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Abstract

Predicting all applicable labels for a given image is

known as multi-label classification. Compared to the stan-

dard multi-class case (where each image has only one la-

bel), it is considerably more challenging to annotate train-

ing data for multi-label classification. When the number

of potential labels is large, human annotators find it diffi-

cult to mention all applicable labels for each training im-

age. Furthermore, in some settings detection is intrinsically

difficult e.g. finding small object instances in high resolu-

tion images. As a result, multi-label training data is often

plagued by false negatives. We consider the hardest version

of this problem, where annotators provide only one relevant

label for each image. As a result, training sets will have

only one positive label per image and no confirmed nega-

tives. We explore this special case of learning from miss-

ing labels across four different multi-label image classifica-

tion datasets for both linear classifiers and end-to-end fine-

tuned deep networks. We extend existing multi-label losses

to this setting and propose novel variants that constrain the

number of expected positive labels during training. Surpris-

ingly, we show that in some cases it is possible to approach

the performance of fully labeled classifiers despite training

with significantly fewer confirmed labels.

1. Introduction

The majority of work in visual classification is focused

on the multi-class setting, where each image is assumed

to belong to one of L classes. However, the world is

intrinsically multi-label: scenes contain multiple objects,

CT scans reveal multiple health conditions, satellite images

show multiple terrain types, etc. Unfortunately, it can be

prohibitively expensive to obtain the large number of ac-

curate multi-label annotations required to train deep neural

networks [10]. Heuristics can be used to reduce the required

annotation effort [34, 18], but this runs the risk of increasing

error in the labels. Even without heuristics, false negatives

are common because (i) rare classes are often missed by

human annotators [59, 58] and (ii) detecting absence can be

more difficult than detecting presence [59]. This may ex-
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Figure 1. It is possible to approach the performance of full su-

pervision (LBCE) using only one positive label per image. Here

we show test MAP as a function of the number of training labels

for PASCAL VOC 2012 [13]. Each curve is generated by ran-

domly subsampling m% of the images from the training set for

m ∈ {10, 20, . . . , 100}. The number of labels per image then

determines the number of observed label on the horizontal axis:

LBCE receives all 20 labels per image, while the other methods

only receive one positive label per training image. Despite having

a factor of 20 times fewer labels, our LROLE approach achieves

comparable performance to the fully labeled case (LBCE).

plain why even flagship multi-class datasets like ImageNet

have been found to include images that actually belong to

multiple classes [60]. Since it is generally infeasible to ex-

haustively annotate every image for all classes that could be

present, there is a natural trade-off between how many im-

ages receive annotations and how completely each image is

annotated. On one extreme, we could fully annotate images

until the labeling budget is exhausted. In this paper we are

interested in the other extreme, in which our dataset consists

of many images, but each individual image has minimal su-

pervision.

We explore the problem of single positive multi-label

learning, where only a single positive label (and no other

true positives or true negative labels) is observed for each

training image. This is a worthwhile problem for at least

three reasons: First, an effective method for this setting
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could allow for significantly reduced annotations costs for

future datasets. Second, multi-class datasets may have im-

ages that actually contain more than one class. For instance,

the iNaturalist dataset has many images of insects on plants,

but only one is annotated as the true class [53]. Finally, it

is of scientific interest to understand how well multi-label

classifiers can be made to perform at the minimal limit of

supervision. This is particularly interesting because many

standard approaches for dealing with missing labels, e.g.

learning positive label correlations [6], performing label

matrix completion [4], or learning to infer missing labels

[54] break down in the single positive only setting.

We direct attention to this important but underexplored

variant of multi-label learning. Our experiments show that

training with a single positive label per image allows us

to drastically reduce the amount of supervision required to

train multi-label image classifiers, while only incurring a

tolerable drop in classification performance (see Figure 1).

We make three contributions: (i) A unified presentation and

extension of existing multi-label approaches to the single

positive multi-label learning setting. (ii) A novel single pos-

itive multi-label loss that estimates missing labels during

training. (iii) A detailed experimental evaluation that com-

pares the performance of multiple different losses across

four multi-label image classification datasets.

2. Related Work

Multi-label classification is an important and well stud-

ied problem [66, 62, 36] with applications in natural lan-

guage processing [27, 28], audio classification [2, 5], in-

formation retrieval [46], and computer vision [65, 22, 15,

57, 61]. The conventional approach in vision is to train

deep convolution neural networks with multiple output pre-

dictions – one for each concept/class of interest. When

there are no missing labels (i.e. for each image we have

complete observations of the presence and absence of each

class), standard binary cross-entropy or softmax cross-

entropy losses are typically used, e.g. [35, 40].

