in annotating such

an enormous number of image samples out of 12,994-hour-

long original video data (∼ 1,403 million video frames).

They were collected from 6,497 cameras of 89 capture

systems deployed at different supermarkets and shopping

malls. For privacy considerations, we blur the facial re-

gions for all person samples. Compared to existing widely

used person ReID datasets, such as the MSMT17 [38],

Market1501 [47], and Dukemtmc [28], our proposed Per-

son30K dataset considers and covers more challenging fac-

tors in practical application scenarios, as shown in Table 1

and Fig. 2. Below, we summarize the characteristics of our

Person30K dataset.

• Super large data scale: The scale of our Person30K

dataset is 11 times the scale of the existing largest

benchmark MSMT17 [38] (1.38 Million v.s. 126K).

• Very large camera system: Person30K are collected

from 6,497 cameras of various types deployed in 89

capture systems at different sites.

• Various capturing conditions: Our data collection

covers various scenarios including indoor scenes like

supermarket aisles, cashiers and mall corridors, and

outdoor scenes like squares, streets, and parking lots.

• Diversified person poses and dressing styles: The

Person30K dataset contains very diversified and chal-

lenging human poses, like pushing shopping charts and

picking objects. Besides, Person30K also covers vari-

ous dressing styles from summer shirts to winter coats.

• Rich same-identity samples: Averagely, each identity

in our Person30K dataset has ∼46 samples, captured
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Table 1. Comparison between Person30K and other person ReID datasets. In this table, the mark “(n×)” in the Person30K column means

that the scale of data or capture setup of our Person30K is n times the scale of MSMT17 [38].

Dataset Person30K MSMT17 [38] Duke [28] Market [47] CUHK03 [18] CUHK02 [17] VIPeR [7] PRID [10]

Samples 1,384,940 (11×) 126,441 36,411 32,668 28,192 7,267 1,264 1,134

Identities 30,000 (7.3×) 4,101 1,812 1,501 1,467 1,816 632 934

Cameras 6,497 (433×) 15 8 6 2 2 2 2

Capture Sites 89 (89×) 1 1 1 1 1 1 1

Avg Number of Cameras

Passed per Identity
16.01 (3.4×) 4.67 2.67 4.42 2 2 2 2

Seasons 4 1 1 1 1 1 1 1

Scene outdoor, indoor outdoor, indoor outdoor outdoor indoor indoor outdoor outdoor

Figure 2. Person30K covers various scenes captured both indoors

and outdoors, and contains many challenging factors for ReID.

under 16 different cameras, which facilitates construct-

ing a challenging cross-camera ReID setup.
• Additional annotations: Other than the identity la-

bels, Person30K dataset also provides annotations, in-

cluding camera labels, data capture sites and site sce-

narios (e.g., supermarket and shopping mall).
• Versatile dataset splitting: The testing set of Per-

son30K can be divided into different subsets accord-

ing to the capturing scenarios, sites, and cameras, for

comprehensive evaluation of model discrimination and

generalization.

3.2. Evaluation Protocol

We divide Person30K into training and testing sets based

on the capturing scenarios. The training set only includes

the data captured from supermarket scenario, while the

testing set covers both supermarket and mall scenarios, as

shown in Table 2. Furthermore, we construct 3 different

testing subsets with different characteristics:

• Test-A: “same-site” subset shares the same capturing

cameras and sites as the training set, similar to the set-

ting in existing datasets [28, 38, 47].

• Test-B: “same-scenario” subset covers different cap-

turing cameras and sites compared to the training set,

but under the same supermarket scenario.

Table 2. The splitting of Person30K’s training and testing sets.

Set Scale Train Test-A Test-B Test-C

Identities 12,000 6,000 6,000 6,000

Images 568,977 287,876 268,743 259,344

Sites 60 60 25 4

Cameras 3,680 3,699 1,731 1,017

Avg Number of Cameras

Passed by per Identity
9.18 13.68 13.31 34.70

Camera overlapping

with training set
- Yes No No

Captured scenarios Markets Markets Markets Malls

Table 3. The results of model direct transfer across datasets

(mAP/CMC@1).

