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Abstract

In recent years, knowledge distillation has been proved

to be an effective solution for model compression. This

approach can make lightweight student models acquire

the knowledge extracted from cumbersome teacher mod-

els. However, previous distillation methods of detection

have weak generalization for different detection frameworks

and rely heavily on ground truth (GT), ignoring the valu-

able relation information between instances. Thus, we pro-

pose a novel distillation method for detection tasks based

on discriminative instances without considering the posi-

tive or negative distinguished by GT, which is called gen-

eral instance distillation (GID). Our approach contains a

general instance selection module (GISM) to make full use

of feature-based, relation-based and response-based knowl-

edge for distillation. Extensive results demonstrate that

the student model achieves significant AP improvement and

even outperforms the teacher in various detection frame-

works. Specifically, RetinaNet with ResNet-50 achieves

39.1% in mAP with GID on COCO dataset, which sur-

passes the baseline 36.2% by 2.9%, and even better than

the ResNet-101 based teacher model with 38.1% AP.

1. Introduction

In recent years, the accuracy of object detection has

made a great progress due to the blossom of deep con-

volutional neural network (CNN). The deep learning net-

work structure, including a variety of one-stage detection

models [19, 23, 24, 25, 17] and two-stage detection mod-

els [26, 16, 8, 2], has replaced the traditional object detec-

tion and has become the mainstream method in this field.

Furthermore, the anchor-free frameworks [13, 5, 32] have

also achieved better performance with more simplified ap-
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Figure 1. Overall pipeline of general instance distillation (GID).

General instances (GIs) are adaptively selected by the output both

from teacher and student model. Then the feature-based, relation-

based and response-based knowledge are extracted for distillation

based on the selected GIs.

proaches. However, these high-precision deep learning

based models are usually cumbersome, while a lightweight

with high performance model is demanded in practical ap-

plications. Therefore, how to find a better trade-off between

the accuracy and efficiency has become a crucial problem.

Knowledge Distillation (KD), proposed by Hinton et al.

[10], is a promising solution for the above problem. Knowl-

edge distillation is to transfer the knowledge of large model

to small model, thereby improving the performance of the

small model and achieving the purpose of model compres-

sion. At present, the typical forms of knowledge can be di-

vided into three categories [7], response-based knowledge

[10, 22], feature-based knowledge [27, 35, 9] and relation-

based knowledge [22, 20, 31, 33, 15]. However, most of

the distillation methods are mainly designed for multi-class

classification problems. Directly migrating the classifica-

tion specific distillation method to the detection model is
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less effective, because of the extremely unbalanced ratio of

positive and negative instances in the detection task. Some

distillation frameworks designed for detection tasks cope

with this problem and achieve impressive results, e.g. Li

et al. [14] address the problem by distilling the positive

and negative instances in a certain proportion sampled by

RPN, and Wang et al. [34] further propose to only dis-

till the near ground truth area. Nevertheless, the ratio be-

tween positive and negative instances for distillation needs

to be meticulously designed, and distilling only GT-related

area may ignore the potential informative area in the back-

ground. Moreover, current detection distillation methods

cannot work well in multi detection frameworks simultane-

ously, e.g. two-stage, anchor-free methods. Therefore, we

hope to design a general distillation method for various de-

tection frameworks to use as much knowledge as possible

effectively without concerning the positive or negative.

Towards this goal, we propose a distillation method

based on discriminative instances, utilizing response-based

knowledge, feature-based knowledge as well as relation-

based knowledge, as shown in Fig 1. There are several ad-

vantages: (i) We can model the relational knowledge be-

tween instances in one image for distillation. Hu et al.

