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Abstract

This paper presents a supervised mixing augmentation

method termed SuperMix, which exploits the salient regions

within input images to construct mixed training samples.

SuperMix is designed to obtain mixed images rich in visual

features and complying with realistic image priors. To en-

hance the efficiency of the algorithm, we develop a variant

of the Newton iterative method, 65× faster than gradient

descent on this problem. We validate the effectiveness of Su-

perMix through extensive evaluations and ablation studies

on two tasks of object classification and knowledge distil-

lation. On the classification task, SuperMix provides com-

parable performance to the advanced augmentation meth-

ods, such as AutoAugment and RandAugment. In par-

ticular, combining SuperMix with RandAugment achieves

78.2% top-1 accuracy on ImageNet with ResNet50. On the

distillation task, solely classifying images mixed using the

teacher’s knowledge achieves comparable performance to

the state-of-the-art distillation methods. Furthermore, on

average, incorporating mixed images into the distillation

objective improves the performance by 3.4% and 3.1% on

CIFAR-100 and ImageNet, respectively. The code is avail-

able at https://github.com/alldbi/SuperMix.

1. Introduction

Despite the revolutionary performance of deep neural

networks (DNNs), they easily overfit when the training set

is qualitatively or quantitatively deficient [27, 33]. Quality

of the data can be interpreted as how well the data is ex-

pressive of the true distribution of inputs in the underlying

task. This helps the model to learn discriminative patterns

likely to occur at inference time. Quantity of the data, on the

other hand, allows the model to observe discriminative pat-

terns from different views and generalize the task-specific

notions according to the major factors of variation in the in-

put domain. Although analytical analysis of such important

properties of the data has remained arduous [16], empirical

evaluations on training deep models often highlight a com-

mon observation: incorporating more data leads to a better

Figure 1: SuperMix combines salient regions in input im-

ages to construct unseen data for training.

generalization [25, 13]. Hence, data augmentation has be-

come a fundamental component of the training paradigms,

aiming to enlarge the training set by transforming images in

the given dataset.

Conventional image data augmentation involves combi-

nations of context-preserving transformations, such as hori-

zontal flip, crop, scale, color manipulation, and cut out [17,

12, 9]. Recently, notable efforts have been devoted to im-

proving the augmentation, e.g., by automating the search for

the optimal augmentation policies [4, 20, 5]. The majority

of these methods have focused on transforming single im-

ages, while ignoring the potentially very useful combination

of multiple images for augmentation. To address this short-

coming, several studies have considered combining multi-

ple images to construct novel images [18, 22, 34, 32, 29].

However, these methods either mix images blindly and dis-

regard the salient regions [34, 11, 32, 29] or do not scale to

large-scale problems [18]. Furthermore, the current mixing

functions are not expressive enough and often suppresses

visual patterns by averaging or covering features in one im-

age with the trivial features in another image. The corre-

sponding pseudo labels are also not accurate and constrain

the training performance [11].

This paper presents a mixing augmentation approach

termed SuperMix, which exploits the salient regions of in-

put images to construct more advantageous mixed data. The

supervision for this purpose can be obtained from the target

model itself, i.e., self-training [26, 30, 23, 19, 2, 31], or

13794



a more sophisticated model aiming to guide a student net-

work via knowledge transfer [1, 14]. Figure 1 provides a

visual comparison of mixed images produced by different

methods. In a nutshell, the contributions of the paper are as

follows:

• We formalize the problem of supervised mixing aug-

mentation using a set of mixing masks associating the

pixel value at each spatial location in the mixed image

to the spatial locations in the input images.

• The optimization problem is carefully constrained to

assure that the solutions are rich in salient features and

comply with the realistic image priors.

• We develop a modified Newton iterative algorithm for

SuperMix, suitable for large-scale applications. This

approach provides 65× speed-up as compared to SGD

on ImageNet.

• We demonstrate that mixed images intrinsically induce

smooth predictions, and thus, help reveal knowledge of

the teacher model in knowledge distillation.