In practice, label information is often incomplete at train-

ing time because it can be extremely difficult to acquire ex-

haustive supervision [10]. Different approaches have been

proposed to address the partially labeled setting including:

assuming the the missing labels are negative [51, 3, 39], ig-

noring missing labels [12], performing label matrix recon-

struction [4, 63], learning label correlations [6, 12, 45, 25],

learning generative probabilistic models [31, 7], and train-

ing label cleaning networks [54]. It is worth noting that

semi-supervised multi-label classification [37, 17, 56, 43]

can be viewed as a special case of training with missing

labels, where here we have entire images with no labels.

The partially labelled setting is also related to methods that

address label noise, e.g. [23, 24]. Label noise is also en-

countered in the related area of image tagging [50, 14],

where only a small faction of the potentially relevant tags

are known for each image. We are interested in one special

kind of label noise, where some unobserved labels are incor-

rectly treated as being absent. This “noise” is the result of

a strong assumption, and is not label noise in the traditional

sense. With the exception of the some simple approaches

(e.g. assuming missing labels are negative [40]), most ex-

isting approaches assume that they have access to a subset

of exhaustively labelled images, or at the very least, images

with more than one confirmed positive or negative label.

We consider a setting where annotators are only asked

to provide a single positive label for each training image

and no additional negative or positive labels. This arises

in multi-class image classification where multiple relevant

objects may appear in each image but only a single class

is annotated [49]. This same problem also occurs in non

vision domains such as species distribution modeling [44]

where the training data are records of real-world (positive)

observations for a given location, and there are no negatives.

The single positive setting has advantages. When collecting

multi-label annotations, it may be more efficient for a crowd

worker to mark the presence of a specific class as opposed

to confirming its absence.

Our setting is most closely related to positive-unlabeled

(PU) learning [33] – see [1] for a recent survey focused on

binary classification, which is the most commonly studied

formulation of PU learning. In PU learning we only have

access to a set of positive items and an additional set of

unlabeled items, which may be either positive or negative.

Compared to the classification setting, there are relatively

few works that explore PU learning for multi-label tasks

[51, 21, 30, 19], and to the best of our knowledge, there

are no works that explicitly explore the single positive case

in-depth. [47] and [11] address the setting where there is

only a single label available for each item at training time.

However, unlike in our setting, these labels can be posi-

tive or negative. Furthermore, when more than one posi-

tive label is available for each image, it is possible to infer

class level co-occurrence information – something which

is not directly possible with only single positive labels. In

the multi-class setting, [26] proposes to learn from comple-

mentary labels i.e. they assume access to a single negative

label per item that specifies that the item does not belong to

a given class. Their solution falls under the “assume neg-

ative” set of approaches mentioned earlier, except that the

positives and negative labels are reversed. Another related

multi-class setting is set-valued classification, where each

image has one label and the goal is to learn to predict a set

of labels as a way to represent uncertainty [9]. In Section 4

we discuss several existing multi-label approaches in a uni-

fied context and adapt these methods for the single positive

setting in Section 5.
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3. Problem Statement

In the standard multi-class classification setting, each

x from the input space X is assigned a single label from

{1, . . . , L}, where L is the number of classes. In the multi-

label classification setting, each x is associated with a vec-

tor of labels y from the label space Y = {0, 1}L, where an

entry yi = 1 if the ith class is relevant to x and yi = 0 if the

ith class is not relevant.

The goal is to find a function f : X → [0, 1]L that pre-

dicts the applicable labels for each x ∈ X . The formal

objective is to find an f that minimizes the risk

R(f) = E(x,y)∼p(x,y)L(f(x),y), (1)

where L : [0, 1]L × Y → R reflects some multi-label met-

ric e.g. mean average precision or 0-1 error. In practice,

we define f to be a neural network with parameters θ and

we replace L with a surrogate L that is easier to optimize.

Given an observed dataset {(xn,yn)}
N
n=1, we can use stan-

dard techniques to approximately solve

θ̂full = argminθ
1

N

N
∑

n=1

L(f(xn; θ),yn) (2)

where L : [0, 1]L × Y → R is a suitable multi-label loss

function e.g. binary cross-entropy or softmax cross-entropy.

However, this formulation assumes that we have access to

a fully observed label vector yn for each input xn. In this

work we explore the setting where the true label vectors are

not directly accessible. Instead, during training we observe

zn ∈ Z = {0, 1,∅}L, where zni ∈ {0, 1} is interpreted

as before, but zni = ∅ indicates that the ith label is unob-

served for xn. That is, if zni = ∅ then the corresponding

yni could be either 0 or 1. This is the partially observed

setting, where we can use our training set {(xn, zn)}
N
n=1 to

approximately solve

θ̂partial = argminθ
1

N

N
∑

n=1

L(f(xn; θ), zn), (3)

where L : [0, 1]L × Z → R is a multi-label loss function

that can handle partially observed labels – see Section 4 for

examples. Specifically, we focus on a particular instance of

the partially observed setting which we call the single pos-

itive only case, where we observe one single positive label

per training example and all the other labels are unknown.