[11] demonstrates the effectiveness of relational informa-

tion on detection tasks. However, the relation-based knowl-

edge distillation in object detection has not been explored

yet. (ii) We avoid manually setting the proportion of the

positive and negative areas or selecting only the GT-related

areas for distillation. Though GT-related areas are almost

informative, the extremely hard and simple instances may

be useless, and even some informative patches from the

background can be useful for students to learn the gener-

alization of teachers. Besides, we find that the automatic

selection of some discriminative instances between the stu-

dent and teacher for distillation can make knowledge trans-

ferring more effective. Those discriminative instances are

called general instances (GIs), since our method does not

care about the proportion between positive and negative

instances, nor does it rely on GT labels. (iii) Our meth-

ods have robust generalization for various detection frame-

works. GIs are calculated upon the output from student and

teacher model without relying on certain modules from a

specific detector or some key characteristic, such as anchor,

from a particular detection framework.

To sum up, this paper makes the following contributions:

• Define general instance (GI) as the distillation target,

which can effectively improve the distillation effect of

the detection model.

• Based on GI, we first introduce the relation-based

knowledge for distillation on detection tasks and inte-

grate it with response-based and feature-based knowl-

edge, which makes student surpass the teacher.

• We verify the effectiveness of our method on the

MSCOCO [18] and PASCAL VOC [6] datasets, in-

cluding one-stage, two-stage and anchor-free methods,

achieving state-of-the-art performance.

2. Related Work

2.1. Object Detection

The current mainstream object detection algorithms are

roughly divided into two-stage and one-stage detectors.

Two-stage methods [16, 8, 2] represented by Faster R-CNN

[26] maintain the highest accuracy in the detection field.

These methods utilize region proposal network (RPN) and

refinement procedure of classification and location to obtain

better performance. However, high demands for lower la-

tency bring one-stage detectors [19, 23] under the spotlight,

which achieve classification and location of targets through

the feature map directly.

In recent years, another criterion divides detection algo-

rithm into anchor-based and anchor-free methods. Anchor-

based detectors such as [24, 17, 19] solve object detection

tasks with the help of anchor boxes, which can be viewed

as pre-defined sliding windows or proposals. Nevertheless,

all anchor-based methods need to be meticulously designed

and calculate a large number of anchor boxes which takes

much computation. To avoid tunning hyper-parameters and

calculation related to anchor boxes, anchor-free methods

[23, 13, 5, 32] predict several key points of target, such

as center and distance to boundaries, reach a better perfor-

mance with less cost.

2.2. Knowledge Distillation

Knowledge distillation is a kind of model compression

and acceleration approach which can effectively improve

the performance of small models with guiding of teacher

models. In knowledge distillation, knowledge takes many

forms, e.g. the soft targets of the output layer [10], the in-

termediate feature map [27], the distribution of the inter-

mediate feature [12], the activation status of each neuron

[9], the mutual information of intermediate feature [1], the

transformation of the intermediate feature [35] and the in-

stance relationship [22, 20, 31, 33]. Those knowledge for

distillation can be classified into the following categories

[7]: response-based [10], feature-based [27, 12, 9, 1, 35],

and relation-based [22, 20, 31, 33].

Recently, there are some works applying knowledge dis-

tillation to object detection tasks. Unlike the classification

tasks, the distillation losses in detection tasks will encounter

the extreme unbalance between positive and negative in-

stances. Chen et al. [3] first deals with this problem by

underweighting the background distillation loss in the clas-

sification head while remaining imitating the full feature

map in the backbone. Li et al. [14] designs a distillation

framework for two-stage detectors, applying the L2 distilla-
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tion loss to the features sampled by RPN of student model,

which consists of randomly sampled negative and positive

proposals discriminated by ground truth (GT) labels in a

certain proportion. Wang et al. [34] proposes a fine-grained

feature imitation for anchor-based detectors, distilling the

near objects regions which are calculated by the intersection

between GT boxes and anchors generated from detectors.

That is to say, the background areas will hardly be distilled

even if it may contain several information-rich areas. Sim-

ilar to Wang et al. [34], Sun et al. [30] only distilling the

GT-related region both on feature map and detector head.