2. Related work

Data augmentation: Data augmentation aims to improve

the generalization of the model by enlarging the train set

using transformations preserving the context of inputs in

the learning problem. Conventional image transformations

for this purpose are horizontal flip, crop, scale, color ma-

nipulation, and cut out [17, 12, 9]. A contemporary trend

of research on the topic has focused on selecting the best

sequence of transformations according to the task, dataset,

and learning model. AutoAugment (AA) [4] automated

the search for augmentation policies given a predefined set

of transformations. Despite the significant performance of

AA, it suffers from prohibitive training complexity imposed

by Reinforcement Learning. Multiple approaches have at-

tempted to reduce the training complexity by employing

more efficient search methods, e.g., density matching in fast

AutoAugment (FAA) [20], or population based augmenta-

tion (PBA) [15]. RandAugment (RA) [5] have shown that

the search space and selection criteria can be significantly

simplified by carefully combining random transformations.

However, these methods ignore the potentially useful com-

bination of multiple images for augmentation.

Mixing augmentation: Several recent studies have con-

sidered employing multiple images for data augmentation

[18, 34, 11, 32, 29]. Smart Augmentation [18] proposed

merging multiple images from the same class using a DNN

trained concurrently with the target model. However, train-

ing an additional deep model alongside every target model

is resource exhaustive and severely limits the scalability

of the approach for large-scale problems. Moreover, the

method is restricted to merge images from the same class

which limits the diversity and novelty of visual patterns

in the merged images. MixUp [34, 29] combined a pair

of images for the augmentation by convex linear interpo-

lation. CutMix [32] proposed overlaying a cropped area

of an input image on another image to augment the data.

Although MixUp and CutMix have demonstrated notable

improvements to the training of object recognition models,

they suffer from major shortcomings. First, they often av-

erage or replace salient regions in one image with insignif-

icant regions, e.g., background, in another image. Second,

due to the lack of supervision the labels computed for the

mixed images are not accurate and limits the usefulness of

the mixed images. However, SuperMix addresses these is-

sues by extracting the salient regions of inputs and carefully

combining them according to the realistic image priors and

saliency-preserving constrains.

3. Supervised Mixing Augmentation

Given a training set D = {(xi, yi)}
N−1
i=0 , mixing meth-

ods take a subset X ⊂ D to produce the mixed image x̂

and the corresponding label ŷ. A crucial property of mixed

images is that they must reside close to the manifold of the

training data since the goal of the mixing is to enlarge the

support of the training distribution. Previous mixing meth-

ods [34, 29] have considered this requirement by employ-

ing operations that preserve local smoothness of images.

MixUp [34, 29] combines a pair of images (xi, xj) using

convex linear interpolation as: x̂ = rxi + (1− r)xj , where

r ∼ Beta(α, α) is a random mixing weight from the sym-

metric Beta distribution with α ∈ (0,∞). Due to the lack of

supervision, the soft label for x̂ is computed using the same

linear interpolation as: ŷ = rδ(yi) + (1 − r)δ(yj), where

δ(·) is the one-hot encoding function. This blind mixing

suffers from two shortcomings. First, coefficient r assigns

an equal importance to the whole image which can suppress

important features by averaging with the background or less

important features from the other image. Second, the com-

puted soft label, ŷ, does not accurately describe the proba-

bility of classes represented by the mixed image and, thus,

limits the effectiveness of the augmentation.

3.1. Mixing function

We formalize a general formulation for the augmentation

function that allows multiple images to be combined locally.

We use a set of mixing masks M = {mi}
k−1
i=0 , where mi :

Λ→ [0, 1] associates each spatial location u ∈ Λ in xi with

a scalar value mi(u). Using the mixing masks, we define

the mixing function as:

x̂ :=
k−1∑

i=0

xi ⊙mi, (1)
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Figure 2: Schematic diagram of the proposed method for mixing k = 2 input images using the supervision from fT .

where xi is the ith sample in X , the operator ⊙ denotes

the element-wise product, and
∑

i mi(u) = 1 to hold the

convexity of the combination. The mixing function recovers

MixUp [34] when k = 2 and all values in each mask are

equal. It also recovers CutMix [32] when k = 2 and all

values except the cropped area in one of the masks are equal

to one. Figure 1 provides a visual comparison of the role of

the masks in the mixing augmentation. In the next section,

we describe how knowledge of a teacher model can be used

to compute M such that the mixed image, x̂, encompasses

the rich visual information of images in X .