Formally, the single positive case is characterized by

zni ∈ {1,∅} for all n ∈ {1, . . . , N}, i ∈ {1, . . . , L}

L
∑

i=1

✶[zni=1] = 1 for all n ∈ {1, . . . , N} (4)

where ✶[·] denotes the indicator function, i.e. ✶[zni=1] = 1
if zni = 1, and 0 otherwise. Intuitively we expect a lower

risk for the function f learned from fully observed data,

i.e. R(f(·; θ̂full)) ≤ R(f(·; θ̂partial)). The key question is:

how can we design a loss L to minimize R(f(·; θ̂partial))−

R(f(·; θ̂full))?

4. Multi-Label Learning

In this section we compare and contrast three multi-label

settings: fully observed labels, partially observed labels (i.e.

some positives and some negatives are observed), and pos-

itive only labels (i.e. all observed labels are positive and

there are no confirmed negatives). In the fully observed set-

ting we cover the binary cross-entropy (BCE) loss. We then

discuss how the standard BCE loss is modified to accommo-

date the partially observed and positive only settings. We

focus on BCE because it is ubiquitous in multi-label clas-

sification, e.g. [54, 12], but one could carry out a similar

exercise using other multi-label losses. We also compare

the different variants in terms of the implicit assumptions

each makes regarding unobserved labels.

First we introduce some additional notation. Let fn =
f(xn; θ) ∈ [0, 1]L be the vector of class probabilities pre-

dicted for xn by our multi-label classifier f(·; θ), and let

fni be the ith entry of fn. Note that since we are using the

binary cross-entropy loss, the class probabilities fni do not

sum to one over classes i.

4.1. Fully Observed Labels

The binary cross-entropy (BCE) loss is one of the sim-

plest and most commonly used multi-label losses [42, 12].

For a fully observed data point (xn,yn), the BCE loss is

LBCE(fn,yn) = −
1

L

L
∑

i=1

[✶[yni=1] log(fni) (5)

+✶[yni=0] log(1− fni)]

where we have substituted ✶[yni=1] for P (yi = 1|xn) and

✶[yni=0] for P (yi = 0|xn). In the following sections,

we present simple variants of LBCE that do not require

fully observed data. The trade-off is that these variants

make stronger implicit assumptions about the distribution

P (yi|xn).

4.2. Partially Observed Labels

Suppose that we have a partially observed data point

(xn, zn). For observed labels we can simply let P (yi =
1|xn) = ✶[zni=1] and P (yi = 0|xn) = ✶[zni=0] just like

we did for LBCE. However, it is not clear what to do if a

label is unobserved (i.e. zni = ∅). One idea is to simply set

the loss terms corresponding to unobserved labels to zero,
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resulting in the “ignore unobserved” (IU) loss

LIU(fn, zn) = −
1

L

L
∑

i=1

[✶[zni=1] log(fni)

+✶[zni=0] log(1− fni)]. (6)

This loss implicitly assumes that unobserved labels are per-

fectly predicted, i.e. fni = P (yi = 1|xn) if zni = ∅. If

we additionally weight LIU(fn, zn) by the number of ob-

served labels in zn then we obtain the loss used in [12] (up

to scaling).

The LIU loss allows for missing labels, but it requires

both positive and negative labels. Our focus is the positive-

only setting, in which these losses collapse to the trivial “al-

ways predict positive” solution due to the absence of any

negative training examples. Though these losses are inap-

plicable in our setting, we discuss them to clarify the rela-

tionship between our work and [12]. In addition, we use

variants of LIU as conceptual tools in our experiments. In

particular, we use a version that “ignores unobserved nega-

tives” (IUN), given by

LIUN(fn, zn,yn) = −
1

L

L
∑

i=1

[✶[zni=1] log(fni)

+✶[yni=0] log(1− fni)]. (7)

This is similar to LIU except with unrealistic access to all of

the true negative labels. This hypothetical loss provides an

intermediate step between the fully labeled setting and the

positive only setting.

4.3. Positive Only Labels

Suppose that we have partially observed data (xn, zn)
and suppose that all of the observed labels are positive i.e.

zni 6= ∅ =⇒ zni = 1. We know what to do with observed

labels, i.e. we set P (yi = 1|xn) = ✶[zni=1]. However,

we cannot simply ignore the unobserved labels because that

would lead to the degenerate “always predict positive” solu-

tion. The simplest approach is to assume unobserved labels

are negative, i.e. P (yni = 1|xn) = 0 if zni = ∅. The

resulting “assume negative” (AN) loss is given by

LAN(fn, zn) = −
1

L

L
∑

i=1

[✶[zni=1] log(fni)

+✶[zni 6=1] log(1− fni)]. (8)

This is perhaps the most common approach to the positive

only setting, and is explored as “noisy+” in [12], among oth-

ers [29, 40, 32]. The drawback is that LAN will introduce

some number of false negatives. Note that if the role of pos-

itive and negative labels are reversed, then this formulation

is equivalent to complementary label learning [26].