Source

Target
Person30K Market1501 Dukemtmc MSMT17

Person30K - 71.1 / 86.3 57.3 / 72.2 32.9 / 57.2

Market1501 4.1 / 17.7 - 28.9 / 44.5 7.0 / 19.4

Dukemtmc 3.4 / 15.95 31.4 / 60.4 - 9.8 / 28.1

MSMT17 9.0 / 33.4 34.5 / 64.0 42.3 / 62.6 -

• Test-C: “different-scenario” subset differs from the

training set in terms of the capturing scenario, i.e. the

mall scenario v.s. the supermarket scenario.

Under such testing set divisions, we can comprehen-

sively evaluate the model generalization ability at different

domain gap levels. As for the evaluation metrics, we adopt

the widely used Cumulative Match Characteristics (CMC)

and mean Average Precision (mAP) [38, 47].

3.3. Analysis on Dataset Diversity

To demonstrate the diversity of Person30K and its po-

tential to facilitate model generalization, we conduct di-

rect transfer experiments based on the ResNet50 backbone

with softmax and triplet loss, i.e., training a model on one

dataset, and then testing it on other datasets. We adopt

Market1501 [47], Dukemtmc [28], and MSMT17 [38] for

the transfer comparison with Person30K. As shown in Ta-

ble 3, the model trained on our Person30K can achieve

71.1%, 57.3%, 32.9% mAP on the Market1501, Dukemtmc,

and MSMT17 datasets, while the model trained on these

datasets can only achieve 4.1%, 3.4%, 9.0% mAP on

Person30K. Besides, when we adopt Market1501 as the

target dataset, the model trained on our Person30K can

achieve 71.1% mAP largely outperforming the Dukemtmc

and MSMT17 models (31.4% and 34.5% only). The above
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Figure 3. Illustration of our proposed DMG-Net. DMG-Net includes a meta-generalization training procedure and a meta-discrimination

loss. The meta-generalization first trains a base model on the support set, then performs generalization evaluation on the query set. For

meta-discrimination loss, it optimizes the metric space to improve model discrimination.

results indicate the strong potential of Person30K for pro-

moting the research of Person ReID.

4. Proposed Methods

In this paper, we study a generalizable person ReID

problem, where at the training stage, a model M(θ) is

trained on a set of source cameras, and at the testing stage,

the model is able to generalize well to a set of new unseen

cameras without any model updating. To this end, we pro-

pose a meta-learning based Dual-Meta Generalization Net-

work (DMG-Net). It leverages the benefits of meta-learning

on extending model learning capabilities through bunches

of “tasks” that mimic target testing scenarios. The term

“dual” here indicates that our DMG-Net exploits the meta-

learning merits from two perspectives, namely, a meta-

generalization training procedure to achieve “learning to

generalize”, and a meta-discrimination constraint to achieve

“learning to discriminate”, as illustrated in Fig. 3.

Specifically, for the meta-generalization training proce-

dure, we mimic the domain generalization scenario, where

the training and testing samples are captured from non-

overlapping cameras. For the meta-discrimination loss, we

explicitly mimic the cross-camera matching process to op-

timize the metric space. Particularly, we accommodate the

support-query data division in meta-learning pipelines to

generalizable person ReID. Concretely, we divide the train-

ing images into support set Ds = {D1
s , D

2
s , ..., D

C/2
s }, and

query set Dq = {D
C/2+1
q , D

C/2+2
q , ..., DC

q }, where C is

the camera number, Dc
∗
= {(xi, yi, cami)} is the sample

set from the c-th camera (i.e., cami = c), and * denotes s or

q. Such a division can meet the requirements for both the

meta-generalization and meta-discrimination.