3.2. Supervised mixing

Let fT : R
W×H×C → [0, 1]n denote the probability

vector predicted by the teacher (T) for n classes and fT
i

be the probability for the ith class. We optimize the set of

masks M in Equation 1 such that all salient regions in X ,

according to the knowledge of the teacher, be present in the

mixed image, x̂. This can be interpreted as: fT (x̂) ≈ ŷ,

where ŷ is high for classes associated with images in X .

We formulate the target soft label, ŷ, computed in previous

approaches [34, 32] for k = 2 using the Beta distribution.

We generalize for k ≥ 2 by sampling the mixing coeffi-

cients from the Dirichlet distribution. Let (r0, . . . , rk−1) ∼
Dir(α) be a random sample from the symmetric multivari-

ate Dirichlet distribution with parameter α and size k, we

define the target soft label as:

ŷ :=
k−1∑

i=0

riδ
(
yT (xi)

)
, (2)

where yT (xi) = argmaxj f
T
j (xi) is the predicted class for

xi ∈ X , and δ(·) is the one-hot encoding function.

The set of mixing masks can be optimized to minimize

the divergence between the output of the teacher model on

the mixed image and the target soft label computed in Equa-

tion 2. The masks must also hold two additional properties

to comply with the realistic image priors. First, generated

images must reside close the manifold of the training data.

In practice, this interprets that each mask must be spatially

smooth so that the generated images resemble the spatial

structure of the inputs. Second, masks must be sparse across

the input samples to ensure each spatial location in the out-

put image is assigned merely to a single image which pre-

vents averaging multiple images at each spatial location and

suppressing important features. Considering these, the opti-

mization problem for finding the mixing masks can be writ-

ten as:

argmin
m0,...,mk−1

KL(fT (x̂)||ŷ) + λσLσ(M) + λsLs(M) s.t.:

a. 0 ≤ mi(u) ≤ 1, b.
∑

i
mi(u) = 1,

(3)

where Lσ is a penalty term for the roughness of masks, e.g.,

total variation (TV) norm, Ls is a loss function to encourage

sparsity of masks across input samples, and KL(·||·) is the

Kullback-Leibler divergence.

Here, we provide an iterative algorithm to solve the op-

timization problem efficiently. At each iteration t, the con-

vexity conditions can be satisfied by the following normal-

ization:

m̃t
i =

s(mt
i)∑k−1

j=0 s(m
t
j)
, (4)

where s(·) is the sigmoid function. Hence, the generalized

mixing function in Equation 1 takes the normalized masks

to construct x̂. Using the normalized masks, we define the

sparsity promoting loss as:

Ls :=
1

kWH

∑

u,i

m̃t
i(u)

(
m̃t

i(u)− 1
)
. (5)

This loss function encourages the mask values to approach

0 or 1. Since the values of masks at each spatial location

sum to 1, due to the normalization in Equation 4, only one

of the masks takes the high value to minimize the loss.
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Figure 3: Visualizing the effect of smoothing factor, σ, and

the sparsity promoting weight, λs, on the mixed images.

Masks are estimated using ResNet34 and are associated

with the ‘horse’ class.

3.3. Optimization Method

A proper set of mixing masks can be estimated by mini-

mizing the objective of SuperMix as LSM = KL+λσLσ+
λsLs. A reduced form of this problem has been studied in

saliency detection and explanation of DNN predictions by

employing SGD [10] or deep generators [6]. However, the

current problem is more complex since multiple images are

involved in the optimization and the roughness penalty and

sparsity promoting loss should be minimized on all the cor-

responding masks. As we discussed and evaluated in Sec-

tion 4.4, SGD is very slow and not feasible for solving the

problem in case of large-scale image recognition tasks. Fur-

thermore, employing a dedicated deep model to mix data by

extending [6] makes the algorithm model-dependent and is

not computationally efficient.