In summary, the previous distillation framework for de-

tection tasks all manually set the ratio between distilled

positive and negative instances distinguished by the GT la-

bels to cope with the disproportion of foreground and back-

ground area in detection tasks. Thus, the main difference

between our method and the previous works can be sum-

marized as follows: (i) Our method does not rely on GT

labels, nor does it care about the proportion between pos-

itive and negative instances selected for distillation. It is

the information gap between student and teacher that guides

the model to choose the discriminative patches for imita-

tion. (ii) None of the previous methods take advantage of

the relation-based knowledge for distillation. However, it is

widely acknowledged that the relation between objects con-

tains tremendous information even within one single image.

Thus, based on our selected discriminative patches, we ex-

tract the relation-based knowledge among them for distilla-

tion, achieving further performance gain.

3. General Instance Distillation

Previous work [34] proposed that the feature regions

near objects have considerable information which is use-

ful for knowledge distillation. However, we find that not

only the feature regions near objects but also the discrimi-

native patches even from the background area have mean-

ingful knowledge. Base on this finding, we design the gen-

eral instance selection module (GISM), as shown in Fig 2.

The module utilizes the predictions from both teacher and

student model to select the key instances for distillation.

Furthermore, to make better use of the information

provided by the teacher, we extract and take advantage

of feature-based, relation-based and the response-based

knowledge for distillation, as shown in Fig 3. The exper-

imental results show that our distillation framework is gen-

eral for current state-of-the-art detection models.

3.1. General Instance Selection Module

In detection model, predictions indicate the attention

patches which are commonly meaningful areas. The dif-

ference of such patches between teacher and student model

is also closely related to their performance gap. In order to

quantify the difference for each instance and then select the

NMS

Teacher’s Det Head

cls reg

Student’s Det Head

cls reg

Score 

Subtraction

Score 

Maximum Box

GIsGI Score

GI Box

Figure 2. Illustration of the general instance selection module

(GISM). To obtain the most informative locations, we calculate

the L1 distance of classification scores from student and teacher as

GI scores, and preserve regression boxes with higher scores as GI

boxes. To avoid losses double counting, we use the non-maximum

suppression (NMS) algorithm to remove duplicates.

discriminative instances for distillation, we propose two in-

dicator: GI score and GI box. Both of them are dynamically

calculated during each training step. For saving the compu-

tation resources during training, we simply calculate the L1

distance of classification score as GI score and choose box

with higher score as GI box. Fig 2 illustrates the procedure

of generating GI, and the score and box of which from each

predicted instance r is defined as below.

P r
GI = max

0<c≤C
|P rc

t − P rc
s | , (1)

Br
GI =







Br
t , max

0<c≤C
P rc
t > max

0<c≤C
P rc
s

Br
s , max

0<c≤C
P rc
t ≤ max

0<c≤C
P rc
s

, (2)

GI = NMS(PGI , BGI), (3)

where PGI and BGI denote GI score and GI box. For one-

stage detectors, Pt and Ps are the classification score pre-

dicted by the teacher and student separately. As for two-

stage detectors, P refers to the objectness score predicted

by RPN. Meanwhile, Bt and Bs are the regression boxes

predicted by the teacher and student, corresponding to the

score Pt and Ps. R is the number of the predicted boxes

and C is the number of classes. r, c are indexes in the di-

mension of R, C in subject to 0<c≤C and 0<r≤R. Since

we set the detection heads of teacher and student model pair

to be exactly the same, so these two networks have equal R

number of prediction boxes with one-to-one corresponding

location.

Though we identified the indicator of GI scores and cor-

responding boxes, these instances with high GI scores are

likely to be highly overlapped, thus leading to distillation

loss double counting. To deal with these redundant and cor-

related regions, we use standard non-maximum suppression

(NMS) to perform deduplication. Given a list of instances

with GI scores and boxes, NMS works by iteratively select-

ing the instance with the highest GI score, and then remov-

ing all lower GI score instances that have high overlap with
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Figure 3. Details of our method: (a) Selected GIs are used to crop the feature in student and teacher backbone by ROI Align. Then the

feature-based and relation-based knowledge are extracted for distillation. (b) Selected GIs first generate a mask by GIs assignment. Then

masked classification and regression head are distilled to utilize response-based knowledge.

the selected region. We use an IoU threshold of 0.3 to select

dispersing instances. Moreover, only top K instances with

the highest score are chosen as the final GI for distillation

in each image.