5. Learning From Only Positive Labels

In typical multi-label datasets there are far more nega-

tive labels than positive labels. This means that in the single

positive setting, LAN will actually get almost all of the un-

observed labels correct. However, as we demonstrate in our

experiments later, even these few false negatives can signif-

icantly reduce performance. An ideal solution to this prob-

lem would (i) reduce the damaging effects of false negatives

while (ii) retaining as much of the simplicity of LAN as pos-

sible. With these goals in mind, we propose four ideas for

mitigating the impact of false negatives: weak negatives, la-

bel smoothing, expected positive regularization, and online

label estimation.

5.1. Weak Negatives

A simple way to reduce the impact of false negatives is

to down-weight terms in the loss corresponding to negative

labels. We introduce a weight parameter γ ∈ [0, 1] and

define the “weak assume negative” (WAN) loss as

LWAN(fn, zn) = −
1

L

L
∑

i=1

[✶[zni=1] log(fni)

+✶[zni 6=1]γ log(1− fni)].

The “interesting” values of γ lie strictly between 0 and 1,

since γ = 1 recovers the standard BCE loss and γ = 0
admits a trivial solution (“always predict positive”). In the

single positive setting, if we choose γ = 1
L−1 then the sin-

gle positive has the same influence on the loss as the L− 1
assumed negatives. This is similar to the loss used by [39],

which uses single positive labels to learn spatio-temporal

priors for image classification. Throughout this paper we

use γ = 1/(L− 1).
Connection to pseudo-negative sampling. LWAN(γ)

has a probabilistic interpretation based on sampling nega-

tives at random. Consider the following procedure: each

time (xn, zn) occurs in a batch, choose one of the L−1 un-

observed labels uniformly at random and treat it as negative.

We repeat this step each time the pair (xn, zn) appears in a

batch. Since there are typically many more negatives than

positives for a given image, our randomly chosen pseudo-

negative will be a true negative more often than not. Since

we now have both positive and negative labels, we can use

the LIU loss, resulting in

−
1

L

L
∑

i=1

[✶[zni=1] log(fni) + ✶[zni 6=1]ηni log(1− fni)]

where ηni is a random variable which is 1 if zni is chosen

as the pseudo-negative and 0 otherwise. If we take the ex-

pectation with respect to the pseudo-negative sampling then

we recover LWAN with γ = 1
L−1 . Though the two losses
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are equivalent in expectation, they may differ significantly

in practice.

5.2. Label Smoothing

Label smoothing was proposed in [52] as a way to reduce

overfitting when training multi-class classifiers with the cat-

egorical cross-entropy loss. Label smoothing has since been

shown to mitigate the effects of label noise in the multi-class

setting [41]. If we reframe LAN as LBCE with some “noisy”

labels (i.e. those labels incorrectly assumed to be negative),

then it is natural to ask whether label smoothing could help

to reduce the impact of those incorrect labels.

In a multi-class context, the target distribution yn is a

delta distribution supported on the correct class label. La-

bel smoothing replaces yn with (1 − ǫ)yn + ǫu where

u = [1/L, . . . , 1/L] is the discrete uniform distribution

with support size L and ǫ ∈ (0, 1) is a hyperparameter. It is

possible to generalize traditional multi-class label smooth-

ing to the binary cross-entropy loss, by simply applying la-

bel smoothing independently to each of the L binary target

distributions (✶[zni 6=1],✶[zni,=1]). We refer to the combina-

tion of the “assume negative” loss from Eqn. 8 with label

smoothing as

LAN−LS(fn, zn) = −
1

L

L
∑

i=1

[✶
ǫ

2

[zni=1] log(fni)

+✶
ǫ

2

[zni 6=1] log(1− fni)], (9)

where ǫ is the label smoothing parameter and ✶α
[Q] = (1 −

α)✶[Q]+α✶[¬Q] for any logical proposition Q. Throughout

this paper we use ǫ = 0.1.

5.3. Expected Positive Regularization

Another way to avoid the label noise introduced by as-

suming unobserved labels are negative is to apply a loss to

only the observed labels as in [12]. However, in the positive

only case the loss would be

L+
BCE(fn, zn) = −

L
∑

i=1

✶[zni=1] log(fni),

which has a trivial solution, i.e. predict that every label is

positive. We propose to build some domain knowledge into

the loss to avoid this problem. Let us assume we have access

to a scalar k, which is defined as the expected number of

positive labels per image:

k = E(x,y)∼pdata(x,y)

L
∑

i=1

✶[yi=1].

We can estimate k from data or treat it as a hyperparameter.