We develop a fast and efficient algorithm to optimize the

mixing masks based on Newton’s iterative method for find-

ing roots of a nonlinear system of equations in the underde-

termined case [21, 24]. Specifically, instead of optimizing

LSM , we optimize L′
SM = KL + λsLs using a smooth

projection (SP) [7] that directly satisfies the smoothness of

masks. As we analyze later in Section 4.4, this significantly

improves the execution time of the mixing. Considering the

first-order approximation of L′
SM at M , each mask is up-

dated at iteration t to find the roots as: mt+1
i ← mt

i+∆mt
i.

Here, the update is computed using the Newton’s method

as:

∆M t =
−|L′

SM |

||∇L′
SM ||

2
2

∇L′
SM , (6)

where the gradient is with respect to M t, the concatenation

of {mt
0, . . . ,m

t
k−1}. Since both the divergence and Ls are

nonnegative, |L′
SM | = L

′
SM . This formulation uses the

ℓ2-norm projection to compute ∆M t. We modify it using

SP to preserve the smoothness of masks and compute the

smooth update as:

∆̃M
t
=

−L′
SM

(gσ ∗ ∇L′
SM )T∇L′

SM

(gσ ∗ ∇L
′
SM ), (7)

where gσ ∗ ∇L
′
SM is a smoothed version of the gradients

using the 2D Gaussian smoothing filter g with the standard

Algorithm 1 SuperMix

1: inputs: Classifier fT , set of k images X ,

low-pass filter gσ .

2: output: Mixed sample x̂.

3: Y = {argmaxjf
T
j (xi) : xi ∈ X}.

4: Sample (r0, . . . , rk−1) from Dir(α).
5: ŷ =

∑k−1
i=0 riδ(y

T (xi)).
6: Initialize (m0, . . . , mk−1)← 0,

x̂0 ← 1
k

∑
xi∈X

xi, t← 0.

7: condition = Top-k predicted classes by f(x̂t) are not in Y .

8: while condition do

9: L′
SM = KL(fT (x̂t)||ŷ) + λsLs.

10: ∆̃M t =
−L

′

SM

(gσ∗∇L′

SM
)T∇L′

SM

gσ ∗ ∇L
′
SM .

11: mt+1
i ← mt

i + ∆̃mi for i ∈ {0, . . . , k − 1}.
12: m̃t+1

i = s(mt+1
i )/

∑k−1
j=0 s(mt+1

j ).

13: x̂t+1 ←
k−1∑
i=0

xi ⊙ m̃t+1
i .

14: t← t+ 1
15: end while

16: return x̂t.

deviation σ. It must be noted that all matrices in Equations

6 and 7 are vectorized before the matrix operations, and are

reshaped back at the end of the iteration. In addition, due to

the smoothness of masks, we optimize a down-sampled set

of masks and up-sample them before performing the mix-

ing. Algorithm 1 and Figure 2 demonstrate the detailed al-

gorithm and schematic diagram for SuperMix, respectively.

Termination Criteria: The algorithm terminates when the

Top-k predicted classes of fT (x̂) are the same as the pre-

dicted class for samples in X . For instance, when X con-

sists of two images recognized as ‘cat’ and ‘dog’, the Top-2
classes in fT (x̂) should be classes of ‘cat’ and ‘dog’. This

criterion assures that important features in the input set are

visible in the mixed image. Figure 4 provides a visual com-

parison of the mixed images produced by different methods.

4. Experiments

We evaluate the performance of SuperMix on two tasks

of object classification and knowledge distillation [1, 14]

using two benchmark datasets of CIFAR-100 [17] and Im-

ageNet [8]. For knowledge distillation, we evaluate Super-

Mix on two major previous SOTA methods [14, 28] and

two mixing augmentation techniques including MixUp and

CutMix. For the sake of fair comparison, pseudo labels for

these blind mixing methods are computed using the same

teacher employed in SuperMix. All training experiments

use random horizontal flip and random crop as the default

augmentations. We perform the algorithm on random sets

of input samples drawn fromD to generateD′. For the sake

of brevity, we define the augmentation factor κ = |D′|
|D| to

show the ratio of the size of the mixed dataset over the size
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Figure 4: Visual comparison of the mixed images generated by SuperMix, MixUp, and CutMix, with k ∈ {2, 3, 4} on

ResNet34. Class activation maps [35] are computed for two classes in mixed images.