3.2. Featurebased Distillation

Most of the SOTA detection models have introduced

the Feature Pyramid Networks (FPN) [16], which can sig-

nificantly improve the robustness of multi-scale detection.

Since the FPN combines the feature of multiple backbone

layers, we intuitively choose the FPN for distillation. To be

specific, we crop the feature from the matching FPN layer

according to the different size of each GI box.

Given that the target sizes vary greatly in detection tasks,

directly performing pixel-wise distillation will make the

model more incline to learn large targets. Therefore, as

shown in Fig 3(a), we adopt the ROIAlign [8] algorithm,

which resizes GI feature of different sizes to the same size

and then perform distillation, treating each target equally.

The feature-based distillation loss is as follows:

LFeature =
1

K

K
∑

i=1

‖ti − s′i‖
2
2, (4)

s′ = fadapt(s), (5)

in which K is the number of GI selected by GISM with

top K GI scores, ti and si are the ith GI feature extracted

from the teacher and student model by ROIAlign algorithm,

fadapt is the linear adaptation function to adapt si to the

same dimension as ti.

3.3. Relationbased Distillation

Relational information [22, 20] between different objects

has played a significant role in distillation for classification

task. However, the relation-based knowledge distillation

for detection tasks remains unexplored. Since the instances

in the same scene are highly correlated, regardless of fore-

ground or background, this correlation information can help

the student network converge more effectively.

Owe to the informative GIs selected by GISM, we are

able to take full advantage of the correlation between dis-

criminative instances. Only performing one-to-one feature

distillation is certainly not enough to import more knowl-

edge. Therefore, to mine the valuable relation knowledge

underlying a batch of GIs, we further introduce relation-

based knowledge for distillation. Here we use Euclidean

distance to measure the relevance of instances, and L1 dis-

tance to transfer knowledge. As shown in Fig 3(a), we ad-

ditionally utilize the correlation information between GIs to

distill knowledge from teacher to student. The loss expres-

sion is as follows:

LRelation =
∑

(i,j)∈K2

l(
1

φ(t)
‖ti − tj‖2,

1

φ(s)

∥

∥s′i − s′j
∥

∥

2
),

φ(x) =
1

|K2|
∑

(i,j)∈K2

‖xi − xj‖2, (6)

where K2 = {(i, j) |i 6= j, 1 6 i, j 6 K}, and φ(·) is a nor-

malization factor for distance, and l denotes smooth L1 loss.

3.4. Responsebased Distillation

[36] proposes that the performance gain from the knowl-

edge distillation mainly due to the regularization of the

respond-based knowledge from the teacher model. How-

ever, performing the distillation on the whole output of the

detection head is detrimental to the performance of the stu-

dent model. We speculate that this may be caused by the

imbalance of the positive and negative samples of the de-

tection tasks and the noise introduced by too many nega-

tive samples. Recently, some detection distillation methods

[30, 3] only distill the positive sample on the detection head,

ignoring the regularization effect of the discriminative nega-

7845



Method
Faster R-CNN Res101-50 RetinaNet Res101-50 FCOS Res101-50

mAP AP50 mAP AP50 mAP AP50

teacher 56.3 82.8 57.3 81.9 58.4 81.6

student 54.2 82.2 55.4 80.9 56.1 80.2

Mimicking[14] 55.5 82.3 - - - -

Fine-grained[34] 55.4 82.2 56.6 81.5 - -

Fitnet[27] 55.1 82.2 55.8 81.4 57.0 80.3

Ours 56.5 82.6 57.9 82.0 58.4 81.3

Table 1. Comparison with previous work on PASCAL VOC with different detection frameworks. Some results are missing, as Mimicking

and Fine-grained can only be applied to two-stage frameworks and anchor-based frameworks respectively.

tive samples. Therefore, we designed distillation masks for

the classification branch and regression branch based on se-

lected GIs, which is proved more effective than only using

GT labels as the distillation mask.