4.1. Meta Generalization Network

To enable the ReID model to obtain the “learning to

generalize” capability, we implement a “learning then gen-

eralization evaluation” training procedure based on meta-

learning scheme. For generalizable ReID, we conduct tasks

to mimic practical training and deploying scenarios, be-

tween which there are no overlapping cameras. To con-

struct tasks, we split the training data into the support set

Ds and query set Dq in mini-batches. We first use the sup-

port set to train the base model, and then use the query set to

evaluate its generalization performance under the “deploy-

ing scenario” during each task optimization. Then, based on

the evaluation results (losses), we further update the model

towards better generalization. This two-stage “learning then

generalization evaluation” optimization procedure is shown

in Algorithm 1.

Base model training. Based on the support set, the

base model training can be optimized like other supervised

methods. Here, the training loss LB of base model consists

of the widely used softmax loss Lsoft and triplet loss Ltri

[23, 43] as follows,

LB(θ) = Lsoft(Ds; θ) + Ltri(Ds; θ), (1)

where θ is the initial parameters of model M(θ) before base

model training. Then, based on LB , we can obtain the base

model parameters θ
′

by a standard gradient update,

θ
′

= θ − α▽θLB(θ). (2)

where α is the learning rate hyper parameter.

Model generalization evaluation. After obtaining the

updated θ
′

on the support set that is sampled from several

cameras, we evaluate its generalization capability under the

query set sampled from other cameras. Such an evaluation

on the query set is performed on the base model M(θ
′

),
with the generalization loss LG as follows,

LG(θ
′

) = Lsoft(Dq; θ
′

) + Ltri(Dq; θ
′

). (3)

Such an evaluation simulates the testing on unseen cameras,

so as to make the model learn to generalize.
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Algorithm 1 Meta-optimization procedure

Input: (1). A pre-trained model M(θ) parametrized by θ. (2). Training

dataset D, which can be organized as D = {D1, D2, ..., DC}, where

C is the number of cameras, and Dc = {(xi, idi, cami)}
Nc

i=1
is the

set containing Nc samples with camera ID c (i.e., cami = c).

1: for total training epochs do

2: Randomly select the non-overlapping support camera set and query

camera set.

3: Obtain the support set Ds and query set Dq according to the cam-

era division.

4: for k batches do

5: Sample a mini-batch of support samples.

6: Calculate loss LB(θ) using support images.

7: Compute adapted parameters θ
′

= θ − α∇θLB(θ).
8: Sample a mini-batch of query samples.

9: Calculate loss LG(θ
′

) using query samples.

10: Calculate the gradient∇θLG(θ
′

).

11: Update θ ← θ − α∇θLGθ
′

.

12: end for

13: end for

Meta-optimization. The whole objective thus becomes

minimizing the LG(θ
′

) for optimized parameters concern-

ing generalization,

min
θ

LG(θ
′

) = min
θ

LG(θ − α▽θLB(θ)). (4)

Note that, the meta-optimization is performed over the ini-

tial model parameters θ, and θ
′

is only an intermediate re-

sult used to evaluate the model generalization. Such a meta-

optimization is inspired by MAML [4]. However, different

from MAML that focuses on learning good initialization

parameters for a network, and needs additional adaptation

training to a new task, we aim to obtain a model with strong

generalization capability without any model updating for

handling new cameras. More importantly, for MAML, to

obtain a good model initialization across all tasks, it con-

currently learns multiple tasks first, then updates the model

by the mean gradient of these tasks. Different from MAML

and its variants [4,8,16], we can obtain generalization abil-

ity within one mimicking task by learning base model on

support set and generalizing to query set.

4.2. Meta Discrimination Loss

Apart from the aforementioned generalization problem

that requires models to generalize well to unseen domain

data, the discrimination of identities across different cam-

eras is also a core challenge in person ReID. Therefore, we

further explore a meta discrimination loss to realize “learn-

ing to discriminate” in a metric-based meta-learning fash-

ion [30]. Our designed meta discrimination task explicitly

mimics the cross-camera matching process in metric loss

computation, which aims to enforce the samples of the same

ID but captured from different cameras to get closer for bet-

ter discrimination against data source variations.