Dataset Model Base.
Automated aug. Mixing aug. SuperMix

AA[4] FAA[20] RA[5] MixUp CutMix SuperMix + RA[5]

CIFAR-

100

WRN-40-2a 74.0 79.3 79.4 79.2 77.2 77.9 79.7 79.9
WRN-28-10 81.2 82.9 82.7 83.3 82.1 82.9 83.6 83.9
S-S(26 2×96d) 82.9 85.7 85.4 85.6 84.8 85.0 85.5 85.8

ImageNet
ResNet-50 76.3/93.1 77.6/93.8 77.6/93.7 77.6/93.8 77.0/93.4 77.2/93.5 77.6/93.7 78.2/94.0
ResNet-200 78.5/94.2 80.0/95.0 80.6/95.3 80.4/95.3 79.6/94.8 79.9/94.9 80.8/95.4 81.3/95.6

Table 1: Performance of augmentation methods on CIFAR-100 (Top-1 accuracy) and ImageNet (Top-1/Top-5 accuracy).

of the original dataset.
For knowledge distillation on CIFAR-100, we also con-

sider an additional baseline by using unlabeled data from

the training set of ImageNet32x32 [3] (ImgNet32) to con-

struct unlabeled sets. This helps to better evaluate the role

of the data provided by the mixing augmentation methods.

We use SGD optimizer with an initial learning rate of 0.1
and momentum of 0.9. Weight decay is set to 5e − 4. The

learning rate is decayed by 0.1 at epochs 200, 300, 400, and

500, and the maximum number of epochs is set to 600.

Since in our experiments κ ≥ 1, the number of epochs ac-

cording to the mixed dataset will scale with 1
κ

to keep the

number of training iterations fixed for all experiments. For

instance, when κ = 5, the maximum number of epochs

for the mixed dataset is 120. The batch size is set to 128
and 256 for CIFAR-100 and ImageNet, respectively. For

the CIFAR-100 dataset, we set σ of the Gaussian smooth-

ing in SuperMix to 1 and the spatial size of the masks to

8 × 8. For ImageNet, σ is set to 2 and the size of masks

is set to 16 × 16. For all benchmark comparisons, we set

α = 3 and λs = 25. Moreover, in all experiments, the per-

formance of SuperMix is evaluated by generating 5 × 105

and 106 images on CIFAR-100 and ImageNet, respectively,

unless otherwise noted. All the hyper-parameters for the

distillation experiments are selected according to the exper-

imental setup of [28] and the ablation studies in Section 4.3.

Network architectures and settings for baseline methods are

provided in the supplemental material.

4.1. Object classification

We follow the standard setup of evaluation for automated

augmentation [4, 20, 15] and compare them with SuperMix

on the task of object classification. For SuperMix, we first

train the target model on the original dataset and then use it

to generate mixed data with k equal to 2 and 3 for CIFAR-

100 and ImageNet, respectively. Afterward, we train the

target model from scratch on the mixture of the augmented

data and the original data. Rest of the result are reported

from the original papers. As an additional evaluation, we

combine SuperMix with RangAugment (RA) [5]. For this

purpose, we first mix images using SuperMix and then ap-

ply RA with the default parameters [5] for CIFAR-100 and

ImageNet. Table 1 presents the results for these experi-

ments. On four out of five experiments, SuperMix provide

performance competitive to SOTA approaches of automated

augmentation. Furthermore, combining RA with SuperMix

further improves the performance of classification across all

the experiments. These evaluations highlight the effective-

ness of mixing multiple images for data augmentation.
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Teacher WRN-40-2b ResNet56 ResNet110 ResNet32x4 VGG13

Student WRN-16-2 WRN-40-1 ResNet20 ResNet20 ResNet32 ResNet8x4 VGG8

Teacher acc. 75.61 72.34 74.31 79.42 74.64
Student acc. 73.26 71.98 69.06 69.06 71.14 72.50 70.36