Suppose we draw a batch of images with indices B ⊂
{1, . . . , N}. We define FB = [fni]n∈B,i∈{1,...,L} to be the

matrix of predictions fni ∈ [0, 1] for every image in the

batch and category in the dataset. We can use the batch

predictions FB to compute

k̂(FB) =

∑

n∈B

∑L
i=1 fni

|B|
.

Ideally we would make perfect predictions, i.e. FB = YB

where YB = [yni]n∈B,i∈{1,...,L} is the matrix of true la-

bels. A necessary condition for FB = YB is E[k̂(FB)] =

E[k̂(YB)], where the expectation is taken over batch sam-

pling. Since E[k̂(YB)] = k by the definition of k, it makes

sense to introduce a regularization term Rk(FB) that en-

courages k̂(FB) to be close to k. We can use this regu-

larizer to implicitly penalize negatives and avoid the trivial

“always predict positive” solution, leading to the loss

LEPR(FB ,ZB) =
1

|B|

∑

n∈B

L+
BCE(fn, zn) + λRk(FB),

where λ is a hyperparameter. Regularizing at the batch level

(instead of the image level) respects the fact that some im-

ages will have more than k positive labels and some will

have fewer.

How should we define Rk(FB)? Since the number of

classes L can vary widely depending on the dataset, we

propose to work with the normalized deviation (k̂(FB) −
k)/L ∈ [−1, 1]. Penalizing this relative deviation makes

sense in contexts where e.g. an absolute deviation of 1 mat-

ters more if L = 10 than it does if L = 100. We can then

define a variety of regularizers with any standard functional

form. We use the squared error, leading to

Rk(FB) =

(

k̂(FB)− k

L

)2

. (10)

5.4. Online Estimation of Unobserved Labels

While the idea behind LEPR seems reasonable, we find

that it does not work well in our experiments (see Sec-

tion 6). In this section we combine LEPR with a second

module which maintains online estimates of the unobserved

labels throughout training. The resulting method is simi-

lar to an expectation-maximization algorithm which jointly

trains the image classifier and estimates the labels subject to

constraints imposed by LEPR. We refer to this technique as

regularized online label estimation (ROLE).

To make this more precise we will need some additional

notation. We write the estimated labels as Ỹ ∈ [0, 1]N×L in

analogy with the matrix of true labels Y ∈ {0, 1}N×L and

the matrix of classifier predictions F ∈ [0, 1]N×L. We carry

through the derived notation: ỸB ∈ [0, 1]|B|×L for a batch

B, ỹn ∈ [0, 1]L for a row, and ỹni ∈ [0, 1] for a single entry.

Finally, we make the (non-restrictive) assumption that ỹn =

937



g(xn;φ) where the label estimator g : X → [0, 1]L is some

function with parameters φ. We discuss our implementation

of g later.

With this notation, our goal is to jointly train the label

estimator g(·;φ) and the image classifier f(·; θ). We first

consider the intermediate loss

L′(FB |ỸB) =
1

|B|

∑

n∈B

LBCE(fn, sg(ỹn))

+ LEPR(FB ,ZB), (11)

where sg is the stop-gradient function which prevents its ar-

gument from backpropagating gradients [16] and we have

suppressed the dependence on ZB on the left-hand side be-

cause Z is fixed throughout training. The LBCE term en-

courages the image classifier predictions FB to match the

estimated labels ỸB , while the LEPR term pushes FB to

correctly predict known positives and respect the expected

number of positives per image. We can use this loss to up-

date θ while assuming that φ is fixed. By switching the

arguments in Eqn. 11 we obtain an analogous loss which

allows us to update φ while assuming θ is fixed. Then our

final loss is simply

LROLE(FB , ỸB) =
L′(FB |ỸB) + L′(ỸB |FB)

2

through which we can update FB and ỸB simultaneously.

We now give some intuition for why this might work.

We start with an informal proposition: all else being equal,

a convolutional network will more readily train on infor-

mative labels than on uninformative labels. Concretely, it

has been observed that convolutional neural networks can

be trained to accurately predict completely random labels,

but the same network will fit to the correct labels much

faster [64]. How does this relate to our context? LROLE

allows the labels to be set arbitrarily, as long as they are

consistent with the known labels and the expected number

of positive labels. Since it is easier to train image classifiers

on informative labels than uninformative ones, we hypothe-

size that correct labels are a “good choice” from the algo-

rithm’s perspective. While it is possible to learn to predict

labels unrelated to the image content, in many cases it may

be easier to predict the correct ones.

6. Experiments

Here we present multi-label image classification results

on four standard benchmark datasets: PASCAL VOC 2012

(VOC12) [13], MS-COCO 2014 (COCO) [34], NUS-WIDE

(NUS) [8], and CUB-200-2011 (CUB) [55]. For each

dataset we present results for both (i) linear classification

on fixed features and (ii) end-to-end fine-tuning.
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Figure 2. Distribution of predicted probabilities for unobserved

positives when training with a single positive per image for COCO.