However, since the definition of outputs from the detec-

tor head varies from model to model, we propose a general

framework to perform the distillation on the detection head

for different model, as shown in Fig 3(b). First of all, the

distillation mask based on GIs is calculated as follows:

M = FAssign(GIs), (7)

where function F is label assignment algorithm, which is

differ from model to model. It’s input is the GI boxes and

it’s output is 1 when this output pixel is matched GI and

0 when it is not. e.g. For RetinaNet, we use IoU between

anchors and GIs to determine whether it is masked or not.

For FCOS, all the outputs outside GIs are masked.

Then response-based loss can be expressed as follows:

LResponse =
1

Nm

R
∑

i=1

Mi

(

αLcls

(

yit, y
i
s

)

+ βLreg

(

rit, r
i
s

))

,

Nm =

R
∑

i=1

Mi, (8)

in which yt rt are from teacher model while ys rs are from

student model. yt ys are from output of the classification

head. rt rs are from output of the regression head. Lcls

and Lreg are the classification and regression loss function

same as the task loss function of specific distilled model. It

should be noted that, for two-stage detector, we distill the

outputs of RPN instead for simplify.

3.5. Overall loss function

We trained the student model end-to-end, total loss for

distilling student model is as follows:

L=LGT +λ1LFeature+λ2LRelation+λ3LResponse, (9)

where LGT is task loss for detection model, λ1, λ2, λ3 are

hyper-parameters to balance each loss in the same scale.

4. Experiments

In order to verify the effectiveness and robustness of

our method, we conduct experiments on different detection

frameworks, heterogeneous backbones and few classes de-

tection with COCO and Pascal VOC dataset. Specifically,

following the setting in [26], for the Pascal VOC dataset,

we choose the 5k trainval images split in VOC 2007 and

16k trainval images split in VOC 2012 for training and 5k

test images split in VOC 2007 for test. While for COCO, we

choose the default 120k train images split for training and

5k val images split for test. All the distillation performances

are evaluated in average precision (AP).

We adopt the hyper-parameters {K = 10, λ1 = 5 ×
10−4, λ2 = 40, λ3 = 1, α = 0.1, β = 1} for all ex-

periments by diagnosing the initial loss of each knowl-

edge type and ensuring that all losses are within the same

scale. Unless specified, we use 2x learning schedule to train

24 epochs (180000 iterations) on COCO dataset and 17.4

epochs (18000 iterations) on VOC dataset for distillation.

4.1. Different detection frameworks

We evaluate our method based on three state-of-the-

art detection frameworks, anchor-based one-stage detector

(RetinaNet), anchor-free one-stage detector (FCOS), and

two-stage detector (Faster R-CNN). Among those three

models, the distillation for feature-based and relation-based

distillation is exactly the same. However, as the target defi-

nition for detection task in each model is different, the form

of the response-based distillation loss is also different, e.g.

following the original loss setting, we choose IoU loss and

smooth L1 loss for FCOS and RetinaNet separately.

As for the backbone, we choose shallower student back-

bone with similar architecture of teacher model. To be spe-

cific, we choose ResNet-50 based model as student model,

and ResNet-101 based model as teacher model. As shown

in Table 1, we compare our method with SOTA detection

distillation methods on Pascal VOC. The results shows that

our method outperforms the previous SOTA methods to a

large extent and even surpasses the teacher model.