D
is

ti
ll

at
io

n
m

et
h

o
d

KD [14] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
CRD [28] 75.48 74.14 71.16 71.46 73.48 75.51 73.94

CE+

ImgNet32 74.91 74.80 71.38 71.48 73.17 75.57 73.95
MixUp 76.20⋆ 75.53 72.00 72.27 74.60⋆ 76.73 74.56
CutMix 76.40⋆ 75.85⋆ 72.33 72.68 74.24 76.81 74.87⋆

SuperMix 76.93⋆
76.11⋆

72.64⋆
72.75 74.80⋆

77.16 75.38⋆

KD+

ImgNet32 76.52⋆ 75.70⋆ 72.22 72.23 74.24 76.46 75.02⋆

MixUp 76.58⋆ 76.10⋆ 72.89⋆ 72.82 74.94⋆ 77.07 75.58⋆

CutMix 76.81⋆ 76.45⋆ 72.67⋆ 72.83 74.87⋆ 76.90 75.50⋆

SuperMix 77.45⋆
76.53⋆

73.19⋆
72.96 75.21⋆

77.59 76.03⋆

Table 2: Classification performance (%) of student models on CIFAR-100. Teacher and student are from the same architecture

family but different depth/wideness and capacity. We denote by ⋆ results where the student surpasses the teacher performance.

Only ImgNet32 uses unlabeled data from an external source. Average over 4 independent runs.

Figure 5: Evaluating the role of augmentation size and hyper-parameters.

4.2. Knowledge Distillation

In addition to KD [14] and CRD [28], we consider a

simple method for distillation to highlight the effectiveness

of mixing augmentation. In this method, we train the stu-

dent models to classify mixed images labeled by the teacher

model. The labels only show the winner class and does not

contain any information regarding the rest of the classes.

We refer to this method as Cross-Entropy (CE) distillation.

Results on CIFAR-100: Tables 2 and 3 presents the re-

sults for two challenging scenarios of distillation. In the

first scenario, teacher and student are from the same fam-

ily of architectures but have different depth/wideness and

capacity. In the second scenario, teacher and student are

from completely different network architectures. Employ-

ing the simple CE method using the mixed data consistently

outperforms previous methods in both distillation scenar-

ios. The data generated by SuperMix demonstrates the

best performance across all evaluations, and, on five out

of seven teacher-student setups from the same architecture

family, students trained on the SuperMix data outperform

their teachers. Last four rows in Tables 2 and 3 present

the results for knowledge distillation using the original KD

[14]. More importantly, results on MixUp, CutMix, and

SuperMix demonstrate that they can notably enhance the

performance of the distillation techniques.

These observations highlight three crucial points. First,

the limited size of the training set is a major factor con-

straining the performance of knowledge distillation. Ac-

cording to Table 2, almost all of the students achieve com-

parable results to CRD when external data of ImgNet32 is

provided. Second, mixing augmentation provides more in-

formative data for distillation compared to unlabeled data

from an external source. Third, the supervised mixing re-

sults in rich images that are highly favorable for knowledge

distillation and outperforms blind mixing methods.

Results on ImageNet: We showcase the effectiveness of

the mixed data on ImageNet by distilling the knowledge of

ResNet-34 into ResNet-18. Table 5 presents the results for

the distillation on the ImageNet dataset. Using the simple

CE method consistently outperforms the previous SOTA ap-

proaches. In five out of eight experiments of distillation

using mixed images, the student outperforms the teacher.

This demonstrates the scalability and effectiveness of the

mixing augmentation for the task of knowledge distillation.