Specifically, in a mini-batch, the matching process is

conducted between the support set Ds and query set Dq ,

and Ds and Dq here are sampled from the same P identi-

ties, yet from different cameras. To implement such a cross-

camera matching, we design a novel P -way classification,

which classifies a query sample to P support IDs within a

mini-batch. Particularly, this P -way classification acts as

the “meta task” for our meta discrimination loss. To repre-

sent an ID p in support set for classification, we compute

the mean feature mp
s of the samples belonging to the ID p

as the class center,

mp
s =

1

Np

∑

xs∈Ds

and ys=p

fθ(xs), (5)

where Np is the sample number of person p in support set in

a mini-batch, and ys is the label / ID of support sample xs.

fθ(.) means the feature extracted by M(θ). Thereby for the

P identities in a mini-batch, we can obtain P support cen-

ters {mp
s}

P
p=1 to represent all of them. With such support

centers and the query sample, we can explicitly conduct the

matching process by a “P -way classification”.

Note that since the sampled P IDs in our meta task will

change in each mini-batch, the fully connected layer based

P -way probability prediction for fixed classes is not ap-

plicable. Thus we adopt a similarity-based strategy. We

first compute the cosine similarities between query fea-

ture fθ(xq) and support centers {mp
s}

P
p=1, and then predict

which support IDs the query belongs to based on the simi-

larity scores. Therefore, the constraint of meta discrimina-

tion loss LMD can be formulated as,

LMD = −log
exp(〈fθ(xq),m

p
s〉)∑P

p′=1
exp(〈fθ(xq),m

p′

s 〉)
, (6)

where 〈·, ·〉 denotes the cosine similarity. fθ(xq) and mp
s

belong to the same identity p. Both fθ(xq) and mp
s are L2-

normalized. By such design, LMD is able to maximize the

similarity between fθ(xq) and mp
s , meanwhile minimizing

the similarities to all other support centers (i.e., towards 0).

The proposed LMD enjoys three major advantages for

the ReID task. First, by matching the query samples to the

support centers, we explicitly construct the cross-camera

matching process, which enables learning a discriminative

model. Second, LMD optimizes the relationships between

query samples to all support samples/centers in a mini-

batch, which is more effective than triplet loss and Cen-

ter loss [40] only optimizing the relationships among three

samples or the same ID samples. Third, we obtain the pre-

diction probability by cosine similarities instead of design-

ing a P -way classifier (e.g., fully connected layer) [4, 31],

which thus avoids repetitively updating classifiers when

sampling new identities in mini-batches, so we can focus

on learning a more discriminative and stable metric space.
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Table 4. Performance comparison on the Person30K dataset.

Settings Test-A Test-B Test-C

Methods mAP CMC@1 CMC@5 mAP CMC@1 CMC@5 mAP CMC@1 CMC@5 Year

Softmax 65.72 79.40 91.05 57.63 80.15 91.23 57.32 83.83 95.30 -

CBN [49] 66.51 81.43 91.83 63.18 83.40 93.72 62.57 85.85 96.03 2020

DFLNet [1] 69.50 82.81 92.43 62.12 81.35 92.88 62.04 85.76 96.47 2020

Center Loss [40] 69.24 83.02 92.70 61.32 80.45 92.15 61.87 85.70 96.93 2016

Circle Loss [33] 70.91 84.03 93.13 62.05 82.73 94.02 61.96 84.23 96.45 2020

AGW [44] 71.04 83.57 93.70 63.12 82.12 93.37 63.12 85.85 96.03 2020

BoT [23] 69.19 80.55 90.32 62.81 77.61 91.97 62.01 84.73 96.60 2019

DMG-Net 72.19 84.23 93.95 64.44 83.60 94.08 64.39 86.08 96.78 Ours

4.3. Overall Objective

Finally, to simultaneously optimize the ReID model for

both better generalization and discrimination performances,

we obtain the overall loss for our DMG-Net as,

LAll = LG + LMD. (7)

By such a design, the proposed dual-meta generalization

network can strengthen model generalization on the unseen

domain data in training set and model discrimination for

cross-camera matching in person ReID at the same time.