Each column represents a normalized histogram and white pixels

indicate a frequency of zero. Training with LROLE (right) results

in the recovery of a significant number of the unlabeled positives

as evident by the majority of the probability correctly being con-

centrated at 1.0 (top right) by the end of training. LAN (left) does

not exhibit the same behavior.

6.1. Implementation Details

Data preparation. Our goal is to evaluate the per-

formance of different single positive multi-label learning

losses. To do this, we begin with fully labeled multi-label

image datasets and corrupt them by discarding annotations.

Specifically, we simulate single positive training data by

randomly selecting one positive label to keep for each train-

ing example. This is performed once for each dataset and

the same label set is used for all comparisons on that dataset,

i.e. every time an image appears in a batch it has the same

single positive label. For each dataset, we withhold 20% of

the training set for validation. The validation and test sets

are always fully labeled. VOC12 contains 5,717 training

images and 20 classes, and we report results on the official

validation set (5,823 images). COCO consists of 82,081

training images and 80 classes, and we also report results

on the official validation set (40,137 images). The com-

plete NUS dataset is not available online so we re-scraped

it from Flickr. As a result, it was not possible to obtain all

of the original images. In total, we collected 126,034 and

84,226 images from the official training and test sets respec-

tively, consisting of 81 classes. In accordance with standard

practice [15, 12], we merged the training and test sets and

randomly selected 150,000 images for training and used the

remaining 60,260 for testing. CUB is divided into 5,994

training images and 5,794 test images. Each CUB image is

associated with a vector indicating the presence or absence

of 312 binary attributes. Note that subsets of these attributes

are known to be mutually exclusive, but we do not make use

of that information. We provide additional statistics on the

datasets in the supplementary material.
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Linear Fine-Tuned

Loss Labels Per Image VOC12 COCO NUS CUB VOC12 COCO NUS CUB

LBCE All Pos. & All Neg. 86.7 70.0 50.7 29.1 89.1 75.8 52.6 32.1

LBCE−LS All Pos. & All Neg. 87.6 70.2 51.7 29.3 90.0 76.8 53.5 32.6

LIUN 1 Pos. & All Neg. 86.4 67.0 49.0 19.4 87.1 70.5 46.9 21.3

LIU 1 Pos. & 1 Neg. 82.6 60.8 43.6 16.1 83.2 59.7 42.9 17.9

LAN 1 Pos. & 0 Neg. 84.2 62.3 46.2 17.2 85.1 64.1 42.0 19.1

LAN−LS 1 Pos. & 0 Neg. 85.3 64.8 48.5 15.4 86.7 66.9 44.9 17.9

LWAN 1 Pos. & 0 Neg. 84.1 63.1 45.8 17.9 86.5 64.8 46.3 20.3

LEPR 1 Pos. & 0 Neg. 83.8 62.6 46.4 18.0 85.5 63.3 46.0 20.0

LROLE 1 Pos. & 0 Neg. 86.5 66.3 49.5 16.2 87.9 66.3 43.1 15.0

LAN−LS +LinearInit. 1 Pos. & 0 Neg. - - - - 86.5 69.2 50.5 16.6

LROLE +LinearInit. 1 Pos. & 0 Neg. - - - - 88.2 69.0 51.0 16.8

Table 1. Multi-label test set mean average precision (MAP) for different multi-label losses on four different image classification datasets.

We present results for two scenarios: (i) training a linear classifier on fixed features and (ii) fine-tuning the entire network end-to-end.

In all cases the backbone network is an ImageNet pre-trained ResNet-50. All methods below the break use only one positive per image

(i.e. 1 Pos. & 0 Neg.), while methods above the break use additional supervision. In each column we bold the best performing single

positive method and underline the second-best. For each method and we select the hyperparameters that perform the best on the held-out

validation set. For losses labeled with “LinearInit.” we freeze the weights of the backbone network for the initial epochs of training and

then fine-tune the entire network end-to-end for the remaining epochs. Note that this linear initialization phase is identical to the training

protocol for the “Linear” results.

Loss VOC12 COCO NUS CUB

LAN 85.8 63.8 49.3 16.8

LAN−LS 86.9 65.4 49.7 17.4

LROLE 90.3 69.5 56.0 19.6

Table 2. Training set MAP for multi-label predictions evaluated

with respect to the full ground truth labels. These values measure

how well each method recovers the true training labels despite be-

ing trained with one positive label per image. Note that all results

are for the linear case. Hyperparameters and stopping epoch are

selected using the validation set as before.