Moreover, combining mixed data with the original distilla-

tion objective further enhances the distillation performance

validating the effectiveness of the mixing augmentation for

knowledge transfer in large-scale datasets.
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Teacher VGG13 ResNet50 ResNet32x4 WRN-40-2

Student MobileNetV2 MobileNetV2 VGG8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Teacher acc. 74.64 79.34 79.42 75.61
Student acc. 64.60 64.60 70.36 70.50 71.82 70.50

D
is

ti
ll

at
io

n
m

et
h

o
d

KD [14] 67.37 67.35 73.81 74.07 74.45 74.83
CRD [28] 69.73 69.11 74.30 75.11 75.65 76.05⋆

CE+

ImgNet32 68.85 68.01 73.96 76.80 77.56 75.87⋆

MixUp 71.13 71.71 75.41 78.16 78.84 77.29⋆

CutMix 70.93 70.64 75.84 77.89 79.32 77.50⋆

SuperMix 71.65 72.13 76.07 78.47 79.53⋆
77.92⋆

KD+

ImgNet32 69.14 68.44 74.32 76.87 77.90 76.23⋆

MixUp 71.29 71.99 75.59 78.22 79.14 77.44⋆

CutMix 71.10 70.93 76.01 77.92 79.53⋆ 77.65⋆
SuperMix 71.81 72.40 76.28 78.51 79.80⋆

78.07⋆

Table 3: Classification performance (%) of student models on CIFAR-100. Teacher and student models are from different

architectures. We denote by ⋆ results where the student surpasses the teacher performance. Average over 4 independent runs.

Net SGD
Newton

w/o SP w/ SP

Im
g
N

et VGG16
ET (sec.) 15.41 6.59 0.23

iters 34.5 15.1 0.5

Res34
ET (sec.) 4.25 1.98 0.06

iters 23.6 11.7 0.3

C
IF

A
R VGG13

ET (ms.) 482 97 5

iters 19.5 3.7 0.2

WRN
ET (ms.) 509 122 6

iters 21.8 4.6 0.2

Table 4: Comparison of execution time.

4.3. Ablation studies

Impact of the size of the training set: In this part, we

investigate how the size of the dataset affects the distilla-

tion performance by measuring the Top-1 test accuracy of

WRN-16-2 versus the augmentation size on CIFAR-100.

For all the mixing methods, we set k = 2 and α = 1, i.e.,

sampling mixing coefficients from the uniform distribution.

Figures 5a presents the results for these evaluations. The

distillation performance improves by increasing the aug-

mentation size and plateaus at 5 × 105. All the datasets

generated using mixing augmentations outperform the un-

labeled dataset of ImgNet32. This highlights the superiority

of mixed images for knowledge transfer compared to unla-

beled data from an external source. Based on these obser-

vations, we set the size of the mixed dataset to 5 × 105 for

all experiments on CIFAR-100.

Impact of k: We evaluate the role of k by conducting ex-

periments on CIFAR-100 and ImageNet datasets. Figures

5b and 5c present the results for this evaluation. A major

shortcoming of MixUp and CutMix is that they mix images

without any supervision. Including more input images to

produce a mixed image increases the chance of incorrect

cropping in CutMix, and averaging overlapping features in

Mixup. This explains the notable deterioration of the dis-

tillation performance in all experiments with k > 2 using

these augmentation methods. Both of these incidents de-

grade the quality and effectiveness of features in the mixed

image, which can also be observed from the visual compar-

isons provided in Figure 4. We observe that the spatial size

of the image can limit k. Performance of distillation using

SuperMix degrades for k > 2 on CIFAR-100. However on

ImageNet, k = 3 yields the best distillation performance.

Impact of α: Parameter α determines the probability dis-

tribution for the presence of each input class in the mixed

image. We measure the performance of distillation versus

several values of α to identify its optimal value. Figure 5d

presents results for these experiments. For α→ 0, the mix-

ing augmentation becomes inactive since only one input cat-

egory will appear in the augmented images, i.e., r0 = 1 or

r1 = 1. For α → +∞, the contribution of images be-

come equal, i.e., r0 = r1 = 0.5. This is more favorable

for distillation since both input images contribute equally to

the mixed image. For α = 1, contribution of each input in

the mixed image is selected from the uniform distribution

Unif(0, 1). According to the figures, we select α = 3 for all

other experiments unless otherwise noted.

Sparsity among masks: The sparsity promoting loss forces

each spatial location in the output image to be assigned to

only one image in the input set. This improves the mixing

performance by preserving the most important features in

each spatial location. We evaluate the performance of dis-

tillation versus λs in Figure 5e. By increasing the weight

of sparsity the performance of distillation improves until

λs ≈ 30. After that the accuracy of masks degrades since

the sparsity promoting loss dominates the KL loss. Fig-

ure 3 evaluates this phenomenon by visualising the mixing

mask versus λs.