5. Experiments

Dataset Settings. To comprehensively evaluate the dis-

crimination and generalization capabilities of ReID mod-

els, we experiment on the proposed Person30K dataset,

and two mixed multi-dataset benchmarks following pre-

vious works [13, 31]. Specifically, we denote the mixed

benchmark in [31] as Mixed A, where CUHK02, CUHK03,

Market1501, Dukemtmc, and CUHK-SYSU PersonSearch

[41] are mixed up for training, and VIPeR, PRID, GRID,

and i-LIDS are adopted as the test sets. The other mixed

benchmark in [13] is denoted as Mixed B, where the train-

ing set includes MSMT17, CUHK03, Market1501, and

Dukemtmc, while VIPeR, PRID, GRID, and i-LIDS are

used for testing, same as the test sets in Mixed A.

Implementation Details. We adopt ResNet50 [9] as our

backbone, employing the bag-of-tricks (BoT) strong base-

line [23] scheme. The input image size is 256 × 128. The

mini-batch contains 128 images in total, 64 for both support

and query sets (4 images per ID × 16 IDs), by following

the widely used hyper parameters as [23, 40]. The support

and query sets are sampled from different cameras, yet with

same identities. For data augmentation, we perform color

jitter scheme on the Mixed benchmark. We optimize the

model with Adam optimizer. The ReID model is trained

for 120 epochs with the start learning rate of 3.5 × 10−4

and performs learning rate decay 1/10 in the 40th and 70th
epochs.

5.1. Evaluation on Person30K Dataset

Table 4 shows the comparison results on our Person30K

dataset, including the widely used baseline method Bag-

of-tricks(BoT) [23], classic Center loss [40], as well as

the latest works AGW [44], Circle loss [33], CBN [49],

DFLNet [1], and our DMG-Net. The Bag-of-tricks includes

label smoothing, warmup strategy, data augmentation, and

BNNeck schemes, which provides a baseline in our DMG-

Net. Compared with these methods, our proposed DMG-

Net achieves the best performance on all subset divisions.

Particularly, on Test-A, DMG-Net also takes the first place,

since our proposed meta-discrimination loss can enhance

the model’s cross-camera matching ability. Even compared

with the latest AGW [44] and DFLNet [1], which improve

model discrimination by attention scheme or disentangle

scheme, we can also achieve superior performance. Be-

sides, compared to the domain generalization method, CBN

[49], which uses batch normalization to align the distribu-

tion of different camera data, DMG-Net also achieves bet-

ter performance by the “learning then generalization evalua-

tion” training procedure. The obvious advantages of DMG-

Net on Test-B and Test-C, which have larger domain gaps

between training and testing sets, validate the enhanced

model generalization capability of our DMG-Net.

5.2. Evaluation on Mixed Datasets

Table 5 shows the domain generalization performances

on four target datasets. We make comparisons among

our DMG-Net, generic meta-learning methods PPA [26]

and Reptile [25], generic domain generalization methods

MLDG [16] and CrossGrad [29], domain aggregation mod-

els AGG PCB [35] and AGG Align [46], as well as ReID-

specific generalization methods SNR [13], DIMN [31],

DDAN [2] and DualNorm [12]. We observe that the generic

methods like Reptile [25] and MLDG [16], which are vari-

ants of classic meta-learning work MAML, can only obtain

26.90% and 35.36% mAP on PRID in Mixed A setup. This

is because they are designed for category-level recognition

task, which limits their adaptation to person ReID. Differ-

ently, our proposed DMG-Net optimizes a uniform feature

space between different tasks, and can achieve much better

performance. As for ReID-specific methods, our DMG-Net

beats the DIMN [31] by a remarkable margin of 16.43%

mAP on PRID dataset. DIMN [31] aims to learn a map-

ping network by predicting classifier weight for each iden-

tity, while we focus on learning an embedding feature space
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Table 5. Performance comparison on the mixed dataset.