Hyperparameters. For each method, we conducted a

hyperparameter search and selected the hyperparameters

with the best mean average precision (MAP) on the vali-

dation set. We considered learning rates in {1e − 2, 1e −
3, 1e − 4, 1e − 5} and batch sizes in {8, 16}. We train for

25 epochs in the linear case and 10 epochs in the fine-tuned

case. The rows tagged with “+LinearInit” are fine-tuned for

5 epochs starting from the best weights found during linear

training. For LROLE we set the learning rate for the label es-

timate parameters φ to be 10× larger than the learning rate

for the image classifier parameters θ. For LEPR and LROLE

we compute k based on the fully labeled training set - we

give these values and study the effect of mis-specifying k in

the supplementary material. All experiments are based on a

ResNet-50 [20] pre-trained on ImageNet [49].

Implementation of g for LROLE. We let φ ∈ [0, 1]N×L

and define Ỹ by ỹni = σ(φni) where σ : R → (0, 1) is

the sigmoid function. As a result, g is a simple “look-up”

operation given by g(xn;φ) = ỹn. We initialize φni from

the uniform distribution on [σ−1(0.4), σ−1(0.6)] if zni = 0
or we initialize φni = σ−1(0.995) if zni = 1. Note that this

does not apply to “LROLE+LinearInit.” which starts from

the φ parameters found during linear training.

6.2. Single Positive Classification Results

In Table 1 we evaluate the different training losses out-

lined earlier in the paper in the single positive case (i.e.

“1 Pos. & 0 Neg.”) and compare their performance to

other labeling regimes (e.g. fully labeled, “All Pos. & All

Neg.”). We also compare against intermediate variants such

as LIUN, which has access to one positive label per image

and all the negatives i.e. more labels than the single pos-

itive case, but fewer than the fully labeled case. We find

that LROLE is the strongest method in the linear case, often

approaching (and sometimes surpassing) the performance

of LIUN, which has access to many more labels at training

time. In the fine-tuned case, we see that better initialization

provides substantial benefits to both LROLE and LAN (see

rows with “+LinearInit.”). However, LAN−LS is also very

effective, especially in light of its simplicity.

Single positive training performs surprisingly well.

One way to better understand the overall performance is by

comparing different losses in terms of the number of train-

ing labels used. In Figure 1 we observe that in the linear

case, LROLE achieves test MAP comparable to the fully la-

belled loss (LBCE) on VOC12, despite using 20 times fewer

labels.

The choice of single positive loss matters. While we

have discussed the shortcomings of the assume negative

baseline LAN, we observe that it performs reasonably well.

However, we note that the gap between LAN and the fully

supervised LBCE is substantially wider in the end-to-end

fine-tuned case. Presumably this is due to the fact that the
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false negative labels can do much more damage when they

are able to corrupt the backbone feature extractor. This re-

sult adds to a broader conversation (which has mostly been

focused on the multi-class setting) about whether, and to

what extent, deep learning is robust to label noise [48].

Our multi-label label smoothing variant LAN−LS and our

LROLE loss perform much better in most cases, indicat-

ing that the widely used LAN baseline is a lower bound on

performance. We also note that although LEPR typically

performs worse than LAN, it seems to work quite well for

CUB. CUB is unusual among our datasets because the av-

erage number of positive labels per image is over 30 (more

than 10× higher than VOC12, COCO, and NUS). We sus-

pect that the relatively mild loss applied to unobserved la-

bels under LEPR may be beneficial when there are so many

unobserved positives.

Label smoothing is a strong baseline. [38] showed

that label smoothing mitigates the damaging effects of label

noise in the multi-class setting. We extend these results to

the multi-label setting. We see in Table 1 that LAN−LS (i.e.

assume negative with label smoothing) outperforms the ba-

sic assume negative LAN loss in nearly every case. It is also

worth noting that label smoothing provides a larger benefit

in the single positive case (LAN−LS vs. LAN) than it does in

the fully labeled case (LBCE−LS vs. LBCE). We therefore

recommend LAN−LS as a strong and simple baseline for the

single positive multi-label setting. However, training with

our LROLE loss still performs best in most settings. LROLE

requires more parameters to be estimated at training time,

but incurs no additional computational overhead at infer-

ence time. In Table 2 we present MAP scores computed on

the fully observed training set for losses trained with only

a single positive per image. Interestingly, we observe that

LROLE does a better job at recovering the full unobserved

label matrix when compared to LAN−LS. This is illustrated

qualitatively in Figure 2, which shows that LROLE can suc-

cessfully recover many of the unobserved positive labels

during training. However, as seen in Table 1, this better

recovery of the clean training labels does not necessarily

translate to comparable gains on the test set.

Initialization matters. LROLE is very effective in the

linear setting i.e. when training a randomly initialized lin-

ear classifier and label estimator on frozen backbone fea-

tures. However, we find that starting from a randomly ini-

tialized classifier and label estimator in the end-to-end set-

ting results in an inferior model. This is perhaps not too

surprising given the additional degrees of freedom afforded

by end-to-end fine-tuning. However, as a simple remedy

we recommend starting with a frozen backbone for the first

few epochs of end-to-end training, which is denoted in Ta-

ble 1 as LROLE + LinearInit. We observe that this pro-

cedure also provides substantial benefits for LAN−LS, the

label smoothed version of the assume negative training loss.