As shown in Table 2, we also perform experiments with
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Method mAP AP50 AP75 APS APM APL mAR ARS ARM ARL

Retina-Res101 (teacher) 38.1 58.3 40.9 21.2 42.3 51.1 54.4 34.1 59.1 70.5

Retina-Res50 (student) 36.2 55.8 38.8 20.7 39.5 48.7 52.1 33.7 55.3 68.6

+ Fitnet[27] 37.4 57.1 40.0 20.8 40.8 50.9 53.5 33.6 57.4 69.4

+ Fine-grained[34] 38.6 58.7 41.3 21.4 42.5 51.5 54.6 34.7 58.2 70.4

+ Ours 39.1 59.0 42.3 22.8 43.1 52.3 55.3 36.7 59.1 71.1

Our gain +2.9 +3.2 +3.5 +2.1 +3.6 +3.6 +3.2 +3.0 +3.8 +2.5

FCOS-Res101 (teacher) 41.0 60.3 44.2 24.6 44.8 52.8 58.8 39.8 63.9 74.0

FCOS-Res50 (student) 38.5 57.0 41.3 21.4 41.8 50.7 56.1 34.6 60.3 72.0

+ Fitnet[27] 39.9 58.6 43.1 23.1 43.4 52.2 57.3 36.6 61.5 73.1

+ Ours 42.0 60.4 45.5 25.6 45.8 54.2 59.9 39.9 64.3 75.8

Our gain +3.5 +3.4 +4.2 +4.2 +4.0 +3.5 +3.8 +5.3 +4.0 +3.8

R-CNN-Res101 (teacher) 39.6 60.6 43.1 22.7 43.3 51.9 53.3 32.8 57.5 67.7

R-CNN-Res50 (student) 38.3 58.8 41.7 21.4 41.6 50.5 51.5 30.9 55.2 65.9

+ Fitnet[27] 38.9 59.5 42.4 21.9 42.2 51.6 52.3 32.5 55.4 66.7

+ Mimicking[14] 39.6 60.1 43.3 22.5 42.8 52.2 52.9 33.1 56.1 67.6

+ Fine-grained[34] 39.3 59.8 42.9 22.5 42.3 52.2 52.4 32.2 55.7 67.9

+ Ours 40.2 60.7 43.8 22.7 44.0 53.2 53.9 33.5 57.6 68.8

Our gain +1.9 +1.9 +2.1 +1.3 +2.4 +2.7 +2.4 +2.6 +2.4 +2.9

Table 2. Results of the proposed GID on COCO dataset with different detection frameworks.

COCO dataset. All student models get significant perfor-

mance gains from the teacher by our method and reach a

comparable result to the teacher models, e.g. the ResNet-

50 based RetinaNet student model gets 2.9 absolute gain in

mAP, which totally recovers the performance drop due to

the shallow backbone. Especially, our method achieves a

further APs gain compared to other feature-based methods,

since we treat each instance equally, regardless of the pro-

portion of the instance in the feature map. Those results

demonstrate that our method is applicable to a variety of

widely used detection frameworks.

4.2. Heterogeneous network backbones

To further verify the generalization of our methods, in-

stead of using homogeneous ResNet backbones for distilla-

tion, we introduce two heterogeneous backbones. Specifi-

cally, we take MobileNet-v2 [28] based RetinaNet as stu-

dent and ResNet-101 based one as teacher. As shown in

Table 3, the lightweight MobileNet-V2 based detector gets

a 2.5 absolute mAP gain even if the basic network module

is different between student and teacher.

4.3. Distillation with fewer classes

[21] points out that the information distilled is linear in

the number of classes, so distillation is considerably less

efficient for models with few classes. However, our method

will adaptively select highly informative areas to distill and

take advantage of all kinds of knowledge from the teacher

model. Thus, we get impressive results, as shown in Table

4, when only a single class (person) is considered in the

COCO dataset. The student model still exceeds the teacher

model by a large margin in terms of few classes.