Dataset Method
PRID GRID VIPeR iLIDs

mAP CMC@1 mAP CMC@1 mAP CMC@1 mAP CMC@1

Mixed A

PPA [26] 45.26 31.90 37.98 26.88 54.46 45.06 72.73 64.50

Reptile [25] 26.90 17.90 23.02 16.24 31.33 22.06 67.11 56.00

Agg PCB [35] 32.04 21.50 44.66 36.00 45.38 38.10 73.92 66.67

Agg Align [46] 25.50 17.20 24.67 15.92 52.94 42.78 74.69 63.83

MLDG [16] 35.36 24.00 23.57 15.76 33.52 23.51 65.18 53.83

CrossGrad [29] 28.18 18.80 16.00 8.96 30.40 20.89 61.29 49.67

DIMN [31] 51.95 39.20 41.09 29.28 60.12 51.23 78.39 70.17

DualNorm [12] 64.90 60.40 45.70 41.40 58.00 53.90 78.50 74.80

DDAN [2] 58.90 54.50 55.70 50.60 56.40 52.30 81.50 78.50

BoT [23] 61.25 51.40 49.62 40.48 56.66 48.20 81.27 74.67

DMG-Net(ours) 68.38 60.60 56.62 50.96 60.38 53.91 83.94 79.33

Mixed B
SNR [13] 60.00 49.00 41.30 30.40 65.00 55.10 91.90 87.00

BoT [23] 59.12 48.50 38.72 29.52 66.34 60.06 85.57 80.83

DMG-Net(ours) 69.73 59.70 47.18 37.28 70.93 62.34 88.20 83.00

Table 6. Ablation study.

Method Test-A Test-B Test-C

baseline(Bag-of-Tricks) 69.19 62.81 62.01

Center Loss [40] 69.24 61.32 61.87

Circle Loss [33] 70.91 62.05 61.96

Meta-discrimination 71.01 62.49 62.47

Meta-generalization 70.07 63.72 63.97

DMG-Net 72.19 64.44 64.39

instead of the classifiers to obtain more generalizable and

discriminative features. Compared to the state-of-the-art

SNR [13] and DDAN [2] methods, which design style nor-

malization module or domain alignment scheme to obtain

invariant features, DMG-Net also achieves superior perfor-

mances on most datasets, showing better model generaliza-

tion potential.

5.3. Ablation Study

DMG-Net contains two prominent technical propos-

als: the meta-generalization training scheme and the meta-

discrimination loss. As shown in Table 6, when incorporat-

ing loss-enhanced methods into the same baseline [23], our

meta-discrimination loss can provide better performance

than other methods, such as Center Loss [40] and Circle

Loss [33]. It indicates that the explicit mimicking of the

cross-camera matching process can improve model discrim-

ination effectively. Besides, when the meta-generalization

training procedure is further integrated, the model can

achieve ∼2% mAP gains on Person30K subsets Test-B and

Test-C, which validates the effectiveness of our dual-meta

generalization network.

5.4. Result Visualization

Fig. 4 visualizes several retrieval results of our DMG-

Net. In Fig. 4 (a), we can observe that given the query from

an outdoor scene, DMG-Net can correctly recall ground-

truth samples from indoor scenes despite the background

and camera viewpoint variations. Even if there are occlu-

Figure 4. Visualization of the DMG-Net Top10 ReID results. The

black, green, and red boxes indicate the queries, correct and wrong

results, respectively.

sion and multiple persons in the queries, DMG-Net can still

ignore those distractions and retrieve the same-identity im-

ages, as shown in Fig. 4 (b)(c). Additionally, the individual

cases of false positives also present reasonable visual sim-

ilarities to the query images. Such impressive retrieval re-

sults benefit from both the large-scale training dataset and

the effective DMG-Net method.

6. Conclusion

In this paper, we create a large-scale Person30K dataset

that presents diversified data capturing conditions, which is

expected to promote the research and deployment of ReID

models in real-world scenarios. Besides, we propose a do-

main generalizable ReID method integrating meta-learning

scheme into the model training procedure and metric space

learning, to improve model generalization and discrimina-

tion capability. Extensive experiments demonstrate the ef-

fectiveness of the proposed method.
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