7. Limitations

When creating our simulated training annotations, our

single positive label generation process assumes that for

a given image any positive label that is present is equally

likely to be annotated. This is in line with similar assump-

tions made in other related work e.g. [12]. However, in

practice this is an oversimplification, as human annotators

are likely to have biases related to the object categories they

annotate. Depending on the specific dataset, this could be

manifested as a preference for annotating familiar object

categories, or it could be based on factors related to the

saliency of the object instance in the image e.g. smaller ob-

jects may be less likely to be annotated compared to larger

ones. In this work we focus on better understanding the

potential of single positive training, and leave modeling an-

notation biases to future work.

Our LROLE loss requires the online estimation of an

N × L label matrix. As presented, we store the full label

matrix in memory. For a dataset like ImageNet this would

require 4GB of memory, but would become infeasible for

larger datasets or larger numbers of labels. Possible alterna-

tive implementations of the label estimator g (which would

still be fully compatible with our loss) include learning a

factorized estimate of the matrix or using a small neural net-

work to approximate it.

8. Conclusion

We have investigated an underexplored variant of par-

tially observed multi-label classification – that of single

positive training. Perhaps surprisingly, we have showed that

in this supervision deprived setting it is possible to achieve

classification results that are competitive with full label su-

pervision using an order of magnitude fewer labels. This

opens up future avenues of work related to efficient crowd-

sourcing of annotations for large-scale multi-label datasets.

In future work we intend to further explore the connections

to semi-supervised multi-label classification along with ap-

plications in self-supervised representation learning where

the problem of how to address false negative labels often

occurs. In addition, many of the ideas discussed are appli-

cable to the more general “partially observed multi-label”

case (i.e. not just positive labels), and we plan to consider

extensions to that setting also.

Acknowledgements. This project was supported in part

by an NSF Graduate Research Fellowship (Grant No.

DGE1745301) and the Microsoft AI for Earth program. We

would also like to thank Jennifer J. Sun, Matteo Ruggero

Ronchi, and Joseph Marino for helpful feedback.

940



References

[1] Jessa Bekker and Jesse Davis. Learning from positive and

unlabeled data: a survey. Machine Learning, 2020.

[2] Forrest Briggs, Balaji Lakshminarayanan, Lawrence Neal,

Xiaoli Z Fern, Raviv Raich, Sarah JK Hadley, Adam S

Hadley, and Matthew G Betts. Acoustic classification of

multiple simultaneous bird species: A multi-instance multi-

label approach. The Journal of the Acoustical Society of

America, 2012.

[3] Serhat Selcuk Bucak, Rong Jin, and Anil K Jain. Multi-label

learning with incomplete class assignments. In CVPR, 2011.

[4] Ricardo S Cabral, Fernando Torre, João P Costeira, and

Alexandre Bernardino. Matrix completion for multi-label

image classification. In NeurIPS, 2011.

[5] Emre Cakir, Toni Heittola, Heikki Huttunen, and Tuomas

Virtanen. Polyphonic sound event detection using multi label

deep neural networks. In IJCNN, 2015.

[6] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen

Guo. Multi-label image recognition with graph convolu-

tional networks. In CVPR, 2019.

[7] Hong-Min Chu, Chih-Kuan Yeh, and Yu-Chiang

Frank Wang. Deep generative models for weakly-supervised

multi-label classification. In ECCV, 2018.

[8] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhip-

ing Luo, and Yantao Zheng. Nus-wide: a real-world web

image database from national university of singapore. In In-

ternational Conference on Image and Video Retrieval, 2009.

[9] Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, and

Titouan Lorieul. Set-valued classification–overview via a

unified framework. arXiv:2102.12318, 2021.

[10] Jia Deng, Olga Russakovsky, Jonathan Krause, Michael S

Bernstein, Alex Berg, and Li Fei-Fei. Scalable multi-label

annotation. In CHI, 2014.

[11] Junhong Duan, Xiaoyu Li, and Dejun Mu. Learning Multi

Labels from Single Label - An Extreme Weak Label Learn-

ing Algorithm. Wuhan University Journal of Natural Sci-

ences, 2019.

[12] Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learn-

ing a deep convnet for multi-label classification with partial

labels. CVPR, 2019.

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[14] Jianlong Fu and Yong Rui. Advances in deep learning ap-

proaches for image tagging. APSIPA Transactions on Signal

and Information Processing, 6, 2017.

[15] Yunchao Gong, Yangqing Jia, Thomas K. Leung, Alexander

Toshev, and Sergey Ioffe. Deep convolutional ranking for

multilabel image annotation. In ICLR, 2014.

[16] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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