Model Teacher mAP AP50 AP75 APS APM APL

Retina-R101 - 38.1 58.3 40.9 21.2 42.3 51.1

Retina-Mob - 31.0 48.9 32.7 16.4 33.8 42.6

Retina-Mob Retina-R101 33.5 51.9 35.5 19.2 36.9 44.3

+2.5 +3.0 +2.8 +2.8 +3.1 +1.7

Table 3. GID results on COCO dataset with heterogeneous net-

work backbones.

Model Teacher mAP AP50 AP75 APS APM APL

Retina-R101 - 52.1 81.2 54.6 32.8 59.3 71.8

Retina-R50 - 50.4 79.4 53.0 31.6 56.9 70.2

Retina-R50 Retina-R101 52.8 81.3 55.4 33.9 59.4 72.5

+2.4 +1.9 +2.4 +2.3 +2.5 +2.3

Table 4. GID results on COCO dataset with only Person class.

4.4. Analysis

4.4.1 Visualization of General Instances

To better understand the general instances we selected to

be distilled, we visualize the selected general instances and

the corresponding heat maps of the GI score distribution

from different training stages with RetinaNet-Res101-50

(ResNet-101 based teacher and ResNet-50 based student).

As shown in Figure 4, the green boxes denote the ground-

truth label, the other color boxes denote the general instance
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Examples from COCO of GIs selected by GISM and the corresponding heat maps of the GI score distribution with RetinaNet-

Res101-50 model. The instances from (a)(e) are calculated by the teacher and student with 5000 iterations, while the instances from (c)(g)

are calculated by the teacher and student model with 90000 iterations. The green, red, yellow and cyan boxes denote ground truth, positive,

semi-positive and negative instances respectively, as defined in Sec 4.4.2. For clarity, we only visualize the GI with top10 GI score.

used to be distilled. The characteristic of general instances

can be summarized into the following categories:

Key characteristic patches. As shown in the yellow boxes

in Fig 4(e) 4(g), some key features of the athlete are selected

such as the shoes and clothes, which are critical areas for

distillation and are explained as visual concepts in [4].

Extra instances. Some confusing background areas with

discriminative semantic information are also selected for

distillation. For example, the oven-like machine and the

shadow of the tennis racket shown in the cyan boxes in Fig

4(a) 4(g) are selected due to the inconsistent score distribu-

tion between the student model and teacher model, though

some of those background instances do not include in the

original 80 classes of the COCO dataset.

More informative positive instances. Compared with

ground truth boxes (green), we only choose a subset among

those for distillation as shown in the red boxes in Fig 4.

In contrast to Online Hard Example Mining (OHEM) [29]

which adaptively selects the hardest examples for training,

in our method, the extremely hard instances are discarded

for distillation, such as the small wine glasses in Fig 4(a),

which are hard to be detected from both the student and

teacher model. While in the late stage of training, the ma-

jority of ground truth instances are simple for both teacher

and student models and some of them are ignored for dis-

tillation. As shown in Fig 4(c) 4(g), the athlete and the mi-

crowave oven are neglected, only some positive instances

which are hard to learn from teacher remain to be distilled,

like the tennis ball.

Time-varying distillation tendency. With the training

goes on, the focus of the distillation targets has shifted

from simple positive instances to small confusing patches,

as shown in the heat maps of GI score in Fig 4(b) 4(f) from

iteration 5000 and Fig 4(d) 4(h) from iteration 90000. This

distillation tendency is similar to a human cognitive pro-

cess. The above scenarios demonstrate that the GISM will

adaptively choose the most informative and discriminative

patches for distillation during training.

4.4.2 Performance gain from General Instance

To further analyze the contribution of each type of general

instances and verify the effectiveness of GISM, we perform

experiments on each type of general instances. We intro-

duce an index named intersection over proposals (IoP) to

help us separate those GIs:

IoP =
area(GI ∩GT )

area(GI)
(10)

Then we define each type of GIs as follows:

GI =











Pos IoU > 0.5

Semi-Pos IoU ≤ 0.5, IoP > 0.7

Neg IoU ≤ 0.5, IoP < 0.3

, (11)

where the IoU means the intersection over union between

GI and GT. Pos, Semi-Pos, Neg are short for positive, semi-

positive and negative instances respectively. Besides, in ab-

lation study, we ignore those instances with an IoP between

0.3 to 0.7 to analyse the contribution of each part of the

general instances more clearly.