4.4. Execution time

Here, we compute the execution time of SuperMix. To

this aim, we define two baselines for the sake of compar-
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Tea
ch

er

Stu
den

t
KD CRD

CE KD CE KD CE KD CE KD

+MixUpk=2 +CutMixk=2 +SuperMixk=2 +SuperMixk=3

Top-1 73.31 69.75 70.66 71.17 73.03 73.29 73.18 73.33⋆ 73.42⋆ 73.62⋆ 73.65⋆ 73.83⋆

Top-5 91.42 89.07 89.88 90.13 91.27 91.44 91.36 91.44⋆ 91.51⋆ 91.66⋆ 91.67⋆ 91.82⋆

Table 5: Top-1 and Top-5 classification accuracy of ResNet18 on ImageNet dataset. Results where the student surpasses the

teacher performance are marked by ⋆. Average over 4 independent runs.

Figure 6: Visualizing representations for the mixed images.

ison. For the first baseline, we use SGD instead of the

Newton method to optimize the set of masks. The sec-

ond baseline is the Newton method without SP. Hence, the

optimization in both baselines is performed on LSM =
KL + λσLσ + λsLs. Inspired by the previous work on

saliency detection [10], we use the TV norm for the spatial

smoothness loss as: Ls = 1
kWH

∑
i

∑
u∈Λ ||∇mi(u)||

3
3.

Based on experimental observations, we set λs = 250,

learning rate of SGD to 0.1. All other parameters are set

to the values identified in previous sections. All algorithms

are implemented with parallel processing on two NVIDA

Titan RTX with batch size of 128. For further implementa-

tion details, please refer to the released code.

Figure 4 presents the results for these comparisons.

Newton method with SP, i.e., SuperMix, is at least 65×

faster than SGD on both datasets. Moreover, due to SP

which directly satisfied the spatial smoothness condition,

SuperMix is at least 19× faster than the same algorithm

when it has to include Ls.

4.5. Embedding space evaluations

We perform two sets of evaluations on CIFAR-100 to

further analyze characteristics of the mixed images. In the

first set of experiments, we feed the original data and the

mixed images to VGG13 and visualize the output of the log-

its layer, in 2D for three random classes using PCA. The Su-

perMix images are generated with k = 2. Figure 6 demon-

strates these evaluations. Representations for the SuperMix

data has less overlap with the distribution of the represen-

tations for the original data. This suggests that the Super-

Figure 7: Distribution of top 5 predictions.

Mix data encompass more novel structure compared to the

original data, unlabeled data from other mixing methods or

an external source. The SuperMix data are harder to clas-

sify for the model since the representations are concentrated

close to the center of the embedding. To better evaluate this,

we compute the class standard deviation (c-std) of represen-

tations for each class. The computed values are reported on

the top of the corresponding images in Figure 6.

Hinton et al. [14] pointed that smoothing out the pre-

dictions of a model can better reveal its knowledge of the

task. Since SuperMix generates images by combining mul-

tiple inputs, the outputs of the model on SuperMix data are

intrinsically more smooth compared to that of the other aug-

mentation types. We validate this by computing the average

of the sorted Top-5 probability predictions of VGG13 on the

original and augmented images of CIFAR-100. As demon-

strated in Figure 7, predictions of the target model is sig-

nificantly smoother on mixed images. Moreover, SuperMix

produces the data with the most smooth labels.

5. Conclusion

In this paper, we studied the potential of mixing multiple

images using supervision of a teacher for the data augmen-

tation. We proposed SuperMix, a supervised mixing aug-

mentation method that combines salient regions in multiple

images to produce unseen training samples. The effective-

ness and efficiency of SuperMix is validated through exten-

sive experiments, evaluations, and ablation studies. Specifi-

cally, incorporating SuperMix data for distillation enhances

the state of the art of knowledge distillation. SuperMix pro-

vides comparable performance to the automated augmen-

tation methods, and when combined, notably improves the

generalization of the model.
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