As shown in Table 5, distilling each type of instance can

all bring performance gain to the student model, while com-

bining all three types can achieve the best performance. One

thing that’s very noticeable is that performing distillation

only on negative instances is still beneficial to the student

model, which is a strong evidence that our approach effec-

tively selects the useful information from the background
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Model
RetinaNet Res101-50

GT GI

Positive -
√

- -
√ √

Semi-Positive - -
√

-
√ √

Negative - - -
√

-
√

mAP 38.5 38.8 38.6 38.2 39.0 39.1

Table 5. Ablation Study for each type of General Instances, includ-

ing positive, semi-positive and negative Instance. GT denotes that

we use GT instance for distillation.

area while filters detrimental knowledge. Moreover, even if

positive instances chosen by GISM is only a subset of GT

instances, the result from positive instances surpasses that

from GT instance, which indicate that some extreme hard

or simple GT instances for both teacher and student will be

detrimental for distillation. Besides, it is still effective to

use the GT region for distillation. The essence is that the

GT region is still the most informative and discriminative

in the early stage of training. However, ignoring the hidden

information in the background will make the student model

fail to achieve better performance.
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Figure 5. The curve of the instances number with training iteration

on RetinaNet-Res101-50. For a better demonstration, we perform

exponential smoothing on the instance number with α = 0.9.

As shown in Fig 5, We drew the curves of these three

types instances with the number of iterations. It can be seen

that the proportion of positive distillation instances in the

late training period is reduced, indicating that the improve-

ment in the late training period is mainly brought by the dis-

criminative background area and key characteristic patches.

4.4.3 Performance gain from various knowledge

In this subsection, we conduct several ablation experiments

to understand how each type of knowledge component con-

tributes to the final performance. As shown in Table 6,

each distillation component improves the performance, es-

pecially for the feature-based and response-based knowl-

edge which brings improvement about 1.7 mAP gains. The

combination of the above knowledge achieves the best re-

sults, which brings about another 1.2 mAP gains compared

with the best single component. That is to say, although the

three types of knowledge contain some overlapping parts,

we take advantage of the unique parts among them.

Model Res50 RetinaNet Res101-50

Feature-based -
√

- -
√ √

Relation-based - -
√

- -
√

Response-based - - -
√ √ √

mAP 36.2 37.9 37.3 37.9 38.7 39.1

Table 6. Ablation Study for each part of the distillation loss.

4.4.4 Varying top K for GISM

We investigate the influence of different GISM hyperparam-

eter top K with RetinaNet-Res101-50 model. As shown

in Table 7, when K = 0, no general instance is chosen,

thus distillation loss is not applied. As the K increases,

the student model gets a significant mAP gain, even with

5 distilled GIs, which is strong evidence that our approach

selects the most worthy instances for distillation. The per-

formance becomes stable and optimal when the K is at the

range of 10 to 100, while it starts decreasing when K still

goes further, which is mainly because the informative and

discriminative GIs are overwhelmed by trivial instances.

Top K 0 5 10 40 100 300

mAP 36.2 38.9 39.1 39.0 39.1 38.6

Table 7. Hyperparameter analysis of top K GI score.

5. Conclusion

We propose GID framework that adaptively selects the

most discriminative instances between teacher and student

for distillation. Besides, our method effectively improves

the performance of modern detection frameworks with

feature-based, relation-based and response-based knowl-

edge, and is applicable to various detection frameworks.

The ablation study demonstrates that imitating some of the

GT instances will do harm to the performance while even

some instances from backgrounds can be helpful, which

will give some insights for future distillation works.
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